
Workgroup: TLS

Internet-Draft:

draft-davidben-tls-alps-half-rtt-00

Published: 3 December 2020

Intended Status: Informational

Expires: 6 June 2021

Authors: D. Benjamin

Google LLC

Comparing ALPS and Half-RTT Data

Abstract

This document compares the Application Layer Protocols Settings

extension with the half-RTT feature in TLS 1.3.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 June 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

2.  Using Half-RTT Data

2.1.  Half-RTT Delimiter

2.2.  Non-Integer HTTP Settings

2.3.  Early Data and Session Tickets

2.4.  Client Certificates

2.5.  TLS Terminators

2.6.  TCP Flow Control

3.  Using ALPS

3.1.  Half-RTT Delimiter

3.2.  Non-Integer HTTP Settings

3.3.  Early Data and Session Tickets

3.4.  Client Certificates

3.5.  TLS Terminators

3.6.  TCP Flow Control

4.  Security Considerations

5.  IANA Considerations

6.  Informative References

Acknowledgments

Author's Address

1. Introduction

An application-layer protocol often starts with both parties

negotiating parameters under which the protocol operates; for

instance, HTTP/2 [RFC7540] and HTTP/3 [I-D.ietf-quic-http] use a

SETTINGS frame to exchange the list of protocol parameters supported

by each endpoint. This can achieved by waiting for TLS handshake 

[RFC8446] to complete and then performing the application-layer

handshake within the application protocol itself.

This approach, however, means application protocols must wait for a

secondary negotiation to complete, often incurring network round-

trip. HTTP/2 and HTTP/3 mitigate this with a best-effort negotiation

scheme: clients do not wait for server SETTINGS before sending a

request. But then, by the time the client applies the setting, it

has already sent the first request based on the default values. This

limits the kinds of extensions possible. For example, the SETTINGS

frame cannot support negotiate header compression [QUIC-3622] or a

different static table [HTTP2-788] without changing the protocol to

disable compression by default and switch partway through.

Protocol selection is another example of application-level

negotiation with these trade-offs. The Application Layer Protocol

Negotiation (ALPN) extension [RFC7301] adds protocol selection into

the TLS handshake. ALPN is instead consistently ordered before all

application data, including TLS 1.3 early data, without either a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



round-trip penalty or the need to send initial pre-negotiation data

(see Section 3.2 of [RFC7540]).

The Application Layer Protocol Settings (ALPS) extension [I-D.vvv-

tls-alps] implements [QUIC-3086-COMMENT] and adds a similar

mechanism for settings within the protocol. It sends ALPN-specific

protocol settings strings in the handshake, which can be ordered

correctly relative to application data and integrated with TLS 1.3

early data negotiation.

As an alternative, Section 4.4.4 of [RFC8446] allows a server to

send application data after the server Finished message, often

referred to as half-RTT data. Half-RTT data is not a complete

solution to the settings problem, however. This document describes

the other changes necessary and compares the approach to ALPS.

2. Using Half-RTT Data

Although not currently widely-implemented, half-RTT data can be used

to deliver HTTP/2 SETTINGS and other values at the right round-trip.

This would result in a handshake flow like the following.

The approach, however, requires a number of additional changes and

protocol interactions to work correctly.

2.1. Half-RTT Delimiter

In this design, the client waits to receive the HTTP/2 SETTINGS

frame before sending requests. However, HTTP/2 servers are not

required to send SETTINGS in half-data today, and most existing ones

do not. [[TODO: Did I ever write this down anywhere I can link to?

When I probed TLS 1.3 HTTP/2 servers, I found none that send half-

RTT data.]] Without a new signal to the client, waiting would add a

latency penalty to existing servers. TLS 1.3 does not include a

delimiter between half-RTT data and the rest of the server

application stream, so the client does not know a priori when it is

done reading.

¶

¶

¶

¶

    Client                                              Server

    ClientHello               -------->

                                                    ServerHello

                                                            ...

                                                     {Finished}

                              <--------       [HTTP/2 SETTINGS]

    ...

    {Finished}

    [HTTP/2 SETTINGS]         -------->

    [HTTP/2 requests]         <------->      [HTTP/2 responses]

¶

¶

¶



One option would be a TLS extension that adds a delimiter between

half-RTT and normal server application data. The client would then

wait for that delimiter without round-trip penalty and proceed. This

would not work in QUIC because QUIC does not use TLS for application

data at all. Instead, half-RTT data would need to be lifted into the

handshake, which is the ALPS extension.

Alternatively, the client could rely on application protocol

semantics, and assume the protocol defines exactly what is sent in

half-RTT. However, HTTP/2 does not do this today. This would require

defining new HTTP/2.1 and HTTP/3.1 protocols with a MUST-level

requirement to send half-RTT SETTINGS. HTTP/2.1 and HTTP/3.1 would

be negotiated via ALPN. Note both HTTP/2 and HTTP/3 must be updated

because, per Section 3.2 of [I-D.ietf-quic-http], connectivity

problems can break QUIC and clients are encouraged to fall back to a

TCP-based version of HTTP.

2.2. Non-Integer HTTP Settings

The HTTP/2 and HTTP/3 SETTINGS frame can only carry integer values,

but extensions may need to carry variable-length data. For example, 

[I-D.davidben-http-client-hint-reliability] uses a string value.

[I-D.bishop-httpbis-extended-settings] proposes an EXTENDED_SETTINGS

frame to fix this. If defining HTTP/2.1 and HTTP/3.1,

EXTENDED_SETTINGS can be added as a mandatory component of the new

protocols.

If EXTENDED_SETTINGS is left optional, the client needs to know

whether to expect a half-RTT EXTENDED_SETTINGS frame after half-RTT

SETTINGS, to avoid the issues discussed in Section 2.1. Thus

SETTINGS would need to contain a SETTINGS_EXTENDED_SETTINGS setting

to indicate more half-RTT frames are coming.

[HTTPWG-COMMENT] suggested tabling EXTENDED_SETTINGS in favor of

extensions defining new HTTP frames. That would not work here,

absent each extension additionally defining an analog to

SETTINGS_EXTENDED_SETTINGS, to signal to the client to expect a new

frame.

2.3. Early Data and Session Tickets

TLS 1.3 introduces early data, which allows clients to send

application data before receiving a ServerHello from the server. 

[RFC8470] describes how to use it in HTTP.

Application-level connection properties additionally must be

established before the client sends early data. Otherwise if, for

instance, HPACK static tables are negotiated, the client will not be

able to encode the early request. Note Section 2 of [RFC8470] says

¶

¶

¶

¶

¶

¶

¶



early data in HTTP is conceptually concatenated with other

application data, so early data and 1-RTT data in HTTP must share

decoding rules.

Early data is sent before any response from the server, so

connection properties are typically carried over from the ticket.

Section 4.2.10 of [RFC8446] describes the mechanism for the ALPN

extension: Each PSK has an associated ALPN protocol, determined from

the previous connection. The client sends early data assuming that

protocol was used. If the server negotiates a different value, it

rejects early data.

Reliably-ordered protocol settings would require a similar

construction. However TLS does not define ALPN's early data behavior

generally, so every application protocol would need to define it

themselves and, when implementing, rely on various callback

interfaces in the TLS implementation.

This also introduces a dependency between NewSessionTicket and the

server application data stream: the NewSessionTicket is not

meaningful without part of the server application data (here, the

SETTINGS and EXTENDED_SETTINGS frames). Moreover, in QUIC and DTLS,

post-handshake messages are not ordered relative to application

data, so the client may receive NewSessionTicket messages in the

wrong order. The client then cannot store sessions in the TLS

session until some application-defined point. This requires further

integration between TLS and the application protocol.

See related discussion in [QUIC-436], [QUIC-2790], and [QUIC-2945].

Note HTTP/3 addressed the ordering issue by making associating

settings with the ticket optional on the client [QUIC-2972], while a

solution to this problem makes it mandatory.

2.4. Client Certificates

TLS APIs are often structured around the following sequence of

operations:

The calling application configures TLS parameters. This may

include preferred cipher suites, client certificate

requirements, callbacks to defer some configuration, etc.

The calling application runs the handshake to some notion of

completion. Before the handshake completes, connection

properties are not established, the peer is not authenticated,

and the application does not read or write data.

The calling application queries handshake properties. It may

query the negotiated ALPN protocol to determine how to proceed

¶

¶

¶

¶

¶

¶

1. 

¶

2. 

¶

3. 



in the application protocol. It may query the peer certificate

for application-level access checks.

The calling application reads and writes data according to the

application protocol.

This is analogous to many TCP socket APIs, where there is a

"connect" or "accept" operation that completes before "recv" and

"send" operations are available.

In server connections that do not resume a session, the TLS 1.3

half-RTT point has different semantics from a complete TLS

handshake. The client's identity has not been established yes, so

TLS implementations cannot transparently report the connection as

ready to the calling application. Doing so risks security issues

(the application's client certificate requirements are not yet

checked) and compatibility breaks (the application cannot usefully

query the peer certificate).

Instead, the TLS implementation might expose a separate interface

for an earlier partial completion state. The application would then

write half-RTT data, knowing that client authentication requirements

are not yet met. This complicates the interface and the above

structure. Alternatively, the TLS implementation may require the

application configure a byte string to send as half-RTT data during

the handshake, but note this risks the deadlocks described in 

Section 2.6.

2.5. TLS Terminators

Some server deployments use a TLS terminator which then makes a TCP

connection to some backend application server. These deployments

would need to preserve any MUST-level requirements to send SETTINGS

in half-RTT data. A TLS terminator which completes the handshake and

then proxies data from the backend server would inadvertently add a

round-trip delay to the SETTINGS frame, delaying HTTP requests.

However, a TLS terminator which begins proxying data at the half-RTT

point instead risks skipping client certificate authentication.

Instead, the TLS terminator must coordinate with the backend server

to determine what data may be sent early to unauthenticated clients,

and what data is bulk application traffic.

2.6. TCP Flow Control

If not implemented properly, this design risks deadlocks with TCP

flow control [TCP-TLS]. It is possible for both the client Finished

flight and the server half-RTT data to exceed transport buffers. The

server must read the client Finished flight and complete the

¶

4. 

¶

¶

¶

¶

¶

¶



handshake, even if the half-RTT data has not been written to the

wire.

In particular, a TLS implementation may try to avoid the issues in 

Section 2.4 by treating half-RTT as a configured string sent as part

of the handshake, rather than exposing a writable stream to the

calling application. This strategy must still write half-RTT data in

parallel with completing the handshake to avoid a deadlock. Many TLS

implementations are layered on top of non-blocking TCP socket APIs,

which means the calling application would still be responsible for

driving these parallel operations. This changes the I/O patterns the

application expects from TLS.

3. Using ALPS

The ALPS strategy is described in [I-D.vvv-tls-alps] and [I-D.vvv-

httpbis-alps]. It implements [QUIC-3086-COMMENT], sending

application settings in the EncryptedExtensions on both client and

server. The client half is not strictly necessary (TLS 1.3 is always

writable on the client first), but simplifies server implementations

in QUIC, where application data streams are not ordered relative to

each other.

3.1. Half-RTT Delimiter

ALPS does not require a half-RTT delimiter. The entire payload is

sent in the EncryptedExtensions message, which includes a common

framing for extension values.

3.2. Non-Integer HTTP Settings

As in half-RTT data, an ALPS mechanism for HTTP/2 and HTTP/3 must

handle the SETTINGS frame limitations. [I-D.vvv-httpbis-alps] allows

the ALPS payload to contain multiple frames, so either the [I-

D.bishop-httpbis-extended-settings] or [HTTPWG-COMMENT] strategies

may be used. The payload is already framed in EncryptedExtensions,

¶

¶

¶

    Client                                               Server

    ClientHello               -------->

                                                    ServerHello

                                          {EncryptedExtensions}

                                        + alps(HTTP/2 SETTINGS)

                                                            ...

                              <--------              {Finished}

    {EncryptedExtensions}

    + alps(HTTP/2 SETTINGS)

    ...

    {Finished}

    [HTTP/2 requests]         <------->      [HTTP/2 responses]

¶

¶



so there is no need for an indicator value like

SETTINGS_EXTENDED_SETTINGS.

3.3. Early Data and Session Tickets

As in the half-RTT strategy, ALPS requires early data and session

ticket integration. However, this behavior is part of the extension

itself, so, like ALPN, there is no need to specify and implement

this additional logic for each application protocol.

Unlike the application-level integration for half-RTT data, this

TLS-level integration for ALPS does not have ordering issues with

NewSessionTicket. NewSessionTicket messages are ordered relative to

the handshake, so the ALPS values will always be available before a

NewSessionTicket.

3.4. Client Certificates

As in ALPN and the half-RTT strategy, the server ALPS value is sent

before receiving the client certificate. In ALPS, this would be part

of the extension semantics exposed to application protocols, just as

ALPN configuration is not protected by client certificates.

3.5. TLS Terminators

As in the half-RTT solution, ALPS requires a TLS terminator

deployment to coordinate with its backend server to separate the

early, unauthenticated SETTINGS data from the rest of the stream.

However, the payload is already naturally kept separate from the

rest of the application stream. Instead, the settings values are an

analog of the ALPN value, which already requires coordination.

3.6. TCP Flow Control

ALPS sends the settings values in-band in the TLS handshake, rather

than afterwards, so the deadlock risks described in [TCP-TLS] do not

apply. The client will read the entire EncryptedExtensions message

(and more) before trying to send the client Certificate,

CertificateVerify, and Finished.

4. Security Considerations

Any server information delivered in time for the client's first

application data records must be sent before checking client

certificates. Section 2.4 and Section 3.4 discuss strategies for

ensuring the calling application does not inadvertently reveal

sensitive information to unauthenticated clients.

¶

¶

¶

¶

¶

¶

¶



[HTTP2-788]

[HTTPWG-COMMENT]

[I-D.bishop-httpbis-extended-settings]

[I-D.davidben-http-client-hint-reliability]

[I-D.ietf-quic-http]

[I-D.vvv-httpbis-alps]

[I-D.vvv-tls-alps]

[QUIC-2790]

5. IANA Considerations

This document has no IANA considerations.

6. Informative References

"Update the HPACK static table", November 2020, 

<https://github.com/httpwg/http2-spec/issues/788>. 

Thomson, M., "draft-bishop-httpbis-extended-

settings-00 comments", 13 July 2016, <https://

lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/

0127.html>. 

Bishop, M., "HTTP/2 Extended SETTINGS Extension", Work in

Progress, Internet-Draft, draft-bishop-httpbis-extended-

settings-01, 15 November 2016, <http://www.ietf.org/

internet-drafts/draft-bishop-httpbis-extended-

settings-01.txt>. 

Benjamin, D., "Client Hint Reliability", Work in

Progress, Internet-Draft, draft-davidben-http-client-

hint-reliability-02, 30 November 2020, <http://

www.ietf.org/internet-drafts/draft-davidben-http-client-

hint-reliability-02.txt>. 

Bishop, M., "Hypertext Transfer Protocol

Version 3 (HTTP/3)", Work in Progress, Internet-Draft,

draft-ietf-quic-http-32, 20 October 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-quic-

http-32.txt>. 

Vasiliev, V., "Using TLS Application-Layer

Protocol Settings (ALPS) in HTTP", Work in Progress, 

Internet-Draft, draft-vvv-httpbis-alps-00, 6 July 2020, 

<http://www.ietf.org/internet-drafts/draft-vvv-httpbis-

alps-00.txt>. 

Benjamin, D. and V. Vasiliev, "TLS Application-

Layer Protocol Settings Extension", Work in Progress, 

Internet-Draft, draft-vvv-tls-alps-01, 21 September 2020,

<http://www.ietf.org/internet-drafts/draft-vvv-tls-

alps-01.txt>. 

Thomson, M., "Binding settings into session tickets", 

July 2019, <https://github.com/quicwg/base-drafts/issues/

2790>. 

¶

https://github.com/httpwg/http2-spec/issues/788
https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0127.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0127.html
https://lists.w3.org/Archives/Public/ietf-http-wg/2016JulSep/0127.html
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-extended-settings-01.txt
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-extended-settings-01.txt
http://www.ietf.org/internet-drafts/draft-bishop-httpbis-extended-settings-01.txt
http://www.ietf.org/internet-drafts/draft-davidben-http-client-hint-reliability-02.txt
http://www.ietf.org/internet-drafts/draft-davidben-http-client-hint-reliability-02.txt
http://www.ietf.org/internet-drafts/draft-davidben-http-client-hint-reliability-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-vvv-httpbis-alps-00.txt
http://www.ietf.org/internet-drafts/draft-vvv-httpbis-alps-00.txt
http://www.ietf.org/internet-drafts/draft-vvv-tls-alps-01.txt
http://www.ietf.org/internet-drafts/draft-vvv-tls-alps-01.txt
https://github.com/quicwg/base-drafts/issues/2790
https://github.com/quicwg/base-drafts/issues/2790


[QUIC-2945]

[QUIC-2972]

[QUIC-3086-COMMENT]

[QUIC-3622]

[QUIC-436]

[RFC7301]

[RFC7540]

[RFC8446]

[RFC8470]

[TCP-TLS]

Oku, K., "When to send the SETTINGS frame", July 2019, 

<https://github.com/quicwg/base-drafts/issues/2945>. 

Bishop, M., "Send complete SETTINGS", August 2019, 

<https://github.com/quicwg/base-drafts/pull/2972>. 

Bishop, M., "Add application parameters to QUIC

handshake and use it for H3 SETTINGS (comment)", 17

October 2019, <https://github.com/quicwg/base-drafts/

issues/3086#issuecomment-543373506>. 

"Make using static table and Huffman encoding in QPACK

opt-in", May 2020, <https://github.com/quicwg/base-

drafts/issues/3622>. 

Rescorla, E., "Move SETTINGS into TLS Handshake", April

2017, <https://github.com/quicwg/base-drafts/issues/436>.

Friedl, S., Popov, A., Langley, A., and E. Stephan, 

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>. 

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/info/rfc8446>. 

Thomson, M., Nottingham, M., and W. Tarreau, "Using Early

Data in HTTP", RFC 8470, DOI 10.17487/RFC8470, September

2018, <https://www.rfc-editor.org/info/rfc8470>. 

Benjamin, D., "TLS 1.3 and TCP interactions", 29 May

2020, <https://mailarchive.ietf.org/arch/msg/tls/

hymweZ66b2C8nnYyXF8cwj7qopc/>. 

Acknowledgments

This document has benefited from contributions and suggestions from

Victor Vasiliev.

Author's Address

David Benjamin

¶

https://github.com/quicwg/base-drafts/issues/2945
https://github.com/quicwg/base-drafts/pull/2972
https://github.com/quicwg/base-drafts/issues/3086#issuecomment-543373506
https://github.com/quicwg/base-drafts/issues/3086#issuecomment-543373506
https://github.com/quicwg/base-drafts/issues/3622
https://github.com/quicwg/base-drafts/issues/3622
https://github.com/quicwg/base-drafts/issues/436
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8470
https://mailarchive.ietf.org/arch/msg/tls/hymweZ66b2C8nnYyXF8cwj7qopc/
https://mailarchive.ietf.org/arch/msg/tls/hymweZ66b2C8nnYyXF8cwj7qopc/


Google LLC

Email: davidben@google.com

mailto:davidben@google.com

	Comparing ALPS and Half-RTT Data
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Using Half-RTT Data
	2.1. Half-RTT Delimiter
	2.2. Non-Integer HTTP Settings
	2.3. Early Data and Session Tickets
	2.4. Client Certificates
	2.5. TLS Terminators
	2.6. TCP Flow Control

	3. Using ALPS
	3.1. Half-RTT Delimiter
	3.2. Non-Integer HTTP Settings
	3.3. Early Data and Session Tickets
	3.4. Client Certificates
	3.5. TLS Terminators
	3.6. TCP Flow Control

	4. Security Considerations
	5. IANA Considerations
	6. Informative References
	Acknowledgments
	Author's Address


