
Network Working Group A. Davidson
Internet-Draft Cloudflare Portugal
Intended status: Informational 9 March 2020
Expires: 10 September 2020

Privacy Pass: The Protocol
draft-davidson-pp-protocol-00

Abstract

 This document specifies the Privacy Pass protocol for privacy-
 preserving authorization of clients to servers. The privacy
 requirement is that client re-authorization events cannot be linked
 to any previous initial authorization. Privacy Pass is intended to
 be used as a performant protocol in the Internet setting.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 September 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Davidson Expires 10 September 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft PP protocol March 2020

Table of Contents

1. Introduction . 3
1.1. Layout . 4

2. Preliminaries . 5
2.1. Terminology . 5
2.2. Basic assumptions . 5

3. Privacy Pass functional API 6
3.1. Data structures . 6
3.1.1. Ciphersuite . 6
3.1.2. ServerConfig . 6
3.1.3. ServerUpdate . 7
3.1.4. ClientConfig . 7
3.1.5. ClientIssuanceInput 7
3.1.6. IssuanceMessage 8
3.1.7. IssuanceResponse 8
3.1.8. RedemptionToken 8
3.1.9. RedemptionMessage 9
3.1.10. RedemptionResponse 9

3.2. API functions . 9
3.2.1. PP_Server_Setup 9
3.2.2. PP_Client_Setup 10
3.2.3. PP_Generate . 10
3.2.4. PP_Issue . 10
3.2.5. PP_Process . 11
3.2.6. PP_Redeem . 11
3.2.7. PP_Verify . 12

3.3. Error types . 12
4. Generalized protocol overview 12
4.1. Key initialisation phase 13
4.2. Issuance phase . 14
4.3. Redemption phase . 14
4.3.1. Double-spend protection 15

4.4. Handling errors . 16
5. Security requirements . 16
5.1. Unlinkability . 16
5.2. One-more unforgeability 17
5.3. Double-spend protection 18

6. VOPRF instantiation . 18
6.1. VOPRF conventions . 18
6.1.1. Ciphersuites . 18
6.1.2. Prime-order group conventions 19

6.2. API instantiation . 19
6.2.1. PP_Server_Setup 20
6.2.2. PP_Client_Setup 20
6.2.3. PP_Generate . 20
6.2.4. PP_Issue . 21
6.2.5. PP_Process . 21

Davidson Expires 10 September 2020 [Page 2]

Internet-Draft PP protocol March 2020

6.2.6. PP_Redeem . 22
6.2.7. PP_Verify . 22

6.3. Security justification 23
7. Ciphersuites . 23
8. Extensions framework policy 24
9. References . 24
9.1. Normative References 24
9.2. Informative References 25

 Author's Address . 26

1. Introduction

 A common problem on the internet is providing an effective mechanism
 for servers to derive trust from the clients that it interacts with,
 without hampering the accessibility of honest clients. Typically,
 this can be done by providing some sort of authorization challenge to
 the client. A client providing a correct solution to the challenge
 can be provided with a cookie. This cookie can be presented the next
 time it interacts with the server. The resurfacing of this cookie
 allows the server to see that the client passed the authorization
 check in the past. Consequently, the server can re-authorize the
 client again immediately, without the need for the client to complete
 a new challenge.

 In scenarios where clients need to identify themselves, the
 authorization challenge usually take the form of some sort of login
 procedure. Otherwise, the server may just want to verify that the
 client demonstrates some particular facet of behavior (such as being
 human). Such cases may only require a lightweight form of challenge
 (such as completing a CAPTCHA).

 In both cases, if a server issues cookies on successful completion of
 challenges, then the client can use this cookie to bypass future
 challenges for the lifetime of the cookie. The downside of this
 approach is that it provides the server with the ability to link all
 of the client's interactions that it witnesses. In these situations,
 the client's effective privacy is dramatically reduced.

 The Privacy Pass protocol was initially introduced as a mechanism for
 authorizing clients that had already been authorized in the past,
 without compromising their privacy [DGSTV18]. The protocol works by
 providing client's with privacy-preserving re-authentication tokens
 for a particular server. The tokens are "privacy-preserving" in the
 sense that they cannot be linked back to the previous session where
 they were issued.

 The Internet performance company Cloudflare has already implemented
 server-side support for an initial version of the Privacy Pass

Davidson Expires 10 September 2020 [Page 3]

Internet-Draft PP protocol March 2020

 protocol [PPSRV], and client-side implementations also exist [PPEXT].
 More recently, a number of applications have been built upon the
 protocol, or slight variants of it; see: [TRUST], [OpenPrivacy],
 [PrivateStorage]. The protocol can be instantiated using a
 cryptographic primitive known as a verifiable oblivious pseudorandom
 function (VOPRF) for implementing the authorization mechanism. Such
 VOPRF protocols can be implemented already in prime-order groups, and
 constructions are currently being drafted in separate standardization
 processes [I-D.irtf-cfrg-voprf].

 The Privacy Pass protocol is split into three stages. The first
 stage, initialisation, produces the global server configuration that
 is broadcast to (and stored by) all clients. The "issuance" phase
 provides the client with unlinkable tokens that can be used to
 initiate re-authorization with the server in the future. The
 redemption phase allows the client to redeem a given re-authorization
 token with the server that it interacted with during the issuance
 phase. In addition, the protocol must satisfy two cryptographic
 security requirements known as "unlinkability" and "unforgeability".

 This document will lay out the generic description of the protocol,
 along with a secure implementation based on the VOPRF primitive. It
 will also describe the structure of protocol messages, and the
 framework for characterizing possible extensions to the protocol
 description.

 This document DOES NOT cover the architectural framework required for
 running and maintaining the Privacy Pass protocol in the Internet
 setting. In addition, it DOES NOT cover the choices that are
 necessary for ensuring that client privacy leaks do not occur. Both
 of these considerations are covered in a separate document
 [draft-davidson-pp-architecture].

1.1. Layout

 * Section 2: Describes the terminology and assumptions adopted
 throughout this document.

 * Section 3: Describes the internal functions and data structures
 that are used by the Privacy Pass protocol.

 * Section 4: Describes the generic protocol structure, based on the
 API provided in Section 3.

 * Section 5: Describes the security requirements of the generic
 protocol description.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

Davidson Expires 10 September 2020 [Page 4]

Internet-Draft PP protocol March 2020

 * Section 6: Describes an instantiation of the API in Section 3
 based on the VOPRF protocol described in [I-D.irtf-cfrg-voprf].

 * Section 7: Describes ciphersuites for use with the Privacy Pass
 protocol based on the instantiation in Section 6.

 * Section 8: Describes the policy for implementing extensions to the
 Privacy Pass protocol.

2. Preliminaries

2.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are used throughout this document.

 * Server: A service that provides the server-side functionality
 required by the protocol documented here (typically denoted S).

 * Client: An entity that seeks authorization from a server that
 supports interactions in the Privacy Pass protocol (typically
 denoted C).

 * Key: The secret key used by the Server for authorizing client
 data.

 * Commitment: Alternative name for Server's public key corresponding
 to the secret key that they hold.

 We assume that all protocol messages are encoded into raw byte format
 before being sent. We use the TLS presentation language [RFC8446] to
 describe the structure of protocol data types and messages.

2.2. Basic assumptions

 We make only a few minimal assumptions about the environment that the
 clients and servers that support the Privacy Pass protocol.

 * At any one time, we assume that the Server uses only one
 configuration containing their ciphersuite choice along with their
 secret key data.

 * We assume that the client has access to a global directory of the
 current configurations used by all Privacy Pass servers.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8446

Davidson Expires 10 September 2020 [Page 5]

Internet-Draft PP protocol March 2020

 The wider ecosystem that this protocol is employed in is described in
 [draft-davidson-pp-architecture].

3. Privacy Pass functional API

 Before describing the protocol itself in Section 4, we describe the
 underlying functions that are used in substantiating the protocol
 itself. Instantiating this set of functions, along with meeting the
 security requirements highlighted in Section 5, provides an
 instantiation of the wider protocol.

 We provide an explicit instantiation of the Privacy Pass API, based
 on the public API provided in [I-D.irtf-cfrg-voprf].

3.1. Data structures

 The following data structures are used throughout the Privacy Pass
 protocol and written in the TLS presentation language [RFC8446]. It
 is intended that any of these data structures can be written into
 widely-adopted encoding schemes such as those detailed in TLS
 [RFC8446], CBOR [RFC7049], and JSON [RFC7159].

3.1.1. Ciphersuite

 The "Ciphersuite" enum describes the ciphersuite that is used for
 instantiating the Privacy Pass protocol. The values that we provide
 here are described further in Section 7.

 enum {
 p384_hkdf_sha512_sswu_ro(0)
 p521_hkdf_sha512_sswu_ro(1)
 curve448_hkdf_sha512_ell2_ro(2)
 (255)
 } Ciphersuite;

3.1.2. ServerConfig

 The "ServerConfig" struct describes and maintains the underlying
 configuration that is used by the server.

 struct {
 opaque id<0..2^16-1>
 Ciphersuite ciphersuite;
 SecretKey key<1..2^32-1>;
 PublicKey pub_key<1..2^32-1>;
 opaque max_evals<0..255>;
 } ServerConfig;

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159

Davidson Expires 10 September 2020 [Page 6]

Internet-Draft PP protocol March 2020

 The "SecretKey" and "PublicKey" types are just wrappers around byte
 arrays.

 opaque SecretKey<1..2^32-1>;
 opaque PublicKey<1..2^32-1>;

3.1.3. ServerUpdate

 The "ServerUpdate" struct contains the public information related to
 the creation of a new "ServerConfig" message. This is sent either
 directly to clients, or indirectly via an update process.

 struct {
 opaque id<0..2^16-1>
 Ciphersuite ciphersuite;
 PublicKey pub_key<1..2^32-1>;
 opaque max_evals<0..255>;
 } ServerUpdate;

3.1.4. ClientConfig

 The "ClientConfig" struct describes and maintains the underlying
 configuration that is used by the client.

 struct {
 ServerUpdate s;
 } ClientConfig;

3.1.5. ClientIssuanceInput

 The "ClientIssuanceInput" struct describes the data that is generated
 by the client, that is necessary in sending to and processing
 issuance data received from the server.

 struct {
 ClientIssuanceProcessing client_data;
 ClientIssuanceElement msg_data;
 } ClientIssuanceInput;

 The struct contains two internal structs, described below.

 struct {
 opaque client_data<1..2^32-1>;
 opaque gen_data<1..2^32-1>;
 } ClientIssuanceProcessing;

Davidson Expires 10 September 2020 [Page 7]

Internet-Draft PP protocol March 2020

 struct {
 opaque issue_data<1..2^32-1>;
 } ClientIssuanceElement;

3.1.6. IssuanceMessage

 The "IssuanceMessage" struct corresponds to the message that the
 client sends to the server during the issuance phase of the protocol
 (Section 4.2).

 struct {
 ClientIssuanceElement issue_element<1..n>
 } IssuanceMessage;

 In the above, "issue_element" is a vector of length "n", where "n" is
 some value that must satisfy "n =< m" for "m = max_evals" that is
 specified in the "ServerConfig".

3.1.7. IssuanceResponse

 The "IssuanceResponse" struct describes the data that returned by the
 server, derived from the issuance message that is sent by the client.

 struct {
 ServerEvaluation evaluation<1..n>;
 ServerProof proof;
 } IssuanceResponse;

 The value of "n" is determined by the length of the
 "ClientIssuanceElement" vector in the "IssuanceMessage" struct. The
 internal data types are described below.

 struct {
 opaque data<1..2^32-1>;
 } ServerEvaluation;

 struct {
 opaque data<1..2*(2^32)-1>;
 } ServerProof;

3.1.8. RedemptionToken

 The "RedemptionToken" struct contains the data required to generate
 the client message in the redemption phase of the Privacy Pass
 protocol. This data is generated in the issuance phase of the
 protocol, after receiving the "IssuanceResponse" message.

Davidson Expires 10 September 2020 [Page 8]

Internet-Draft PP protocol March 2020

 struct {
 opaque data<1..2^32-1>;
 opaque issued<1..2^32-1>;
 } RedemptionToken;

3.1.9. RedemptionMessage

 The "RedemptionMessage" struct consists of the data that is sent by
 the client during the redemption phase of the protocol (Section 4.3).

 struct {
 opaque data<1..2^32-1>;
 opaque tag<1..2^32-1>;
 opaque aux<1..2^16-1>;
 } RedemptionMessage;

3.1.10. RedemptionResponse

 The "RedemptionResponse" struct corresponds a boolean value
 indicating whether the "RedemptionMessage" sent by the client is
 valid, along with any associated data.

 struct {
 boolean success;
 opaque additional_data<1..2^32-1>;
 } RedemptionResponse;

3.2. API functions

 The following functions wrap the core of the functionality required
 in the Privacy Pass protocol. For each of the descriptions, we
 essentially provide the function signature, leaving the actual
 contents to be provided by specific instantiations or extensions.

3.2.1. PP_Server_Setup

 Run by the Privacy Pass server to generate its configuration. The
 key-pair used in the server configuration are generated fresh on each
 invocation.

 Inputs:

 * "id": A unique identifier corresponding to the setting of
 "ServerConfig.id".

 Outputs:

 * "cfg": A "ServerConfig" struct (Section 3.1.2).

Davidson Expires 10 September 2020 [Page 9]

Internet-Draft PP protocol March 2020

 * "update": A "ServerUpdate" struct.

 Throws:

 * "ERR_UNSUPPORTED_CONFIG" (Section 3.3)

3.2.2. PP_Client_Setup

 Run by the Privacy Pass client to generate its configuration. The
 input public key "pub_key" in the client configuration MUST
 correspond to a valid server public key.

 Inputs:

 * "id": A unique identifier corresponding to the setting of
 "ServerConfig.id".

 * "update": A "ServerUpdate" struct.

 Outputs:

 * "cfg": A "ClientConfig" struct (Section 3.1.4).

 Throws:

 * "ERR_UNSUPPORTED_CONFIG" (Section 3.3)

3.2.3. PP_Generate

 A function run by the client to generate the initial data that is
 used as its input in the Privacy Pass protocol.

 Inputs:

 * "cli_cfg": A "ClientConfig" struct.

 * "m": A "uint8" value corresponding to the number of Privacy Pass
 tokens to generate.

 Outputs:

 * "issuance_data": A "ClientIssuanceInput" struct.

3.2.4. PP_Issue

 A function run by the server to issue valid redemption tokens to the
 client.

Davidson Expires 10 September 2020 [Page 10]

Internet-Draft PP protocol March 2020

 Inputs:

 * "srv_cfg": A "ServerConfig" struct.

 * "issuance_message": A "IssuanceMessage" struct.

 Outputs:

 * "issuance_response": A "IssuanceResponse" struct.

 Throws:

 * "ERR_MAX_EVALS" (Section 3.3)

3.2.5. PP_Process

 Run by the client when processing the server response in the issuance
 phase of the protocol. The output of this function is an array of
 "RedemptionToken" objects that are unlinkable from the server's
 computation in "PP_Issue".

 Inputs:

 * "cli_cfg": A "ClientConfig" struct.

 * "issuance_response": A "IssuanceResponse" struct.

 * "processing_data": A "ClientIssuanceProcessing" struct.

 Outputs:

 * "tokens": A vector of "RedemptionToken" structs, length equal to
 the length of the "ServerEvaluation" vector in the
 "IssuanceResponse" struct.

 Throws:

 * "ERR_PROOF_VALIDATION" (Section 3.3)

3.2.6. PP_Redeem

 Run by the client in the redemption phase of the protocol to generate
 the client's message.

 Inputs:

 * "cli_cfg": A "ClientConfig" struct.

Davidson Expires 10 September 2020 [Page 11]

Internet-Draft PP protocol March 2020

 * "token": A "RedemptionToken" struct.

 * "aux": An "opaque<1..2^32-1>" type corresponding to arbitrary
 auxiliary data.

 Outputs:

 * "message": A "RedemptionMessage" struct.

3.2.7. PP_Verify

 Run by the server in the redemption phase of the protocol.
 Determines whether the data sent by the client is valid.

 Inputs:

 * "srv_cfg": A "ServerConfig" struct.

 * "message": A "RedemptionMessage" struct.

 Outputs:

 * "response": A "RedemptionResponse" struct.

3.3. Error types

 * "ERR_UNSUPPORTED_CONFIG": Error occurred when trying to recover
 configuration with unknown identifier

 * "ERR_MAX_EVALS": Client attempted to invoke server issuance with
 number of inputs that is larger than server-specified max_evals
 value.

 * "ERR_PROOF_VALIDATION": Client unable to verify proof that is part
 of the server response.

 * "ERR_DOUBLE_SPEND": Indicates that a client has attempted to
 redeem a token that has already been used for authorization.

4. Generalized protocol overview

 In this document, we wan to provide a client (C) with the capability
 to authenticate itself in a lightweight manner to a server (S). The
 authorization mechanism should not reveal to the server anything
 about the client; in addition, the client should not be able to forge
 valid credentials in situations where it does not possess any. These
 requirements are covered in Section 5.

Davidson Expires 10 September 2020 [Page 12]

Internet-Draft PP protocol March 2020

 In this section, we will give a broad overview of how the Privacy
 Pass protocol functions in achieving these goals. The generic
 protocol can be split into three phases: initialisation, issuance and
 redemption. These three phases are built upon the Privacy Pass API
 in Section 3. We show later (Section 6) that this API can be
 implemented using an underlying VOPRF protocol. We provide this
 extra layer of abstraction to allow building extensions into the
 Privacy Pass protocol that go beyond what is specified in
 [I-D.irtf-cfrg-voprf].

4.1. Key initialisation phase

 In the initialisation phase, the server generates the configuration
 that it will use for future instantiations of the protocol. It MUST
 broadcast the configuration that it generates, along with the public
 key, so that clients are aware of which configuration to use when
 interacting with the server.

 In situations where the number of clients are small, it could do this
 by sending the data to the client directly. But in situations where
 there is a large number of clients, the best way of doing is likely
 to be via posting this information to a public bulletin board. We
 assume that the server only has a single configuration in place at
 any one time. There are privacy restrictions related to this that
 are described in more detail in the architectural document
 [draft-davidson-pp-architecture].

 We give a diagrammatic representation of the initialisation phase
 below.

 C(cfgs) S(cfg_id)

 (cfg, update) = PP_Server_Setup(cfg_id)

 update
 <-------------------

 c_cfg = PP_Client_Setup(cfg_id,update)
 cfgs.set(update.id,c_cfg)

 In the following (and as above), we will assume that the server "S"
 is uniquely identifiable by an internal attribute "id". We assume
 the same internal attribute exists for the public key
 "s_cfg.pub_key". This can be obtained, for example, by hashing the
 contents of the object - either the name or underlying contained
 bytes - using a collision-resistant hash function, such as SHA256.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

Davidson Expires 10 September 2020 [Page 13]

Internet-Draft PP protocol March 2020

 Note that the client stores their own configuration in the map "cfgs"
 for future Privacy Pass interactions with "S".

4.2. Issuance phase

 The issuance phase allows the client to construct "RedemptionToken"
 object resulting from an interaction with a server "S" that it has
 previously interacted with. We give a diagrammatic overview of the
 protocol below.

 C(cfgs,store,m) S(s_cfg)

 S.id
 <------------------

 c_cfg = cfgs.get(S.id)
 issue_input = PP_Generate(c_cfg, m)
 msg = issue_input.msg_data
 process = issue_input.client_data

 msg
 ------------------->

 issue_resp = PP_Issue(s_cfg,c_dat)

 issue_resp
 <-------------------

 tokens = PP_Process(c_cfg,issue_resp,process)
 store[S.id].push(tokens)

 In the diagram above, the client MUST know the supported server
 configuration before it interacts with the Privacy Pass API. The
 client input "store" is used for appending redemption tokens that are
 linked to the server id "S.id".

4.3. Redemption phase

 The redemption phase allows the client to reauthenticate to the
 server, using data that it has received from a previous issuance
 phase. We lay out the security requirements in Section 5 that
 establish that the client redemption data is not linkable to any
 given issuance session.

Davidson Expires 10 September 2020 [Page 14]

Internet-Draft PP protocol March 2020

 C(cfgs,store,aux) S(s_cfg,ds_idx)

 S.id
 <------------------

 c_cfg = cfgs.get(S.id)
 token = store[S.id].pop()
 msg = PP_Redeem(c_cfg,token,aux)

 msg
 ------------------>

 if (ds_idx.includes(data)) {
 panic(ERR_DOUBLE_SPEND)
 }
 resp = PP_Verify(srv_cfg,data,tag,aux)
 if (resp.success) {
 ds_idx.push(data)
 }

 resp
 <------------------
 Output resp

 The client input "aux" is arbitrary byte data that is used for
 linking the redemption request to the specific session. We RECOMMEND
 that "aux" is constructed as the following concatenated byte-encoded
 data:

 ${C.id} .. ${S.id} .. ${current_time()} .. ${requested_resource()}

 The usage of "current_time()" allows the server to check that the
 redemption request has happened in an appropriate time window. The
 function "requested_resource()" is an optional suffix that relates to
 any specific resources that the client has requested from the server,
 in order to trigger the authorization request.

4.3.1. Double-spend protection

 To protect against clients that attempt to spend a value "data" more
 than once, the server uses an index, "ds_idx", to collect valid
 inputs and then check against in future protocols. Since this store
 needs to only be optimized for storage and querying, a structure such
 as a Bloom filter suffices. Importantly, the server MUST only eject
 this storage after a key rotation occurs since all previous client
 data will be rendered obsolete after such an event.

Davidson Expires 10 September 2020 [Page 15]

Internet-Draft PP protocol March 2020

4.4. Handling errors

 It is possible for the API functions from Section 3.2 to return one
 of the errors indicated in Section 3.3 rather than their expected
 value. In these cases, we assume that the entire protocol execution
 panics with the value of the error.

 If a panic occurs during the server's operations for one of the
 documented errors, then the server returns an error response
 indicating the error that occurred.

5. Security requirements

 We discuss the security requirements that are necessary to uphold
 when instantiating the Privacy Pass protocol. In particular, we
 focus on the security requirements of "unlinkability", and
 "unforgeability". Informally, the notion of unlinkability is
 required to preserve the privacy of the client in the redemption
 phase of the protocol. The notion of unforgeability is to protect
 against adversarial clients that look to subvert the security of the
 protocol.

 Since these are cryptographic security requirements we discuss them
 with respect to a polynomial-time algorithm known as the adversary
 that is looking to subvert the security guarantee. More details on
 both security requirements can be found in [DGSTV18] and [KLOR20].

 Note that the privacy requirements of the protocol are covered in the
 architectural framework document [draft-davidson-pp-architecture].

5.1. Unlinkability

 Informally, the "unlinkability" requirement states that it is
 impossible for an adversarial server to link the client's message in
 a redemption session, to any previous issuance session that it has
 encountered.

 Formally speaking the security model is the following:

 * The adversary runs "PP_Server_Setup" and generates a key-pair "(k,
 pk)".

 * The adversary specifies a number "Q" of issuance phases to
 initiate, where each phase "i in 1..Q" consists of "m_i" server
 evaluations.

 * The adversary runs "PP_Issue" using the key-pair that it generated
 on each of the client messages in the issuance phase.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture

Davidson Expires 10 September 2020 [Page 16]

Internet-Draft PP protocol March 2020

 * When the adversary wants it stops the issuance phase, and a random
 number "l" is picked from "1..Q".

 * A redemption phase is initiated with a single token with index "i"
 randomly sampled from "1..m_l".

 * The adversary guesses an index "l_guess" corresponding to the
 index of the issuance phase that it believes the redemption token
 was received in.

 * The adversary succeeds if "l == l_guess".

 The security requirement is that the adversary has only a negligible
 probability of success greater than "1/Q".

5.2. One-more unforgeability

 The one-more unforgeability requirement states that it is hard for
 any adversarial client that has received "m" valid tokens from a
 server to redeem "m+1" of them. In essence, this requirement
 prevents a malicious client from being able to forge valid tokens
 based on the server responses that it sees.

 The security model takes the following form:

 * A server is created that runs "PP_Server_Setup" and broadcasts the
 "ServerUpdate" message "update".

 * The adversary runs "PP_Client_Setup" on "update".

 * The adversary specifies a number "Q" of issuance phases to
 initiate with the server, where each phase "i in 1..Q" consists of
 "m_i" server evaluations. Let "m = sum(m_i)" where "i in 1..Q".

 * The client receives Q responses, where the response with index "i"
 contains "m_i" individual tokens.

 * The adversary initiates "m_adv" redemption sessions with the
 server and the server verifies that the sessions are successful
 (return true), and that each request includes a unique token. The
 adversary succeeds in "m_succ =< m_adv" redemption sessions.

 * The adversary succeeds if "m_succ > m".

 The security requirement is that the adversarial client has only a
 negligible probability of succeeding.

Davidson Expires 10 September 2020 [Page 17]

Internet-Draft PP protocol March 2020

 Note that [KLOR20] strengthens the capabilities of the adversary, in
 comparison to the original work of [DGSTV18]. In [KLOR20], the
 adversary is provided with oracle access that allows it to verify
 that the server responses in the issuance phase are valid.

5.3. Double-spend protection

 All issuing servers should implement a robust, global storage-query
 mechanism for checking that tokens sent by clients have not been
 spent before. Such tokens only need to be checked for each issuer
 individually. This prevents clients from "replaying" previous
 requests, and is necessary for achieving the unforgeability
 requirement.

6. VOPRF instantiation

 In this section, we show how to instantiate the functional API in
Section 3 with the VOPRF protocol described in [I-D.irtf-cfrg-voprf].

 Moreover, we show that this protocol satisfies the security
 requirements laid out in Section 5, based on the security proofs
 provided in [DGSTV18] and [KLOR20].

6.1. VOPRF conventions

 The VOPRF ciphersuite [I-D.irtf-cfrg-voprf] that is used determines
 the member functions and prime-order group used by the protocol. We
 detail a number of specific conventions here that we use for
 interacting with the specific ciphersuite.

6.1.1. Ciphersuites

 Let "F" denote a generic VOPRF API function as detailed in
 [I-D.irtf-cfrg-voprf] (Section TODO), and let "ciph" denote the
 ciphersuite that is used for instantiating the VOPRF. In this
 document, we explicitly write "ciph.F" to show that "F" is explicitly
 evaluated with respect to "ciph".

 In addition, we define the following member functions associated with
 the ciphersuite.

 * "recover_ciphersuite_from_id(id)": Takes a string identifier "id"
 as input, and outputs a VOPRF ciphersuite. Returns "null" if "id"
 is not recognized.

 * "group()": Returns the prime-order group associated with the
 ciphersuite.

Davidson Expires 10 September 2020 [Page 18]

Internet-Draft PP protocol March 2020

 * "H1()": The function "H1()" defined in [I-D.irtf-cfrg-voprf]
 (Section TODO). This function allows deterministically mapping
 arbitrary bytes to a random element of the group. In the elliptic
 curve setting, this is achieved using the functions defined in
 [I-D.irtf-cfrg-hash-to-curve].

6.1.2. Prime-order group conventions

 We detail a few functions that are required of the prime-order group
 "GG" used by the VOPRF in [I-D.irtf-cfrg-voprf].

 Let "p" be the order of the Galois field "GF(p)" associated with the
 group "GG". We expose the following functions associated with "GG".

 * "GG.generator()": Returns the fixed generator associated with the
 group "GG".

 * "GG.scalar_field()": Provides access to the field "GF(p)".

 * "GG.scalar_field().random()": Samples a scalar uniformly at random
 from GF(p). This can be done by sampling a random sequence of
 bytes that produce a scalar "r", where "r < p" is satisfied (via
 rejection-sampling).

 We also use the following functions for transitioning between
 different data types.

 * "as_bytes()": For a scalar element of "GG.scalar_field()", or an
 element of "GG"; the "as_bytes()" functions serializes the element
 into bytes and returns this array as output.

 * "as_scalar()": Interprets a sequence of bytes as a scalar value in
 "GG.scalar_field()". For an array of byte arrays, we define the
 function "as_scalars()" to individually deserialize each of the
 individual byte arrays into a scalar and output a new array
 containing each scalar value.

 * "as_element()": Interprets a sequence of bytes as a group element
 in "GG". For an array of byte arrays, we define the function
 "as_elements()" to individually deserialize each of the individual
 byte arrays into a single group element and output a new array
 containing each of these elements.

6.2. API instantiation

 For the explicit signatures of each of the functions, refer to
Section 3.2.

Davidson Expires 10 September 2020 [Page 19]

Internet-Draft PP protocol March 2020

6.2.1. PP_Server_Setup

 1. ciph = recover_ciphersuite_from_id(id)
 2. if ciph == null: panic(ERR_UNSUPPORTED_CONFIG)
 3. (k,Y,GG) = ciph.VerifiableSetup()
 4. key = k.as_bytes()
 5. pub_key = Y.as_bytes()
 6. cfg = ServerConfig {
 id: id
 ciphersuite: ciph,
 key: key,
 pub_key: pub_key,
 max_evals: max_evals
 }
 7. update = ServerUpdate {
 id: id
 ciphersuite: ciph,
 pub_key: pub_key,
 max_evals: max_evals
 }
 8. Output (cfg, update)

6.2.2. PP_Client_Setup

 1. ciph = recover_ciphersuite_from_id(id)
 2. if ciph == null: panic(ERR_UNSUPPORTED_CONFIG)
 3. cfg = ClientConfig {
 s: update
 }
 4. Output cfg

6.2.3. PP_Generate

Davidson Expires 10 September 2020 [Page 20]

Internet-Draft PP protocol March 2020

 1. ciph = cli_cfg.s.ciphersuite
 2. GG = ciph.group()
 3. c_data = []
 4. i_data = []
 5. g_data = []
 6. for i in 0..m:
 1. c_data[i] = GG.scalar_field().random().as_bytes()
 7. (blinds,group_elems) = ciph.VerifiableBlind(c_data)
 8. for i in 0..m:
 1. i_data[i] = group_elems[i].as_bytes()
 2. g_data[i] = blinds[i].as_bytes()
 9. Output ClientIssuanceInput {
 ClientIssuanceProcessing {
 client_data: c_data,
 gen_data: g_data,
 },
 ClientIssuanceElement {
 msg_data: i_data,
 }
 }

6.2.4. PP_Issue

 1. ciph = srv_cfg.ciphersuite
 2. pk = srv_cfg.pub_key.as_element()
 3. GG = ciph.group()
 4. m = msg_data.length
 5. if m > max_evals: panic(ERR_MAX_EVALS)
 6. G = GG.generator()
 7. elts = msg_data.as_elements();
 8. Z,D = ciph.VerifiableEval(key.as_scalar(),G,pk,elts)
 9. evals = []
 10. for i in 0..m:
 1. eval[i] = ServerEvaluation {
 data: Z[i].as_bytes();
 }
 11. proof = ServerProof {
 data: D.as_bytes()
 }
 12. Output IssuanceResponse {
 evaluations: eval,
 proof: proof,
 }

6.2.5. PP_Process

Davidson Expires 10 September 2020 [Page 21]

Internet-Draft PP protocol March 2020

 1. ciph = cli_cfg.s.ciphersuite
 2. GG = ciph.group()
 3. G = GG.generator()
 4. pk = cli_cfg.s.pub_key.as_element()
 5. M = i_data.as_elements()
 6. Z = evals.as_elements()
 7. r = g_data.as_scalars()
 8. N = ciph.VerifiableUnblind(G,pk,M,Z,r,proof)
 9. if N == "error": panic(ERR_PROOF_VALIDATION)
 10. tokens = []
 11. for i in 0..m:
 1. issued = N[i].as_bytes()
 2. rt = RedemptionToken { data: c_data[i], issued: issued }
 3. tokens[i] = rt
 12. Output tokens

6.2.6. PP_Redeem

 1. ciph = cli_cfg.s.ciphersuite
 2. GG = ciph.group()
 3. token = store[S.id].pop();
 4. data = token.data
 5. issued = token.issued.as_element();
 6. tag = ciph.VerifiableFinalize(data,issued,aux)
 7. Output RedemptionMessage {
 data: data,
 tag: tag,
 aux: aux,
 }

6.2.7. PP_Verify

 1. ciph = srv_cfg.ciphersuite
 2. GG = ciph.group()
 3. key = srv_cfg.key
 4. T = ciph.H1(msg.data)
 5. N' = ciph.Eval(key,T)
 6. tag' = ciph.Finalize(msg.data,N',msg.aux)
 7. Output RedemptionResponse {
 success: (msg.tag == tag')
 }

 Note: at this stage we use the non-verifiable VOPRF API functions
 rather than the verifiable equivalents ("Eval" rather than
 "VerifiableEval"), as we do not need to recompute the proof data that
 is used for producing verifiable outputs at this stage.

Davidson Expires 10 September 2020 [Page 22]

Internet-Draft PP protocol March 2020

6.3. Security justification

 The protocol that we devise in Section 4, coupled with the API
 instantiation in Section 6.2, are equivalent to the protocol
 description in [DGSTV18]. In [DGSTV18], it is proven that this
 protocol satisfies the security requirements of unlinkability
 (Section 5.1) and unforgeability (Section 5.2).

 The unlinkability property follows unconditionally as the view of the
 adversary in the redemption phase is distributed independently of the
 issuance phase. The unforgeability property follows from the one-
 more decryption security of the ElGamal cryptosystem [DGSTV18]. In
 [KLOR20] it is also proven that this protocol satisfies the stronger
 notion of unforgeability, where the adversary is granted a
 verification oracle, under the chosen-target Diffie-Hellman
 assumption.

 Note that the existing security proofs do not leverage the VOPRF
 primitive as a black-box in the security reductions. Instead it
 relies on the underlying operations in a non-black-box manner.
 Hence, an explicit reduction from the generic VOPRF primitive to the
 Privacy Pass protocol would strengthen these security guarantees.

7. Ciphersuites

 The Privacy Pass protocol essentially operates as a wrapper around
 the instantiation of the VOPRF that is used in Section 6. There is
 no extra cryptographic machinery used on top of what is established
 in the VOPRF protocol. Therefore, the ciphersuites that we support
 are the transitively exposed from the underlying VOPRF functionality,
 we detail these below. Each of the ciphersuites is detailed in
 [I-D.irtf-cfrg-voprf].

 * VOPRF-P384-HKDF-SHA512-SSWU-RO

 - maximum security parameter: 192 bits

 * VOPRF-curve448-HKDF-SHA512-ELL2-RO

 - maximum security parameter: 224 bits

 * VOPRF-P521-HKDF-SHA512-SSWU-RO

 - maximum security parameter: 256 bits

 When referring to the 'maximum security parameter' size above, we are
 referring to the _maximum_ effective key length of the ciphersuite,
 as specified in [NIST]. The reason that this is the maximum length

Davidson Expires 10 September 2020 [Page 23]

Internet-Draft PP protocol March 2020

 is because there may be attacks that serve to lower the actual value
 of the security parameter. See [I-D.irtf-cfrg-voprf] for more
 details.

 Note than any extension to the Privacy Pass protocol that modifies
 either VOPRF instantiation, or the way that the Privacy Pass API is
 implemented, MUST specify its own ciphersuites.

8. Extensions framework policy

 The intention with providing the Privacy Pass API in Section 3 is to
 allow new instantiations of the Privacy Pass protocol. These
 instantiations may provide either modified VOPRF constructions, or
 simply implement the API in a completely different way.

 Extensions to this initial draft SHOULD be specified as separate
 documents taking one of two possible routes:

 * Produce new VOPRF-like primitives that use the same public API
 provided in [I-D.irtf-cfrg-voprf] to implement the Privacy Pass
 API, but with different internal operations.

 * Implement the Privacy Pass API in a different way to the proposed
 implementation in Section 6.

 If an extension requires changing the generic protocol description as
 described in Section 4, then the change may have to result in changes
 to the draft specification here also.

 Each new extension that modifies the internals of the protocol in
 either of the two ways MUST re-justify that the extended protocol
 still satisfies the security requirements in Section 5. Protocol
 extensions MAY put forward new security guarantees if they are
 applicable.

 The extensions MUST also conform with the extension framework policy
 as set out in the architectural framework document. For example,
 this may concern any potential impact on client privacy that the
 extension may introduce.

9. References

9.1. Normative References

 [draft-davidson-pp-architecture]
 Davidson, A., "Privacy Pass: Architectural Framework",
 n.d., <https://github.com/alxdavids/privacy-pass-

ietf/tree/master/drafts/draft-davidson-pp-architecture>.

https://datatracker.ietf.org/doc/html/draft-davidson-pp-architecture
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-davidson-pp-architecture
https://github.com/alxdavids/privacy-pass-ietf/tree/master/drafts/draft-davidson-pp-architecture

Davidson Expires 10 September 2020 [Page 24]

Internet-Draft PP protocol March 2020

 [I-D.irtf-cfrg-hash-to-curve]
 Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "Hashing to Elliptic Curves", Work in Progress,
 Internet-Draft, draft-irtf-cfrg-hash-to-curve-05, 2
 November 2019, <http://www.ietf.org/internet-drafts/draft-

irtf-cfrg-hash-to-curve-05.txt>.

 [I-D.irtf-cfrg-voprf]
 Davidson, A., Sullivan, N., and C. Wood, "Oblivious
 Pseudorandom Functions (OPRFs) using Prime-Order Groups",
 Work in Progress, Internet-Draft, draft-irtf-cfrg-voprf-

02, 4 November 2019, <http://www.ietf.org/internet-drafts/
draft-irtf-cfrg-voprf-02.txt>.

 [NIST] "Keylength - NIST Report on Cryptographic Key Length and
 Cryptoperiod (2016)", n.d.,
 <https://www.keylength.com/en/4/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

9.2. Informative References

 [DGSTV18] "Privacy Pass, Bypassing Internet Challenges Anonymously",
 n.d., <https://petsymposium.org/2018/files/papers/issue3/

popets-2018-0026.pdf>.

 [KLOR20] "Anonymous Tokens with Private Metadata Bit", n.d.,
 <https://eprint.iacr.org/2020/072>.

 [OpenPrivacy]
 "Token Based Services - Differences from PrivacyPass",
 n.d., <https://openprivacy.ca/assets/towards-anonymous-

prepaid-services.pdf>.

 [PPEXT] "Privacy Pass Browser Extension", n.d.,
 <https://github.com/privacypass/challenge-bypass-

extension>.

 [PPSRV] Sullivan, N., "Cloudflare Supports Privacy Pass", n.d.,
 <https://blog.cloudflare.com/cloudflare-supports-privacy-

pass/>.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-05
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-hash-to-curve-05.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-hash-to-curve-05.txt
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-02
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-02
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-voprf-02.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-voprf-02.txt
https://www.keylength.com/en/4/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://eprint.iacr.org/2020/072
https://openprivacy.ca/assets/towards-anonymous-prepaid-services.pdf
https://openprivacy.ca/assets/towards-anonymous-prepaid-services.pdf
https://github.com/privacypass/challenge-bypass-extension
https://github.com/privacypass/challenge-bypass-extension
https://blog.cloudflare.com/cloudflare-supports-privacy-pass/
https://blog.cloudflare.com/cloudflare-supports-privacy-pass/

Davidson Expires 10 September 2020 [Page 25]

Internet-Draft PP protocol March 2020

 [PrivateStorage]
 Steininger, L., "The Path from S4 to PrivateStorage",
 n.d., <https://medium.com/least-authority/the-path-from-

s4-to-privatestorage-ae9d4a10b2ae>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [TRUST] WICG, ., "Trust Token API", n.d.,
 <https://github.com/WICG/trust-token-api>.

Author's Address

 Alex Davidson
 Cloudflare Portugal
 Largo Rafael Bordalo Pinheiro 29
 Lisbon
 Portugal

 Email: alex.davidson92@gmail.com

https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://medium.com/least-authority/the-path-from-s4-to-privatestorage-ae9d4a10b2ae
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://github.com/WICG/trust-token-api

Davidson Expires 10 September 2020 [Page 26]

