
Network Working Group B. Davie, Ed.
Internet-Draft J. Gross
Intended status: Informational Nicira Networks, Inc.
Expires: September 6, 2012 March 5, 2012

A Stateless Transport Tunneling Protocol for Network Virtualization
(STT)

draft-davie-stt-01

Abstract

 Network Virtualization places unique requirements on tunneling
 protocols. This draft describes STT (Stateless Transport Tunneling),
 a tunnel encapsulation that enables overlay networks to be built in
 virtualized networks. STT is particularly useful when some tunnel
 endpoints are in end-systems, as it utilizes the capabilities of the
 network interface card to improve performance.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Davie & Gross Expires September 6, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The STT Protocol March 2012

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 4
1.2. Terminology . 4
1.3. Reference Model . 5

2. Design Rationale . 5
2.1. Segmentation Offload 6
2.2. Metadata . 7
2.3. Context Information 7
2.4. Alignment . 8
2.5. Equal Cost Multipath 8
2.6. Efficient Software Processing 8

3. Frame Formats . 8
3.1. STT Frame Format . 9
3.1.1. Handling non-IP payloads 11

3.2. Usage of TCP Header by STT 12
3.3. Encapsulation of STT Segments in IP 13
3.3.1. Diffserv and ECN-Marking 14
3.3.2. Packet Loss . 14

3.4. Broadcast and Multicast 15
4. Interoperability Issues 15
5. IANA Considerations . 16
6. Security Considerations 16
7. Contributors . 16
8. Acknowledgements . 17
9. References . 17
9.1. Normative References 17
9.2. Informative References 18

 Authors' Addresses . 18

Davie & Gross Expires September 6, 2012 [Page 2]

Internet-Draft The STT Protocol March 2012

1. Introduction

 Network Virtualization places unique requirements on tunneling
 protocols. The utility of tunneling in virtualized data centers has
 been described elsewhere; see, for example
 [I-D.narten-nvo3-overlay-problem-statement], [VL2],
 [I-D.mahalingam-dutt-dcops-vxlan],
 [I-D.sridharan-virtualization-nvgre]. Tunneling allows a virtual
 overlay topology to be constructed on top of the physical data center
 network, and provides benefits such as:

 o Ability to manage overlapping addresses between multiple tenants

 o Decoupling of the virtual topology provided by the tunnels from
 the physical topology of the network

 o Support for virtual machine mobility independent of the physical
 network

 o Support for essentially unlimited numbers of virtual networks (in
 contrast to VLANs, for example)

 o Decoupling of the network service provided to servers from the
 technology used in the physical network (e.g. providing an L2
 service over an L3 fabric)

 o Isolating the physical network from the addressing of the virtual
 networks, thus avoiding issues such as MAC table size in physical
 switches.

 This draft describes STT (Stateless Transport Tunneling), a tunnel
 encapsulation that enables overlay networks to be built in
 virtualized data center networks, providing the benefits outlined
 above. STT is particularly useful when some tunnel endpoints are in
 end-systems, as it utilizes the capabilities of standard network
 interface cards to improve performance. STT is an IP-based
 encapsulation and utilizes a TCP-like header inside the IP header.
 It is, however, stateless, i.e., there is no TCP connection state of
 any kind associated with the tunnel. The TCP-like header is used for
 pragmatic reasons, to leverage the capabilities of existing network
 interface cards, but should not be interpreted as implying any sort
 of connection state between endpoints.

 STT is typically used to carry Ethernet frames between tunnel
 endpoints. These frames may be considerably larger than the MTU of
 the physical network - up to 64KB. Fields in the tunnel header are
 used to allow these large frames to be segmented at the entrance to
 the tunnel according to the MTU of the physical network and

Davie & Gross Expires September 6, 2012 [Page 3]

Internet-Draft The STT Protocol March 2012

 subsequently reassembled at the far end of the tunnel.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Terminology

 The following terms are used in this document:

 Stateless Transport Tunneling (STT). The tunneling mechanism defined
 in this document. The name derives from the fact that the tunnel
 header resembles the TCP/IP headers (hence "transport" tunneling)
 while "stateless" refers to the fact that none of the normal TCP
 state (connection state, send and receive windows, congestion state
 etc.) is associated with the tunnel (as would be required if an
 actual TCP connection were used for tunneling).

 STT Frame. The unit of data that is passed into the tunnel prior to
 segmentation and encapsulation. This frame typically consists of an
 Ethernet frame and an STT Frame header. These frames may be up to
 64KB in size.

 STT Segment. The unit of data that is transmitted on the underlay
 network over which the tunnel operates. An STT segment has headers
 that are syntactically the same as the TCP/IP headers, and typically
 contains part of an STT frame as the payload. These segments must
 fit within the MTU of the physical network.

 Context ID. A 64-bit field in the STT frame header that conveys
 information about the disposition of the STT frame between the tunnel
 endpoints. One example use of the Context ID is to direct delivery
 of the STT frame payload to the appropriate virtual network or
 virtual machine.

 MSS. Maximum Segment Size. The maximum number of bytes that can be
 sent in one TCP segment [RFC0793].

 NIC. Network Interface Card.

 TSO. TCP Segmentation Offload. A function provided by many
 commercial NICs that allows large data units to be passed to the NIC,
 the NIC being responsible for creating MSS-sized segments with
 correct TCP/IP headers.

 LRO. Large Receive Offload. The receive-side equivalent function of

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793

Davie & Gross Expires September 6, 2012 [Page 4]

Internet-Draft The STT Protocol March 2012

 TSO, in which multiple TCP segments are coalesced into larger data
 units.

 VM. Virtual Machine.

1.3. Reference Model

 Our conceptual model for a virtualized network is shown in Figure 1.
 STT tunnels extend in this figure from one virtual switch to another,
 providing a virtual link between the switches over some arbitrary
 underlay. More generally, STT tunnels operate between a pair of
 tunnel endpoints; these endpoints may be virtual switches, physical
 switches, or some other device (e.g. an appliance). The STT tunnel
 provides a virtual point-to-point Ethernet link between the
 endpoints. Frames are handed to the tunnel by some entity (e.g. a VM
 that is connected to a virtual switch in this picture) and first
 encapsulated with an STT Frame header. STT Frames may then be
 fragmented in the NIC, and are encapsulated with a tunnel header (the
 STT segment header) for transmission over the underlay. Note that
 other models are possible, e.g., where one or both tunnel endpoints
 are implemented in a physical switch. In such cases the tunnel
 endpoint may forward packets to and from another link (physical or
 virtual) rather than to a VM.

 +----------------------+ +----------------------+
 | +--+ +-------+---+ | | +---+-------+ +--+ | | | | | | | | | | |
 | |VM|---| | | | | | | |---|VM| |
 | +--+ |Virtual|NIC|--- Underlay --- |NIC|Virtual| +--+ |
 | +--+ |Switch | | | Network | | |Switch | +--+ |
 | |VM|---| | | | | | | |---|VM| |
 | +--+ +-------+---+ | | +---+-------+ +--+ |
 +----------------------+ +----------------------+

 ()===============================()
 Switch-Switch tunnel

 Figure 1: STT Reference Model

2. Design Rationale

 We take as given the need for some form of tunneling to support the
 virtualization of the network as described in Section 1. One might
 reasonably ask whether some existing tunneling protocol such as
 GRE[RFC2784] or L2TPv3[RFC3931] might suffice. In fact,

Davie & Gross Expires September 6, 2012 [Page 5]

Internet-Draft The STT Protocol March 2012

 [I-D.sridharan-virtualization-nvgre] does just that, using GRE. The
 primary motivation for STT as opposed to one of the existing
 tunneling methods is to improve the performance of data transfers
 from hosts that implement tunnel endpoints. We expand on this
 rationale below.

2.1. Segmentation Offload

 A large percentage of network interface cards (NICs) in use today are
 able to perform TCP segmentation offload (TSO). When a NIC supports
 TSO, the host hands a large (greater than 1 TCP MSS) frame of data to
 the NIC along with a set of metadata which includes, among other
 things, the desired MSS, and various fields needed to complete the
 TCP header. The NIC fragments the frame into MSS-sized segments,
 performs the TCP Checksum operation, and applies the appropriate
 headers (TCP, IP and MAC) to each segment.

 On the receive side, some NICs support the reassembly of TCP
 segments, a function referred to as large receive offload (LRO). In
 this case, NICs attempt to reassemble TCP segments and pass larger
 aggregates of data to the host. (Since TCP's service model is a byte
 stream, there is no higher level frame for the NIC to reassemble, but
 it can pass chunks of the stream larger than one MSS to the host.
 Full reassembly of STT frames is handled in the host.) The benefits
 to the host include fewer per-packet operations and larger data
 transfers between host and NIC, which amortizes the per-transfer cost
 (such as interrupt processing) more efficiently. These gains can
 translate into significant performance gains for data transfer from
 the host to the network.

 STT is explicitly designed to leverage the TSO capabilities of
 currently available NICs. While one might think of segmentation as a
 generic function, the majority of NICs are designed specifically to
 support TCP segmentation offload, as the details of the segmentation
 function are highly dependent on the specifics of TCP. In order to
 leverage such capability, therefore, the STT segment header is
 syntactically identical to a valid TCP header. However, we use some
 of the fields in the TCP header (specifically, sequence number and
 ACK number) to support the objectives of STT. The details are
 described in Section 3.2. In essence, we need the same set of
 information that IP datagrams carry when IP fragmentation takes
 place: a unique identifier for the frame that has been fragmented, an
 offset into that frame for the current fragment, and the length of
 the frame to be reassembled. We fit these fields into the TCP header
 fields traditionally used for the SEQ and ACK numbers. STT segments
 are transmitted as IP datagrams using the TCP protocol number (6).
 The primary means to recognize STT segments is the destination port
 number. We discuss the interoperability impact of these design

Davie & Gross Expires September 6, 2012 [Page 6]

Internet-Draft The STT Protocol March 2012

 choices in Section 4.

 The net effect of using TSO is that the frame size that is sent by
 endpoints in the virtualized network can be much larger than the MTU
 of the underlying physical network. The primary benefit of this is a
 significant performance gain when large amounts of data are being
 transferred between nodes in the virtual network. A secondary effect
 is that the header of the STT frame is amortized across a larger
 amount of data, reducing the need to shrink the STT frame header to
 minimum size.

 Note that, while segmentation offload is the primary NIC function
 that STT takes advantage of, other NIC offload functions such as
 checksum calculation can also be leveraged.

2.2. Metadata

 When a frame is delivered to the NIC that supports TSO for
 segmentation and transmission, a certain amount of metadata is
 typically passed along with it. This includes the MSS and
 potentially a VLAN tag to be applied to the transmitted packets.

 In some virtualized network deployments, an STT frame may traverse a
 tunnel, be received and reassembled at an STT endpoint, and then be
 sent on another physical interface. In such cases, the tunnel
 terminating endpoint may need to pass metadata to a NIC to enable
 transmission of frames on the physical link. For this reason,
 appropriate metadata is carried in the STT frame header.

2.3. Context Information

 When an STT Frame is received by a tunnel endpoint, it needs to be
 directed to the appropriate entity in the virtualized network to
 which it belongs. For this reason, a Context ID is required in the
 STT frame header. Some other encapsulations (e.g.
 [I-D.mahalingam-dutt-dcops-vxlan],
 [I-D.sridharan-virtualization-nvgre]) use an explicit tenant network
 identifier or virtual network identifier. The Context Identifier can
 be thought of as a generalized form of virtual network identifier.
 Using a larger and more general identifier allows for a broader range
 of service models and allows ample room for future expansion. There
 is little downside to using a larger field here because it is
 amortized across the entire STT Frame rather than being present in
 each packet.

Davie & Gross Expires September 6, 2012 [Page 7]

Internet-Draft The STT Protocol March 2012

2.4. Alignment

 Software implementations of tunnel endpoints benefit from 32-bit
 alignment of the data to be manipulated. Because the Ethernet header
 is not a multiple of 32-bits (it is 14 bytes), 2 bytes of padding are
 added to the STT header, causing the payload beyond the encapsulated
 Ethernet header, which typically includes the IP header of the
 encapsulated frame, to be 32-bit aligned.

2.5. Equal Cost Multipath

 It is essential that traffic passing through the physical network can
 be efficiently distributed across multiple paths. Standard equal
 cost multipath (ECMP) techniques involve hashing on address and port
 numbers in the outer protocol headers. There are two main issues to
 address with ECMP. First, it is important that, when a set of
 packets belong to a single flow (e.g. a TCP connection in the virtual
 network), all those packets should follow the same path. Second, all
 paths should be used efficiently, i.e. there needs to be sufficient
 entropy among the different flows to ensure they get distributed
 evenly across multiple paths.

 STT achieves the first goal by ensuring that the source and
 destination ports and addresses in the outer header are all the same
 for a single flow. The second goal is achieved by generating the
 source port using a random hash of fields in the headers of the inner
 packets, e.g. the ports and addresses of the virtual flow's packets.
 We provide more details on the usage of port numbers in Section 3.2.

2.6. Efficient Software Processing

 The design of STT is largely motivated by the desire to tunnel
 packets efficiently between virtual switches running in software. In
 addition to the points noted above, this leads to some design
 optimizations to simplify processing of packets, such as the use of
 an "L4 offset" field in the STT header to enable the payload to be
 located quickly without extensive header parsing.

3. Frame Formats

 STT encapsulates data payloads of up to 64KB (limited by the length
 field in the STT header, described below). Those frames are then
 segmented (depending on the MTU of the underlying physical network)
 and the resulting segments are encapsulated in a standard TCP header,
 which in turn is encapsulated by an IP header and finally a MAC
 header. This is illustrated in Figure 2.

Davie & Gross Expires September 6, 2012 [Page 8]

Internet-Draft The STT Protocol March 2012

 +-----------+ +----------+ +----------+
 | IP Header | |IP Header | |IP header |
 +-----------+ +-----------+ +----------+ +----------+
 |STT Frame | |TCP-like | |TCP-like | |TCP-like |
 | Header | | header | | header | | header |
 +-----------+ +-----------+ +----------+ +----------+
 | | ---> | STT Frame | |Next part | ... |Last part |
 |Payload | | Header | |of Payload| |of Payload|
 . . +-----------+ | | | |
 . . | | | | | |
 . . | Start of | | | | |
 +-----------+ | Payload | | | +----------+
 +-----------+ +----------+

 Original data STT Frame is segmented and transmitted as
 frame is encapped a set of TCP segments (MAC
 with STT Header headers not shown)

 Figure 2: STT Frame Fragments and Encapsulation

 The details of the STT Frame header and the usage of the TCP-like
 header are described in detail below. The TCP segments shown in
 Figure 2 are of course further encapsulated as IP datagrams, and may
 be sent as either IPv4 or IPv6. The resulting IP datagrams are then
 transmitted in the appropriate MAC level frame (e.g. Ethernet, not
 shown in the figure) for the underlying physical network over which
 the tunnels are established.

3.1. STT Frame Format

 Figure 3 illustrates the header of an STT frame before it is
 segmented.

Davie & Gross Expires September 6, 2012 [Page 9]

Internet-Draft The STT Protocol March 2012

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | Flags | L4 Offset | Reserved |
 +-+
 | Max. Segment Size | PCP |V| VLAN ID |
 +-+
 | |
 + Context ID (64 bits) +
 | |
 +-+
 | Padding | data |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |

 Figure 3: STT Frame Format

 The STT frame header contains the following fields:

 o Version - currently 0.

 o Flags - describes encapsulated packet, see below.

 o L4 offset - offset in bytes from the end of the STT Frame header
 to the start of the encapsulated layer 4 (TCP/UDP) header.

 o Reserved field - MUST be zero on transmission and ignored on
 receipt.

 o Max Segment Size - the TCP MSS that should be used by a tunnel
 endpoint that is transmitting this frame onto another network.

 o PCP - the 3-bit Priority Code Point field that should be applied
 to this packet by an STT tunnel endpoint on transmission to
 another network (see Section 2.2).

 o V - a one bit flag that, if set, indicates the presence of a valid
 VLAN ID in the following field and valid PCP in the preceding
 field.

 o VLAN ID - 12-bit VLAN tag that should be applied to this packet by
 an STT tunnel endpoint on transmission to another network (see

Section 2.2).

 o Context ID - 64 bits of context information, described in detail
 in Section 2.3.

Davie & Gross Expires September 6, 2012 [Page 10]

Internet-Draft The STT Protocol March 2012

 o Padding - 16 bits as described above.

 The flags field contains:

 o 0: Checksum verified. Set if the checksum of the encapsulated
 packet has been verified by the sender.

 o 1: Checksum partial. Set if the checksum in the encapsulated
 packet has been computed only over the TCP/IP header. This bit
 MUST be set if TSO is used by the sender. Note that bit 0 and bit
 1 cannot both be set in the same header.

 o 2: IP version. Set if the encapsulated packet is IPv4, not set if
 the packet is IPv6. See below for discussion of non-IP payloads.

 o 3: TCP payload. Set if the encapsulated packet is TCP.

 o 4-7: Unused, MUST be zero on transmission and ignored on receipt.

 As noted above, several of these fields are present primarily to
 enable efficient processing of the packet when it received at a
 tunnel endpoint. (For example, it's entirely possible to determine
 if the packet is IPv4 or IPv6 by looking at the Ethernet header -
 it's just more efficient not to have to do so.)

 The payload of the STT frame is an untagged Ethernet frame.

3.1.1. Handling non-IP payloads

 Note that the STT header does not have a general "protocol" field to
 allow the efficient processing of arbitrary payloads. The current
 version is designed to provide a virtual Ethernet link, and hence
 efficiently supports only Ethernet frames as the payload. The
 Ethernet header itself contains a protocol field, which then
 identifies the higher layer protocol, so it is straightforward to
 accommodate non-IP traffic.

 It will be noted that the STT Frame header does contain fields that
 are intended to assist in efficient processing of IPv4 and IPv6
 packets. These fields MUST be set to zero and ignored on receipt for
 non-IP payloads.

 The use of STT to carry payloads other than Ethernet is theoretically
 possible but is beyond the scope of this document.

Davie & Gross Expires September 6, 2012 [Page 11]

Internet-Draft The STT Protocol March 2012

3.2. Usage of TCP Header by STT

 Figure 4 illustrates the usage of the TCP header STT. This figure is
 essentially identical to that in [RFC0793] with the exception that we
 denote with an asterisk (*) two fields that are used by STT to convey
 something other than the information that is conveyed by TCP.
 Syntactically, STT segments look identical to TCP segments. However,
 STT tunnel endpoints treat the Sequence number and Acknowledgment
 number differently than TCP endpoints treat those fields.
 Furthermore, as noted above, there is no TCP state machine associated
 with an STT tunnel.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number(*) |
 +-+
 | Acknowledgment Number(*) |
 +-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

 Figure 4: STT Segment Format

 The Destination port is to be requested from IANA, in the user range
 (1024-49151).

 In order to allow correct reassembly of the STT frame, the source
 port MUST be constant for all segments of a single STT frame.

 As noted above (Section 2.5) the source port SHOULD be the same for
 all frames that belong to a single flow in the virtual network, e.g.
 a single TCP connection.

 Also, to encourage efficient distribution of traffic among multiple
 paths when ECMP is used, the method to calculate the source port
 should provide a random distribution of source port numbers. An

https://datatracker.ietf.org/doc/html/rfc0793

Davie & Gross Expires September 6, 2012 [Page 12]

Internet-Draft The STT Protocol March 2012

 example mechanism would be a random hash on ports and addresses of
 the TCP headers of the flow in the virtual network.

 It is RECOMMENDED to use a source port number from the ephemeral
 range defined by IANA (49152-65535).

 The Sequence number and Acknowledgment number fields are re-purposed
 in a way that does not confuse NICs that expect them to be used in
 the conventional manner. The ACK field is used as a packet
 identifier for the purposes of fragmentation, equivalent in function
 to the Identification field of IPv4 or the IPv6 Fragment header: it
 MUST be constant for all STT segments of a given frame, and different
 from any value used recently for other STT frames sent over this
 tunnel.

 The upper 16 bits of the the SEQ field are used to convey the length
 of the STT frame in bytes. The lower 16 bits of the SEQ field are
 used to convey the offset (in bytes) of the current fragment within
 the larger STT frame.

 Reassembly of the fragments may be done partially by NICs that
 perform LRO, since the sequence numbers of frames will increment
 appropriately. That is, the upper 16 bits don't change, and the
 lower 16 bits increment by N for every N byte segment that is
 transmitted, just as would be the case if an actual sequence number
 were being sent. Note that the size limit of an STT frame ensures
 that sequence numbers cannot wrap while sending the segments of a
 single STT frame.

 All the fields after ACK have their conventional meaning, although
 nothing will be done with the Window or Urgent pointer values. Those
 fields SHOULD be zero on transmit and ignored on receipt. It is
 RECOMMENDED that the PSH (Push) flag be set when transmitting the
 last segment of a frame in order to cause data to be delivered by the
 NIC without waiting for other fragments. The ACK flag SHOULD be set
 to ensure that a receiving NIC passes the ACK field to the host to
 assist in reassembly. All other flags SHOULD be zero on transmit and
 ignored on receipt.

3.3. Encapsulation of STT Segments in IP

 From the perspective of IP, an STT segment is just like any other TCP
 segment. The protocol number (IPv4) or Next Header (IPv6) has the
 value 6, as for regular TCP. The resulting IP datagram is then
 encapsulated in the appropriate L2 header (e.g. Ethernet) for
 transmission on the physical medium.

Davie & Gross Expires September 6, 2012 [Page 13]

Internet-Draft The STT Protocol March 2012

3.3.1. Diffserv and ECN-Marking

 When traffic is encapsulated in a tunnel header, there are numerous
 options as to how the Diffserv Code-Point (DSCP) and ECN markings are
 set in the outer header and propagated to the inner header on
 decapsulation.

 [RFC2983] defines two modes for mapping the DSCP markings from inner
 to outer headers and vice versa. The Uniform model copies the inner
 DSCP marking to the outer header on tunnel ingress, and copies that
 outer header value back to the inner header at tunnel egress. The
 Pipe model sets the DSCP value to some value based on local policy at
 ingress and does not modify the inner header on egress. Both models
 SHOULD be supported by STT endpoints. However, there is an
 additional complexity with the uniform model for STT, because a
 single IP datagram that is transmitted over the tunnel appears as
 multiple IP datagrams on the wire. Thus it is not guaranteed that
 all segments of the STT frame will have the same DSCP at egress. If
 uniform model behavior is configured, it is RECOMMENDED that the DSCP
 of the first segment of the STT frame be used to set the DSCP value
 of the IP header in the decapsulated STT frame.

 [RFC6040] describes the correct ECN behavior for any type of IP in IP
 tunnel, and this behavior SHOULD be followed for STT tunnels. As
 with the Uniform Diffserv tunnel model, the fact that one inner IP
 datagram is segmented into multiple outer datagrams makes the
 situation slightly more complex. It is RECOMMENDED that if any
 segment of the received STT frame has the CE (congestion experienced)
 bit set in its IP header, then the CE bit SHOULD be set in the IP
 header of the decapsulated STT frame.

3.3.2. Packet Loss

 Individual IP datagrams may be dropped (most often due to congestion)
 and, since there is no acknowledgment or reliable delivery of these
 datagrams, there is the potential to corrupt an entire STT Frame due
 to the loss of a single IP datagram. Fortunately, there are
 solutions to this problem in the case where the higher layer protocol
 running over STT is TCP. An STT receiving endpoint running in an
 end-system, as shown in Figure 1 for example, is not required to
 deliver complete STT frames to the TCP stack in the receiving VM. A
 partial frame payload can be delivered and the receiving TCP stack
 can deal with the missing bytes just as it would if running directly
 over a physical network. That is, TCP in the VM can send ACKs for
 the contiguous bytes received to trigger retransmission of the
 missing bytes by the sender. This is similar to the operation of LRO
 in current NICs. There are some subtleties to making this work
 correctly in the STT context, and it does depend on the STT endpoint

Davie & Gross Expires September 6, 2012 [Page 14]

Internet-Draft The STT Protocol March 2012

 being aware of the higher layer protocols consuming data in the VM to
 which it is connected. The main point of this discussion is that, in
 the common deployments of STT running in a virtual switch, the
 potential harm of losing individual packets is not as serious as it
 might first appear.

3.4. Broadcast and Multicast

 It is possible to establish point-to-multipoint STT tunnels by using
 an IP multicast address as the destination address of the tunnel.
 These may be used for broadcast or multicast traffic if the
 underlying physical network supports IP multicast. Control
 mechanisms for setting up such multicast groups are beyond the scope
 of this document. It is worth repeating that, despite the syntactic
 resemblance between the STT segment header and the TCP header, there
 is no TCP state machine associated with an STT tunnel, so the
 traditional issues of combining multicast with TCP (or reliable
 transports more generally) do not arise.

4. Interoperability Issues

 It will be noted that an STT packet on the wire appears exactly the
 same as a TCP packet, but that processing of an STT packet on
 reception is entirely different from TCP - no three-way handshake to
 establish a connection, no ACKs, retransmission, etc. Hence, an STT
 tunnel endpoint clearly needs to be configured to behave in the
 correct manner rather than to perform standard TCP processing on the
 packet. The primary way to recognize an STT segment is the
 destination port number in the TCP header. In the event that an STT
 packet is inadvertently delivered to a device that is not configured
 to behave as an STT tunnel endpoint, no TCP connection will be
 established and STT packets will be dropped.

 In the event that STT packets pass through middle boxes that process
 TCP, it is likely that (in the near term at least) they will be
 dropped, as there will be no TCP connection state established. This
 is clearly undesirable, but it is a general issue with any form of
 tunneling - the nature of many middle boxes is that they will not
 permit tunnels to pass through them. Hence the best solution is
 simply to avoid deploying middle boxes at locations where STT tunnels
 (or other forms of tunnels for network virtualization) will need to
 pass through them. This will not, however, always be feasible,
 especially when virtualized networks extend among multiple data
 centers. Other solutions include configuring the middle boxes to
 permit TCP packets to pass through when the port number matches the
 port assigned for STT.

Davie & Gross Expires September 6, 2012 [Page 15]

Internet-Draft The STT Protocol March 2012

 In the longer term, we might reasonably expect that middle boxes
 would be able to recognize STT traffic, and to terminate and
 originate STT tunnels if necessary (e.g. to perform functions that
 require the STT payload to be inspected such as statefull
 firewalling).

 It is also of course possible to provide all the functionality of STT
 using a different IP protocol number (or next header value in IPv6).
 This approach makes sense in the long run but will typically not
 enable current NIC hardware to be leveraged for TSO and LRO
 functions.

 It is also possible to run STT traffic over other forms of tunnel
 (GRE, IPSEC, etc.) in which case they the STT traffic can pass
 through appropriately configured middle boxes.

5. IANA Considerations

 A TCP port in the user range (1024- 49151) will be requested from
 IANA.

6. Security Considerations

 In the physical network, STT packets are simply IP datagrams, and do
 not introduce new security issues. Most standard IP security
 mechanisms (such as IPSEC encryption or authentication) can be
 implemented on STT packets if desired. As noted above, however,
 tunneling generally interacts poorly with middle boxes, and STT is no
 exception. Devices such as firewalls are likely to drop STT traffic
 unless the capability to recognize STT packets is implemented, or
 unless the STT traffic is itself run over some sort of tunnel that
 the firewall is configured to permit. Intrusion detection systems
 would similarly need to be enhanced to be able to look inside STT
 packets.

 It should also be noted that while STT packets resemble TCP segments,
 the lack of a TCP state machine means that TCP-related security
 issues (e.g. SYN-flooding) do not apply. Similarly, some of the
 benefits of the TCP state machine (e.g. the ability to discard
 packets with unexpected sequence numbers) are also absent for STT
 traffic.

7. Contributors

 The following individuals contributed to this document:

Davie & Gross Expires September 6, 2012 [Page 16]

Internet-Draft The STT Protocol March 2012

 Brad McConnell
 Rackspace
 5000 Walzem Road
 San Antonio, TX 78218
 Email: bmcconne@rackspace.com

 JC Martin
 eBay
 2477 Woodland Ave
 San Jose, CA 95128
 Email:

 Iben Rodriguez
 eBay
 2477 Woodland Ave
 San Jose, CA 95128
 Email: Iben.rodriguez@gmail.com

 Ilango Ganga
 Intel Corporation
 2200 Mission College Blvd.
 Santa Clara, CA - 95054
 Email: ilango.s.ganga@intel.com

 Igor Gashinsky
 Yahoo!
 111 West 40th Street
 New York, NY 10018
 Email: igor@yahoo-inc.com

8. Acknowledgements

 We thank Martin Casado for inspiring this work and making all the
 introductions, and to Ben Pfaff for his explanations of the
 implementation. Thanks also to Pierre Ettori, Yukio Ogawa and
 Koichiro Seto for their helpful comments.

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

https://datatracker.ietf.org/doc/html/rfc793

Davie & Gross Expires September 6, 2012 [Page 17]

Internet-Draft The STT Protocol March 2012

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [I-D.mahalingam-dutt-dcops-vxlan]
 Sridhar, T., Bursell, M., Kreeger, L., Dutt, D., Wright,
 C., Mahalingam, M., Duda, K., and P. Agarwal, "VXLAN: A
 Framework for Overlaying Virtualized Layer 2 Networks over
 Layer 3 Networks", draft-mahalingam-dutt-dcops-vxlan-01
 (work in progress), February 2012.

 [I-D.narten-nvo3-overlay-problem-statement]
 Narten, T., Sridharan, M., Dutt, D., Black, D., and L.
 Kreeger, "Problem Statement: Overlays for Network
 Virtualization",

draft-narten-nvo3-overlay-problem-statement-01 (work in
 progress), October 2011.

 [I-D.sridharan-virtualization-nvgre]
 Sridhavan, M., Duda, K., Ganga, I., Greenberg, A., Lin,
 G., Pearson, M., Thaler, P., Tumuluri, C., and Y. Wang,
 "NVGRE: Network Virtualization using Generic Routing
 Encapsulation", draft-sridharan-virtualization-nvgre-00
 (work in progress), September 2011.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
 Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
 March 2000.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, October 2000.

 [RFC3931] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
 Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, November 2010.

 [VL2] Greenberg et al, "VL2: A Scalable and Flexible Data Center
 Network", 2009.

 Proc. ACM SIGCOMM 2009

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-mahalingam-dutt-dcops-vxlan-01
https://datatracker.ietf.org/doc/html/draft-narten-nvo3-overlay-problem-statement-01
https://datatracker.ietf.org/doc/html/draft-sridharan-virtualization-nvgre-00
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3931
https://datatracker.ietf.org/doc/html/rfc6040

Davie & Gross Expires September 6, 2012 [Page 18]

Internet-Draft The STT Protocol March 2012

Authors' Addresses

 Bruce Davie (editor)
 Nicira Networks, Inc.
 3460 W. Bayshore Rd.
 Palo Alto, CA 94303
 USA

 Email: bsd@nicira.com

 Jesse Gross
 Nicira Networks, Inc.
 3460 W. Bayshore Rd.
 Palo Alto, CA 94303
 USA

 Email: jesse@nicira.com

Davie & Gross Expires September 6, 2012 [Page 19]

