
Benchmarking Methodology Working Group K. Sun
Internet-Draft H. Yang
Intended status: Informational J. Lee
Expires: May 6, 2021 H. Nguyen
 Y. Kim
 Soongsil University
 November 02, 2020

Considerations for Benchmarking Network Performance in Containerized
Infrastructures

draft-dcn-bmwg-containerized-infra-05

Abstract

 This draft describes considerations for benchmarking network
 performance in containerized infrastructures. In the containerized
 infrastructure, Virtualized Network Functions(VNFs) are deployed on
 operating-system-level virtualization platform by abstracting the
 user namespace as opposed to virtualization using a hypervisor.
 Leveraging this, the system configurations and networking scenarios
 for benchmarking will be partially changed by the way in which the
 resource allocation and network technologies specified for
 containerized VNFs. In this draft, we compare the state of the art
 in a container networking architecture with networking on VM-based
 virtualized systems, and provide several test scenarios for
 benchmarking network performance in containerized infrastructures.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 6, 2021.

Sun, et al. Expires May 6, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Benchmarking Containerized Infra November 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 3
3. Benchmarking Considerations 4
3.1. Comparison with the VM-based Infrastructure 4
3.2. Container Networking Classification 5
3.3. Resource Considerations 8

 4. Benchmarking Scenarios for the Containerized Infrastructure . 10
5. Additional Considerations 12
6. Benchmarking Experience(Contiv-VPP) 13
6.1. Benchmarking Environment(Contiv-VPP) 13
6.2. Trouble shooting and Result 17

7. Benchmarking Experiment(SR-IoV-DPDK) 19
7.1. Benchmarking Environment(SR-IoV-DPDK) 19
7.2. Trouble shooting and Result(SR-IoV-DPDK) 23

8. Security Considerations 23
9. Acknkowledgement . 23
10. Informative References 23

 Authors' Addresses . 24

1. Introduction

 The Benchmarking Methodology Working Group(BMWG) has recently
 expanded its benchmarking scope from Physical Network Function(PNF)
 running on a dedicated hardware system to Network Function
 Virtualization(NFV) infrastructure and Virtualized Network
 Function(VNF). [RFC8172] described considerations for configuring
 NFV infrastructure and benchmarking metrics, and [RFC8204] gives
 guidelines for benchmarking virtual switch which connects VNFs in
 Open Platform for NFV(OPNFV).

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc8204

Sun, et al. Expires May 6, 2021 [Page 2]

Internet-Draft Benchmarking Containerized Infra November 2020

 Recently NFV infrastructure has evolved to include a lightweight
 virtualized platform called the containerized infrastructure, where
 VNFs share the same host Operating System(OS) and they are logically
 isolated by using a different namespace. While previous NFV
 infrastructure uses a hypervisor to allocate resources for Virtual
 Machine(VMs) and instantiate VNFs on it, the containerized
 infrastructure virtualizes resources without a hypervisor, therefore
 making containers very lightweight and more efficient in
 infrastructure resource utilization compared to the VM-based NFV
 infrastructure. When we consider benchmarking for VNFs in the
 containerized infrastructure, it may have a different System Under
 Test(SUT) and Device Under Test(DUT) configuration compared with both
 black-box benchmarking and VM-based NFV infrastructure as described
 in [RFC8172]. Accordingly, additional configuration parameters and
 testing strategies may be required.

 In the containerized infrastructure, a VNF network is implemented by
 running both switch and router functions in the host system. For
 example, the internal communication between VNFs in the same host
 uses the L2 bridge function, while communication with external
 node(s) uses the L3 router function. For container networking, the
 host system may use a virtual switch(vSwitch), but other options
 exist. In the [ETSI-TST-009], they describe differences in
 networking structure between the VM-based and the containerized
 infrastructure. Occasioned by these differences, deployment
 scenarios for testing network performance described in [RFC8204] may
 be partially applied to the containerized infrastructure, but other
 scenarios may be required.

 In this draft, we describe differences and additional considerations
 for benchmarking containerized infrastructure based on [RFC8172] and
 [RFC8204]. In particular, we focus on differences in system
 configuration parameters and networking configurations of the
 containerized infrastructure compared with VM-based NFV
 infrastructure. Note that, although the detailed configurations of
 both infrastructures differ, the new benchmarks and metrics defined
 in [RFC8172] can be equally applied in containerized infrastructure
 from a generic-NFV point of view, and therefore defining additional
 metrics or methodologies is out of scope.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document is to be interpreted as described in [RFC2119]. This
 document uses the terminology described in [RFC8172], [RFC8204],
 [ETSI-TST-009].

https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc8204
https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc8204
https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc8204

Sun, et al. Expires May 6, 2021 [Page 3]

Internet-Draft Benchmarking Containerized Infra November 2020

3. Benchmarking Considerations

3.1. Comparison with the VM-based Infrastructure

 For the benchmarking of the containerized infrastructure, as
 mentioned in [RFC8172], the basic approach is to reuse existing
 benchmarking methods developed within the BMWG. Various network
 function specifications defined in BMWG should still be applied to
 containerized VNF(C-VNF)s for the performance comparison with
 physical network functions and VM-based VNFs.

 +---------------------------------+ +--------------------------------+
+--------------+ +--------------+		+------------+ +------------+																
	Guest VM		Guest VM				Container		Container									
	+------------+		+------------+				+----------+		+----------+									
		APP				APP						APP				APP		
	+------------+		+------------+				+----------+		+----------+									
	+------------+		+------------+				+----------+		+----------+									
		Guest Kernel				Guest Kernel						Bin/Libs				Bin/Libs		
	+------------+		+------------+				+----------+		+----------+									
+------^-------+ +-------^------+		+-----^------+ +------^-----+																
+------	-----------------	------+		+-----	------------------	-----+												
		Hypervisor						+----------------+										
+------	-----------------	------+					Container Engine											
+------	-----------------	------+				+----------------+												
		Host OS Kernel						Host OS Kernel										
+------	-----------------	-----+			+-----	------------------	-----+											
+--v-----------------v--+		+---v------------------v---+																
 +----| physical network |----+ +--| physical network |--+
 +-----------------------+ +--------------------------+
 (a) VM-Based Infrastructure (b) Containerized Infrastructure

 Figure 1: Comparison of NFV Infrastructures

 In Figure 1, we describe two different NFV architectures: VM-based
 and Containerized. A major distinction between the containerized and
 the VM-based infrastructure is that with the former, all VNFs share
 the same host resources including but not limited to computing,
 storage and networking resources, as well as the host Operating
 System(OS), kernel and libraries. The absence of the guest OS and
 the hypervisor necessitates the following considerations that occur
 in the test environment:

 o When we consider hardware configurations for the containerized
 infrastructure, all components described in [RFC8172] can be part of
 the test setup. While the capabilities of servers and storage should
 meet the minimum requirements for testing, it is possible to deploy a

https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc8172

Sun, et al. Expires May 6, 2021 [Page 4]

Internet-Draft Benchmarking Containerized Infra November 2020

 test environment with fewer capabilities than in the VM-based
 infrastructure.

 o About configuration parameters, the containerized infrastructure
 needs a specified management system instead of a hypervisor(e.g.
 Linux Container, Docker Engine).

 o In the VM-based infrastructure, each VM manipulates packets in the
 kernel of the guest OS through its own CPU threads, virtualized and
 assigned by the hypervisor. On the other hand, C-VNFs use the host
 CPU without virtualization. Different CPU resource assignment
 methods may have different CPU utilization perspectives for
 performance benchmarking.

 o From a Memory Management Unit(MMU) point of view, there are
 differences in how the paging process is conducted between two
 environments. The main difference lies in the isolated nature of the
 OS for VM-based VNFs. In the containerized infrastructure, memory
 paging which processes conversion between a physical address and the
 virtual address is affected by the host resource directly. Thus,
 memory usage of each C-VNFs is more dependent on the host resource
 capabilities than in VM-based VNFs.

3.2. Container Networking Classification

 Container networking services are provided as network plugins.
 Basically, using them, network services are deployed by using an
 isolation environment from container runtime through the host
 namespace, creating a virtual interface, allocating interface and IP
 address to C-VNF. Since the containerized infrastructure has
 different network architecture depending on its using plugins, it is
 necessary to specify the plugin used in the infrastructure. There
 are two proposed models for configuring network interfaces for
 containers as below;

 o CNM(Container Networking Model) proposed by Docker, using
 libnetwork which provides an interface between the Docker daemon and
 network drivers.

 o CNI(Container Network Interface) proposed by CoreOS, describing
 network configuration files in JSON format and plugins are
 instantiated as new namespaces. Kubernetes uses CNI for providing
 network service.

 Regardless of both CNM and CNI, the container network model can be
 classified into the kernel-space network model and user-space network
 model according to the location of network service creation. In the
 case of the kernel-based network model, network interfaces are

Sun, et al. Expires May 6, 2021 [Page 5]

Internet-Draft Benchmarking Containerized Infra November 2020

 created in kernel space so that data packets should be processed in
 network stack of host kernel before transferring packets to the C-VNF
 running in user-space. On the other hand, using user-based network
 model, data packets from physical network port are bypassed kernel
 processing and delivered directly to user-space. Specific
 technologies for each network model and example of network
 architecture are written as follows:

 o Kernel space network model: Docker Network[Docker-network], Flannel
 Network[Flannel], Calico[Calico], OVS(OpenvSwitch)[OVS], OVN(Open
 Virtual Network)[OVN], eBPF[eBPF]

 +--+
 | User Space |
 | +-----------+ +-----------+ |
 | | Container | | Container | |
 | | +-------+ | | +-------+ | |
 | +-| eth |-+ +-| eth |-+ |
 | +--^----+ +----^--+ |
 | | +--+ | | | | | | | | | |
 | | | vSwitch | | |
 | | | +--------------------------------------+ | | |
 | | | | +--v---v---v--+ | | | |
 | | | |bridge | tag[n] | | | | |
 | | | | +--^-------^--+ | | | |
 | | | +--^-------------|-------|-----------^-+ | | |
 | | | | +---+ +---+ | | | |
 | | | | +------ v-----+ +-------v----+ | | | |
 | | | | |tunnel bridge| | flat bridge | | | | |
 | | | | +------^------+ +-------^-----+ | | | |
 | | +--- |--------|----------------|-------|---+ | | | |
|---|---|---|---|---|---|---|---|---|
 | +----|-------|--------|----------------|-------|------|----+ |
 | | +--v-------v--+ | | +--v------v--+ | |
 | | | veth | | | | veth | | |
 | | +---^---------+ | | +---^--------+ | |
 | | Kernel Datapath | | | |
 | +---------------------|----------------|-------------------+ |
 | | | |
 | Kernel Space +--v----------------v--+ |
 +----------------------| NIC |--------------------+
 +----------------------+

 Figure 2: Examples of Kernel Space Network Model

 o User space network model / Device pass-through model: SR-
 IOV[SR-IOV]

Sun, et al. Expires May 6, 2021 [Page 6]

Internet-Draft Benchmarking Containerized Infra November 2020

 +--+
 | User Space |
 | +-----------------+ +-----------------+ |
 | | Container | | Container | |
 | | +-------------+ | | +-------------+ | |
 | +-| vf driver |-+ +-| vf driver |-+ |
 | +-----^-------+ +------^------+ |
 | | | |
 -------------|---------------------------------------|--------------
 | +---------+ +---------+ |
 | +------|-------------------|------+ | | | | |
 | | +----v-----+ +-----v----+ | |
 | | | virtual | | virtual | | |
 | | | function | | function | | |
 | Kernel Space | +----^-----+ NIC +-----^----+ | |
 +---------------| | | |----------------+
 | +----v-------------------v----+ |
 | | Classify and Queue | |
 | +-----------------------------+ |
 +---------------------------------+

 Figure 3: Examples of User Space Network Model - Device Pass-through

 o User space network model / vSwitch model: ovs-dpdk[ovs-dpdk],
 vpp[vpp], netmap[netmap]

Sun, et al. Expires May 6, 2021 [Page 7]

Internet-Draft Benchmarking Containerized Infra November 2020

 +--+
 | User Space |
 | +-----------------+ +-----------------+ |
 | | Container | | Container | |
 | | +-------------+ | | +-------------+ | |
 | +-| virtio-user |-+ +-| virtio-user |-+ |
 | +-----^-------+ +-------^-----+ |
 | | | |
 | +---------+ +---------+ |
 | +-----------------|--------------------|-----------------+ | | | | |
 | | vSwitch | | | |
 | | +-------v-----+ +-----v-------+ | |
 | | | virtio-user | | virtio-user | | |
 | | +-------^-----+ +-----^-------+ | |
 | | +------------|--------------------|-------------+ | |
 | | | +--v--------------------v---+ | | |
 | | |bridge | tag[n] | | | |
 | | | +------------^--------------+ | | |
 | | +----------------------|------------------------+ | |
 | | +-------v--------+ | |
 | | | dpdk0 bridge | | |
 | | +-------^--------+ | |
 | +---------------------------|----------------------------+ |
 | +-------v--------+ |
 | | DPDK PMD | |
 | +-------^--------+ |
 ---------------------------------|----------------------------------
 | Kernel Space +-----v------+ |
 +--------------------------| NIC |--------------------------+
 +------------+

 Figure 4: Examples of User Space Network Model - vSwitch Model using
 DPDK

3.3. Resource Considerations

 In the containerized infrastructure, resource utilization and
 isolation may have different characteristics compared with the VM-
 based infrastructure. Some details are listed as follows:

 o Hugepage

 The huge page is that configuring a large page size of memory to
 reduce Translation Lookaside Buffer(TLB) miss rate and increase the
 application performance. This increases the performance of logical/
 virtual to physical address lookups performed by a CPU's memory
 management unit, and generally overall system performance. When
 using Cent OS or RedHat OS in the VM-based infrastructure, the huge

Sun, et al. Expires May 6, 2021 [Page 8]

Internet-Draft Benchmarking Containerized Infra November 2020

 page should be set to at least 1G byte. In the VM-based
 infrastructure, the host OS and the hypervisor can configure a huge
 page depending on the guest OS. For example, guest VMs with the
 Linux OS requires to set huge pages at least 1G bytes. Even though
 it is a huge size, since this memory page is for not only its running
 application but also guest OS operation processes, actual memory
 pages for application is smaller.

 In the containerized infrastructure, the container is isolated in the
 application level and administrators can set huge pages more granular
 level (e.g. Kubernetes allows to use of 512M bytes huge pages for
 the container as default values). Moreover, this page is dedicated
 to the application but another process so application use page more
 efficient way. Therefore, even if the page size is smaller than the
 VM, the effect of the huge page is large, which leads to the
 utilization of physical memory and the increasing number of functions
 in the host.

 o NUMA

 NUMA technology can be used both in the VM-based and containerized
 infrastructure. Using NUMA, performance will be increasing not CPU
 and memory but also network since that network interface connected
 PCIe slot of specific NUMA node have locality. Using NUMA, it
 requires a strong understanding of VNF's memory requirements. If VNF
 uses more memory than a single NUMA node contains, the overhead will
 be occurred due to being spilled to another NUMA node.

 In the VM-based infrastructure, the hypervisor can perform extracting
 NUMA topology and schedules VM workloads. In containerized
 infrastructure, however, it is more difficult to expose the NUMA
 topology to the container and currently, it is hard to guarantee the
 locality of memory when the container is deployed to host that has
 multiple NUMA nodes. For that reason, the instantiation of C-VNFs is
 somewhat non-deterministic and apparently NUMA-Node agnostic, which
 is one way of saying that performance will likely vary whenever this
 instantiation is performed. So, when we use NUMA in the
 containerized infrastructure, repeated instantiation and testing to
 quantify the performance variation is required.

 o RX/TX Multiple-Queue

 RX/TX Multiple-Queue technology[Multique], which enables packet
 sending/receiving processing to scale with the number of available
 vcpus of guest VM, may be used to enhance network performance in the
 VM-based infrastructure. However, RX/TX Multiple-Queue technology is
 not supported in the containerized infrastructure yet.

Sun, et al. Expires May 6, 2021 [Page 9]

Internet-Draft Benchmarking Containerized Infra November 2020

4. Benchmarking Scenarios for the Containerized Infrastructure

 Figure 5 shows briefly differences of network architectures based on
 deployment models. Basically, on bare metal, C-VNFs can be deployed
 as a cluster called POD by Kubernetes. Otherwise each C-VNF can be
 deployed separately using Docker. In the former case, there is only
 one external network interface even a POD contains more than one
 C-VNF. An additional deployment model considers a scenario in which
 C-VNFs or PODs are running on VM. In our draft, we define new
 terminologies; BMP which is Pod on bare metal and VMP which is Pod on
 VM.

 +---+
 | Baremetal Node |
 | +--------------+ +--------------+ +-------------- + +-------------+ |
			POD		VM		VM							
			+------------+		+-------------+		+-------+							
	C-VNF(A)			C-VNFs(B)				C-VNFs(C)				PODs(D)		
			+------------+		+-----^-------+		+---^---+							
	+------+		+------+		+--v---+		+---v--+							
+---	veth	---+ +---	veth	---+ +---	virtio	----+ +--	virtio	---+						
+--^---+ +---^--+ +--^---+ +---^--+														
		+--v---+ +---v--+												
+------	-----------------	------------	vhost	---------	vhost	---+								
			+--^---+ +---^--+											
	+--v---+ +---v--+ +--v---+ +---v--+													
	+-	veth	---------	veth	---------	Tap	---------	Tap	-+					
		+--^---+ +---^--+ +--^---+ +---^--+												
				vSwitch										
		+--	-----------------	---------------	-----------------	--+								
	+-			Bridge			-+							
	+--	-----------------	---------------	-----------------	--+									
		+---------+	+--	-----------------	---+									
			Container				Hypervisor							
			Engine											
		+---------+	+--	-----------------	---+									
			Host Kernel											
+------	-----------------	---------------	-----------------	------+										
+--v-----------------v---------------v-----------------v--+														
 +-----| physical network |-----+
 +---+

 Figure 5: Examples of Networking Architecture based on Deployment
 Models - (A)C-VNF on Baremetal (B)Pod on Baremetal(BMP) (C)C-VNF on
 VM (D)Pod on VM(VMP)

Sun, et al. Expires May 6, 2021 [Page 10]

Internet-Draft Benchmarking Containerized Infra November 2020

 In [ETSI-TST-009], they described data plane test scenarios in a
 single host. In that document, there are two scenarios for
 containerized infrastructure; Container2Container which is internal
 communication between two containers in the same Pod, and the Pod2Pod
 model which is communication between two containers running in
 different Pods. According to our new terminologies, we can call the
 Pod2Pod model as the BMP2BMP scenario. When we consider container
 running on VM as an additional deployment option, there can be more
 single host test scenarios as follows;

 o BMP2VMP scenario

 +---+
 | HOST +-----------------------------+ |
	VM +-------------------+							
		C-VNF						
+--------------------+		+--------------+						
	C-VNF				Logical Port			
	+--------------+		+-+--^-------^---+--+					
		Logical Port			+----	-------	---+	
+-+--^-------^---+---+		Logical Port						
		+---+----^-------^---+--------+						
+----v-------	----------------------------	-------v-------------+						
	l----------------------------l							
	Data Plane Networking							
	(Kernel or User space)							
+----^--^-------------+								
+----v------+ +----v------+								
	Phy Port		Phy Port					
+-----------+ +-----------+								
 +-------^--^----------------+
 | |
 +-------v--v----------------+
 | |
 | Traffic Generator |
 | |
 +---+

 Figure 6: Single Host Test Scenario - BMP2VMP

 o VMP2VMP scenario

Sun, et al. Expires May 6, 2021 [Page 11]

Internet-Draft Benchmarking Containerized Infra November 2020

 +---+
 | HOST |
 | +-----------------------------+ +-----------------------------+ |
	VM +-------------------+		VM +-------------------+									
		C-VNF				C-VNF						
		+--------------+				+--------------+						
			Logical Port						Logical Port			
	+-+--^-------^---+--+		+-+--^-------^---+--+									
	+----	-------	---+		+----	-------	---+					
		Logical Port				Logical Port						
+---+----^-------^---+--------+ +---+----^-------^---+--------+												
+--------v-------v------------------------	-------v-------------+											
	l------------------------l											
	Data Plane Networking											
	(Kernel or User space)											
+----^--^-------------+												
+----v------+ +----v------+												
	Phy Port		Phy Port									
+-----------+ +-----------+												
 +-------^--^----------------+
 | |
 +-------v--v----------------+
 | |
 | Traffic Generator |
 | |
 +---+

 Figure 7: Single Host Test Scenario - VMP2VMP

5. Additional Considerations

 When we consider benchmarking for not only containerized but also VM-
 based infrastructure and network functions, benchmarking scenarios
 may contain various operational use cases. Traditional black-box
 benchmarking is focused to measure in-out performance of packet from
 physical network ports since the hardware is tightly coupled with its
 function and only a single function is running on its dedicated
 hardware. However, in the NFV environment, the physical network port
 commonly will be connected to multiple VNFs(i.e. Multiple PVP test
 setup architectures were described in [ETSI-TST-009]) rather than
 dedicated to a single VNF. Therefore, benchmarking scenarios should
 reflect operational considerations such as number of VNFs or network
 services defined by a set of VNFs in a single host.
 [service-density], which proposed a way for measuring the performance
 of multiple NFV service instances at a varied service density on a

Sun, et al. Expires May 6, 2021 [Page 12]

Internet-Draft Benchmarking Containerized Infra November 2020

 single host, is one example of these operational benchmarking
 aspects.

 Regarding the above draft, it can be classified into two types of
 traffic for benchmark testing. One is North/South traffic and the
 other is East/West traffic. North/South has a architecture that
 receives data from other servers and routes them through VNF. On the
 other hand, East/West traffic is a form of sending and receiving data
 between containers deployed in the same server, and can pass through
 multiple containers. The one of the example is Service Function
 Chaining. Since network acceleration technology in a container
 environment has different accelerated areas depending on the method
 provided, performance differences may occur depending on traffic
 patterns.

6. Benchmarking Experience(Contiv-VPP)

6.1. Benchmarking Environment(Contiv-VPP)

 In this test, our purpose is that we test performance of user space
 based model for container infrastructure and figure out relationship
 between resource allocation and network performance. With respect to
 this, we setup Contiv-VPP which is one of the user space based
 network solution in container infrastructure and tested like below.

 o Three physical server for benchmarking

Sun, et al. Expires May 6, 2021 [Page 13]

Internet-Draft Benchmarking Containerized Infra November 2020

 +-------------------+----------------------+--------------------------+
 | Node Name | Specification | Description |
 +-------------------+----------------------+--------------------------+
Conatiner Control	- Intel(R) Xeon(R)	Container Deployment
for Master	CPU E5-2690	and Network Allocation
	(2Socket X 12Core)	- ubuntu 18.04
	- MEM 128G	- Kubernetes Master
	- DISK 2T	- CNI Conterller
	- Control plane : 1G	.. Contive VPP Controller
		.. Contive VPP Agent
+-------------------+----------------------+--------------------------+		
Conatiner Service	- Intel(R) Xeon(R)	Container Service
for Worker	Gold 6148	- ubuntu 18.04
	(2socket X 20Core)	- Kubernetes Worker
	- MEM 128G	- CNI Agent
	- DISK 2T	.. Contive VPP Agent
	- Control plane : 1G	
	- Data plane : MLX 10G	
	(1NIC 2PORT)	
+-------------------+----------------------+--------------------------+		
Packet Generator	- Intel(R) Xeon(R)	Packet Generator
	CPU E5-2690	- CentOS 7
	(2Socket X 12Core)	- installed Trex 2.4
	- MEM 128G	
	- DISK 2T	
	- Control plane : 1G	
	- Data plane : MLX 10G	
	(1NIC 2PORT)	
 +-------------------+----------------------+--------------------------+

 Figure 8: Test Environment-Server Specification

 o The architecture of benchmarking

Sun, et al. Expires May 6, 2021 [Page 14]

Internet-Draft Benchmarking Containerized Infra November 2020

 +----+ +--+
 | | | Containerized Infrastructure Master Node |
 | | | +-----------+ |
 | <-------> 1G PORT 0 | |
 | | | +-----------+ |
 | | +--+
 | |
 | | +--+
 | | | Containerized Infrastructure Worker Node | | | | | |
 | | | +---------------------------------+ |
 | s | | +-----------+ | +------------+ +------------+ | |
 | w <-------> 1G PORT 0 | | | 10G PORT 0 | | 10G PORT 1 | | |
 | i | | +-----------+ | +------^-----+ +------^-----+ | |
 | t | | +--------|----------------|-------+ |
 | c | +-----------------------------|----------------|---------+
 | h | | |
 | | +-----------------------------|----------------|---------+
 | | | Packet Generator Node | | | | | |
 | | | +--------|----------------|-------+ |
 | | | +-----------+ | +------v-----+ +------v-----+ | |
 | <-------> 1G PORT 0 | | | 10G PORT 0 | | 10G PORT 1 | | |
 | | | +-----------+ | +------------+ +------------+ | |
 | | | +---------------------------------+ |
 | | | |
 +----+ +--+

 Figure 9: Test Environment-Architecture

 o Network model of Containerized Infrastructure(User space Model)

Sun, et al. Expires May 6, 2021 [Page 15]

Internet-Draft Benchmarking Containerized Infra November 2020

 +---+---------------------+
 | NUMA 0 | NUMA 0 |
 +---|---------------------+
Containerized Infrastructure Worker Node													
+---------------------------+	+----------------+												
	POD1			POD2									
	+-------------+			+-------+									
	+--v---+ +---v--+			+-v--+ +-v--+									
		eth1		eth2					eth1		eth2		
	+--^---+ +---^--+			+-^--+ +-^--+									
+------	-------------	------+	+---	-------	----+								
+---													
	+-------	---------------	------+										
			+------	--------------+									
+----------	--------	-------	--------	----+									
	v v v v												
	+-tap10--tap11-+ +-tap20--tap21-+												
		^ ^		^ ^									
			VRF1				VRF2						
	+--	--------	--+ +--	--------	--+								
		+-----+	+---+										
	+-tap01--	--	-------------	----	---+								
		+------v--v-+ VRF0 +----v----v-+											
	+-	10G ETH0/0	------	10G ETH0/1	-+								
	+---^-------+ +-------^---+												
	+---v-------+ +-------v---+												
+---	DPDP PMD0	------	DPDP PMD1	------+									
+---^-------+ +-------^---+	User Space												
+---------	----------------------	------------	---------------------+										
+-----	----------------------	-----+	Kernal Space										
 +---| +---V----+ +----v---+ |------|---------------------+
 | | PORT 0 | 10G NIC | PORT 1 | | |
 | +---^----+ +----^---+ |
 +-----|----------------------|-----+
 +-----|----------------------|-----+
 +---| +---V----+ +----v---+ |----------------------------+
 | | | PORT 0 | 10G NIC | PORT 1 | | Packet Generator (Trex) |
 | | +--------+ +--------+ | |
 | +----------------------------------+ |
 +---+

 Figure 10: Test Environment-Network Architecture

 We setup a Contive-VPP network to benchmark the user space container
 network model in the containerized infrastructure worker node. We
 setup network interface at NUMA0, and we created different network
 subnet VRF1, VRF2 to classify input and output data traffic,

Sun, et al. Expires May 6, 2021 [Page 16]

Internet-Draft Benchmarking Containerized Infra November 2020

 respectively. And then, we assigned two interface which connected to
 VRF1, VRF2 and, we setup routing table to route Trex packet from eth1
 interface to eth2 interface in POD.

6.2. Trouble shooting and Result

 In this environment, we confirmed that the routing table doesn't work
 when we send packet using Trex packet generator. The reason is that
 when kernel space based network configured, ip forwarding rule is
 processed to kernel stack level while 'ip packet forwarding rule' is
 processed only in vrf0, which is the default virtual routing and
 forwarding (VRF0) in VPP. That is, above testing architecture makes
 problem since vrf1 and vrf2 interface couldn't route packet.
 According to above result, we assigned vrf0 and vrf1 to POD and, data
 flow is like below.

Sun, et al. Expires May 6, 2021 [Page 17]

Internet-Draft Benchmarking Containerized Infra November 2020

 +---+---------------------+
 | NUMA 0 | NUMA 0 |
 +---|---------------------+
Containerized Infrastructure Worker Node													
+---------------------------+	+----------------+												
	POD1			POD2									
	+-------------+			+-------+									
	+--v----+ +---v--+			+-v--+ +-v--+									
		eth1		eth2					eth1		eth2		
	+--^---+ +---^--+			+-^--+ +-^--+									
+------	-------------	------+	+---	-------	----+								
+-------+													
	+-------------	---------------	------+										
			+------	--------------+									
+-----	-------	-------------	--------	----+									
			v v										
			+-tap10--tap11-+										
				^ ^									
					VRF1								
			+--	--------	--+								
				+---+									
	+-*tap00--*tap01----------	----	---+										
		+-V-------v-+ VRF0 +----v----v-+											
	+-	10G ETH0/0	------	10G ETH0/1	-+								
	+-----^-----+ +------^----+												
	+-----v-----+ +------v----+												
+---	*DPDP PMD0	------	*DPDP PMD1	------+									
+-----^-----+ +------^----+	User Space												
 +-----------|-------------------|-------------|---------------------+
 v v
 *- CPU pinning interface

 Figure 11: Test Environment-Network Architecture(CPU Pinning)

 We conducted benchmarking with three conditions. The test
 environments are as follows. - Basic VPP switch - General kubernetes
 (No CPU Pining) - Shared Mode / Exclusive mode. In the basic
 Kubernetes environment, all PODs share a host's CPU. Shared mode is
 that some POD share a pool of CPU assigned to a specific PODs.
 Exclusive mode is that a specific POD dedicates a specific CPU to
 use. In shared mode, we assigned two CPU for several POD, in
 exclusive mode, we dedicated one CPU for one POD, independently. The
 result is like Figure 12. First, the test was conducted to figure
 out the line rate of the VPP switch, and the basic Kubernetes
 performance. After that, we applied NUMA to network interface using
 Shared Mode and Exclusive Mode in the same node and different node
 respectively. In Exclusive and Shared mode tests, we confirmed that
 Exclusive mode showed better performance than Shared mode when same

Sun, et al. Expires May 6, 2021 [Page 18]

Internet-Draft Benchmarking Containerized Infra November 2020

 NUMA cpu assigned, respectively. However, we confirmed that
 performance is reduced at the section between the vpp switch and the
 POD, so that it affect to total result.

 +--------------------+---------------------+-------------+
 | Model | NUMA Mode (pinning)| Result(Gbps)|
 +--------------------+---------------------+-------------+
 | | N/A | 3.1 |
 | Switch only |---------------------+-------------+
 | | same NUMA | 9.8 |
 +--------------------+---------------------+-------------+
 | K8S Scheduler | N/A | 1.5 |
 +--------------------+---------------------+-------------+
 | | same NUMA | 4.7 |
 | CMK-Exclusive Mode +---------------------+-------------+
 | | Different NUMA | 3.1 |
 +--------------------+---------------------+-------------+
 | | same NUMA | 3.5 |
 | CMK-shared Mode +---------------------+-------------+
 | | Different NUMA | 2.3 |
 +--------------------+---------------------+-------------+

 Figure 12: Test Results

7. Benchmarking Experiment(SR-IoV-DPDK)

7.1. Benchmarking Environment(SR-IoV-DPDK)

 In this test, our purpose is that we test performance of user space
 based model for container infrastructure and figure out relationship
 between resource allocation and network performance. With respect to
 this, we setup SRIOV combining with DPDK to bypass the Kernel space
 in container infrastructure and tested based on that.

 o Three physical server for benchmarking

Sun, et al. Expires May 6, 2021 [Page 19]

Internet-Draft Benchmarking Containerized Infra November 2020

+-------------------+-------------------------+------------------------+
| Node Name | Specification | Description |
+-------------------+-------------------------+------------------------+
Conatiner Control	- Intel(R) Core(TM)	Container Deployment
for Master	i5-6200U CPU	and Network Allocation
	(1socket x 4Core)	- ubuntu 18.04
	- MEM 8G	- Kubernetes Master
	- DISK 500GB	- CNI Conterller
	- Control plane : 1G	MULTUS CNI
		SRIOV plugin with DPDK
+-------------------+-------------------------+------------------------+		
Conatiner Service	- Intel(R) Xeon(R)	Container Service
for Worker	E5-2620 v3 @ 2.4Ghz	- Centos 7.7
	(1socket X 6Core)	- Kubernetes Worker
	- MEM 128G	- CNI Agent
	- DISK 2T	MULTUS CNI
	- Control plane : 1G	SRIOV plugin with DPDK
	- Data plane : XL710-qda2	
	(1NIC 2PORT- 40Gb)	
+-------------------+-------------------------+------------------------+		
Packet Generator	- Intel(R) Xeon(R)	Packet Generator
	Gold 6148 @ 2.4Ghz	- CentOS 7.7
	(2Socket X 20Core)	- installed Trex 2.4
	- MEM 128G	
	- DISK 2T	
	- Control plane : 1G	
	- Data plane : XL710-qda2	
	(1NIC 2PORT- 40Gb)	
+-------------------+-------------------------+------------------------+

 Figure 13: Test Environment-Server Specification

 o The architecture of benchmarking

Sun, et al. Expires May 6, 2021 [Page 20]

Internet-Draft Benchmarking Containerized Infra November 2020

 +----+ +--+
 | | | Containerized Infrastructure Master Node |
 | | | +-----------+ |
 | <-------> 1G PORT 0 | |
 | | | +-----------+ |
 | | +--+
 | |
 | | +--+
 | | | Containerized Infrastructure Worker Node | | | | | |
 | | | +---------------------------------+ |
 | s | | +-----------+ | +------------+ +------------+ | |
 | w <-------> 1G PORT 0 | | | 40G PORT 0 | | 40G PORT 1 | | |
 | i | | +-----------+ | +------^-----+ +------^-----+ | |
 | t | | +--------|----------------|-------+ |
 | c | +-----------------------------|----------------|---------+
 | h | | |
 | | +-----------------------------|----------------|---------+
 | | | Packet Generator Node | | | | | |
 | | | +--------|----------------|-------+ |
 | | | +-----------+ | +------v-----+ +------v-----+ | |
 | <-------> 1G PORT 0 | | | 40G PORT 0 | | 0G PORT 1 | | |
 | | | +-----------+ | +------------+ +------------+ | |
 | | | +---------------------------------+ |
 | | | |
 +----+ +--+

 Figure 14: Test Environment-Architecture

 o Network model of Containerized Infrastructure(User space Model)

Sun, et al. Expires May 6, 2021 [Page 21]

Internet-Draft Benchmarking Containerized Infra November 2020

 +---+---------------------+
 | CMK shared core | CMK exclusive core |
 +---|---------------------+
Containerized Infrastructure Worker Node													
+---------------------------+	+----------------+												
	POD1			POD2									
	(testpmd)			(testpmd)									
	+-------------+			+-------+									
	+--v---+ +---v--+			+-v--+ +-v--+									
		eth1		eth2					eth1		eth2		
	+--^---+ +---^--+			+-^--+ +-^--+									
+------	-------------	------+	+---	-------	----+								
+------ +-+													
	+----	-----------------	------+										
			+--------	--------------+									
					User Space								
+---------	------------	----	--------	--------	---------------------+								
+--+ +------													
					Kernal Space								
+------	--------	-----------	--------	--------+---------------------+									
+----	--------	-----------	--------	-----+									
	+--v--+ +--v--+ +--v--+ +--v--+		NIC										
		VF0		VF1		VF2		VF3					
	+--	---+ +	----+ +----	+ +-	---+								
+----	------	---------------	-----	------+									
 +---| +v------v+ +-v-----v+ |------|---------------------+
 | | PORT 0 | 40G NIC | PORT 1 | |
 | +---^----+ +----^---+ |
 +-----|----------------------|-----+
 +-----|----------------------|-----+
 +---| +---V----+ +----v---+ |----------------------------+
 | | | PORT 0 | 40G NIC | PORT 1 | | Packet Generator (Trex) |
 | | +--------+ +--------+ | |
 | +----------------------------------+ |
 +---+

 Figure 15: Test Environment-Network Architecture

 We setup a Multus CNI, SRIOV CNI with DPDK to benchmark the user
 space container network model in the containerized infrastructure
 worker node. The Multus CNI support to create multiple interfaces
 for a container. The traffic is bypassed the Kernel space by SRIOV
 with DPDK. We established two modes of CMK: shared core and
 exclusive core. We created VFs for each network interface of a

Sun, et al. Expires May 6, 2021 [Page 22]

Internet-Draft Benchmarking Containerized Infra November 2020

 container. Then, we setup TREX to route packet from eth1 to eth2 in
 a POD.

7.2. Trouble shooting and Result(SR-IoV-DPDK)

 TBD

8. Security Considerations

 TBD

9. Acknkowledgement

 We would like to thank Al, Maciek and Luis who reviewed and gave
 comments of previous draft.

10. Informative References

 [Calico] "Project Calico", July 2019,
 <https://docs.projectcalico.org/>.

 [Docker-network]
 "Docker, Libnetwork design", July 2019,
 <https://github.com/docker/libnetwork/>.

 [eBPF] "eBPF, extended Berkeley Packet Filter", July 2019,
 <https://www.iovisor.org/technology/ebpf>.

 [ETSI-TST-009]
 "Network Functions Virtualisation (NFV) Release 3;
 Testing; Specification of Networking Benchmarks and
 Measurement Methods for NFVI", October 2018.

 [Flannel] "flannel 0.10.0 Documentation", July 2019,
 <https://coreos.com/flannel/>.

 [Multique]
 "Multiqueue virtio-net", July 2019,
 <https://www.linux-kvm.org/page/Multiqueue>.

 [netmap] "Netmap: a framework for fast packet I/O", July 2019,
 <https://github.com/luigirizzo/netmap>.

 [OVN] "How to use Open Virtual Networking with Kubernetes", July
 2019, <https://github.com/ovn-org/ovn-kubernetes>.

 [OVS] "Open Virtual Switch", July 2019,
 <https://www.openvswitch.org/>.

https://docs.projectcalico.org/
https://github.com/docker/libnetwork/
https://www.iovisor.org/technology/ebpf
https://coreos.com/flannel/
https://www.linux-kvm.org/page/Multiqueue
https://github.com/luigirizzo/netmap
https://github.com/ovn-org/ovn-kubernetes
https://www.openvswitch.org/

Sun, et al. Expires May 6, 2021 [Page 23]

Internet-Draft Benchmarking Containerized Infra November 2020

 [ovs-dpdk]
 "Open vSwitch with DPDK", July 2019,
 <http://docs.openvswitch.org/en/latest/intro/install/

dpdk/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC8172] Morton, A., "Considerations for Benchmarking Virtual
 Network Functions and Their Infrastructure", RFC 8172,
 July 2017.

 [RFC8204] Tahhan, M., O'Mahony, B., and A. Morton, "Benchmarking
 Virtual Switches in the Open Platform for NFV (OPNFV)",

RFC 8204, September 2017.

 [service-density]
 Konstantynowicz, M. and P. Mikus, "NFV Service Density
 Benchmarking", March 2019, <https://tools.ietf.org/html/

draft-mkonstan-nf-service-density-00>.

 [SR-IOV] "SRIOV for Container-networking", July 2019,
 <https://github.com/intel/sriov-cni>.

 [vpp] "VPP with Containers", July 2019, <https://fdio-
vpp.readthedocs.io/en/latest/usecases/containers.html>.

Authors' Addresses

 Kyoungjae Sun
 School of Electronic Engineering
 Soongsil University
 369, Sangdo-ro, Dongjak-gu
 Seoul, Seoul 06978
 Republic of Korea

 Phone: +82 10 3643 5627
 EMail: gomjae@dcn.ssu.ac.kr

http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8172
https://datatracker.ietf.org/doc/html/rfc8204
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://github.com/intel/sriov-cni
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html

Sun, et al. Expires May 6, 2021 [Page 24]

Internet-Draft Benchmarking Containerized Infra November 2020

 Hyunsik Yang
 School of Electronic Engineering
 Soongsil University
 369, Sangdo-ro, Dongjak-gu
 Seoul, Seoul 06978
 Republic of Korea

 Phone: +82 10 9005 7439
 EMail: yangun@dcn.ssu.ac.kr

 Jangwon Lee
 School of Electronic Engineering
 Soongsil University
 369, Sangdo-ro, Dongjak-gu
 Seoul, Seoul 06978
 Republic of Korea

 Phone: +82 10 7448 4664
 EMail: jangwon.lee@dcn.ssu.ac.kr

 Quang Huy Nguyen
 School of Electronic Engineering
 Soongsil University
 369, Sangdo-ro, Dongjak-gu
 Seoul, Seoul 06978
 Republic of Korea

 Phone: +82 10 4281 0720
 EMail: huynq@dcn.ssu.ac.kr

 Younghan Kim
 School of Electronic Engineering
 Soongsil University
 369, Sangdo-ro, Dongjak-gu
 Seoul, Seoul 06978
 Republic of Korea

 Phone: +82 10 2691 0904
 EMail: younghak@ssu.ac.kr

Sun, et al. Expires May 6, 2021 [Page 25]

