
Workgroup:

Benchmarking Methodology Working Group

Internet-Draft:

draft-dcn-bmwg-containerized-infra-07

Published: 11 November 2021

Intended Status: Informational

Expires: 15 May 2022

Authors: K. Sun

Soongsil University

H. Yang

KT

J. Lee

Soongsil University

T. Ngoc

Soongsil University

Y. Kim

Soongsil University

Considerations for Benchmarking Network Performance in Containerized

Infrastructures

Abstract

This draft describes considerations for benchmarking network

performance in containerized infrastructures. In the containerized

infrastructure, Virtualized Network Functions(VNFs) are deployed on

an operating-system-level virtualization platform by abstracting the

user namespace as opposed to virtualization using a hypervisor.

Leveraging this, the system configurations and networking scenarios

for benchmarking will be partially changed by the way in which the

resource allocation and network technologies are specified for

containerized VNFs. In this draft, we compare the state of the art

in a container networking architecture with networking on VM-based

virtualized systems and provide several test scenarios for

benchmarking network performance in containerized infrastructures.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 May 2022.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Containerized Infrastructure Overview

4. Networking Models in Containerized Infrastructure

4.1. Kernel-space vSwitch Models

4.2. User-space vSwitch Models

4.3. Smart-NIC Acceleration Model

5. Performance Impacts

5.1. CPU Isolation / NUMA Affinity

5.2. Hugepages

5.3. Additional Considerations

6. Security Considerations

7. References

7.1. Informative References

Appendix A. Benchmarking Experience(Contiv-VPP)

A.1. Benchmarking Environment

A.2. Trouble shooting and Result

Appendix B. Benchmarking Experience(SR-IOV with DPDK)

B.1. Benchmarking Environment

Appendix C. Benchmarking Experience(Multi-pod Test)

C.1. Benchmarking Overview

C.2. Hardware Configurations

C.3. NUMA Allocation Scenario

C.4. Traffic Generator Configurations

C.5. Benchmark Results and Trouble-shootings

Authors' Addresses

1. Introduction

The Benchmarking Methodology Working Group(BMWG) has recently

expanded its benchmarking scope from Physical Network Function(PNF)

running on a dedicated hardware system to Network Function

¶

¶

https://trustee.ietf.org/license-info

Virtualization(NFV) infrastructure and Virtualized Network

Function(VNF). [RFC8172] described considerations for configuring

NFV infrastructure and benchmarking metrics, and [RFC8204] gives

guidelines for benchmarking virtual switch which connects VNFs in

Open Platform for NFV(OPNFV).

Recently NFV infrastructure has evolved to include a lightweight

virtualized platform called the containerized infrastructure, where

VNFs share the same host Operating System(OS) and are logically

isolated by using a different namespace. While previous NFV

infrastructure uses a hypervisor to allocate resources for Virtual

Machine(VMs) and instantiate VNFs on it, the containerized

infrastructure virtualizes resources without a hypervisor, therefore

making containers very lightweight and more efficient in

infrastructure resource utilization compared to the VM-based NFV

infrastructure. When we consider benchmarking for VNFs in the

containerized infrastructure, it may have a different System Under

Test(SUT) and Device Under Test(DUT) configuration compared with

both black-box benchmarking and VM-based NFV infrastructure as

described in [RFC8172]. Accordingly, additional configuration

parameters and testing strategies may be required.

In the containerized infrastructure, a VNF network is implemented by

running both switch and router functions in the host system. For

example, the internal communication between VNFs in the same host

uses the L2 bridge function, while communication with external

node(s) uses the L3 router function. For container networking, the

host system may use a virtual switch(vSwitch), but other options

exist. In the [ETSI-TST-009], they describe differences in

networking structure between the VM-based and the containerized

infrastructure. Occasioned by these differences, deployment

scenarios for testing network performance described in [RFC8204] may

be partially applied to the containerized infrastructure, but other

scenarios may be required.

This draft is aimed to distinguish benchmarking of containerized

infrastructure from the previous benchmarking methodology of common

NFV infrastructure. Similar to [RFC8204], the networking principle

of containerized infrastructure is basically based on virtual switch

(vSwitch), but there are several options and acceleration

technologies. At the same time, it is important to uncover the

impact of resource isolation methods specified in a containerized

infrastructure on the benchmark performance. In addition, this draft

contains benchmark experiences with various combinations of resource

isolation methods and networking models that can be a reference to

set up and benchmark containerized infrastructure. Note that,

although the detailed configurations of both infrastructures differ,

the new benchmarks and metrics defined in [RFC8172] can be equally

applied in containerized infrastructure from a generic-NFV point of

¶

¶

¶

view, and therefore defining additional metrics or methodologies is

out of scope.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document is to be interpreted as described in [RFC2119]. This

document uses the terminology described in [RFC8172], [RFC8204],

[ETSI-TST-009].

3. Containerized Infrastructure Overview

For the benchmarking of the containerized infrastructure, as

mentioned in [RFC8172], the basic approach is to reuse existing

benchmarking methods developed within the BMWG. Various network

function specifications defined in BMWG should still be applied to

containerized VNF(C-VNF)s for the performance comparison with

physical network functions and VM-based VNFs. A major distinction of

the containerized infrastructure from the VM-based infrastructure is

the absence of a hypervisor. Without hypervisor, all C- VNFs share

the same host resources including but not limited to computing,

storage, and networking resources, as well as the host Operating

System(OS), kernel, and libraries. These architectural differences

bring additional considerations of resource management impacts for

benchmarking.

In a common containerized infrastructure, thank the proliferation of

Kubernetes, the pod is defined as a basic unit for orchestration and

management that is able to host multiple containers. Based on that,

[ETSI-TST-009] defined two test scenario for container

infrastructure as follows.

o Container2Container: Communication between containers running in

the same pod. it can be done by shared volumes or Inter-process

communication (IPC).

o Pod2Pod: Communication between containers running in the different

pods.

As mentioned in [RFC8204], vSwitch is also an important aspect of

the containerized infrastructure. For Pod2Pod communication, every

pod has basically only one virtual Ethernet (vETH) interface. This

interface is connected to the vSwitch via vETH pair for each

container. Not only Pod2Pod but also Pod2External scenario that

communicates with an external node is also required. In this case,

vSwitch SHOULD support gateway and Network Address Translation (NAT)

functionalities.

¶

¶

¶

¶

¶

¶

¶

Figure 1 shows briefly differences of network architectures based on

deployment models. Basically, on bare metal, C-VNFs can be deployed

as a cluster called POD by Kubernetes. Otherwise, each C-VNF can be

deployed separately using Docker. In the former case, there is only

one external network interface even a POD contains more than one C-

VNF. An additional deployment model considers a scenario in which C-

VNFs or PODs are running on VM. In our draft, we define new

terminologies; BMP which is Pod on bare metal, and VMP which is Pod

on VM.

Figure 1: Examples of Networking Architecture based on Deployment

Models - (A)C-VNF on Baremetal (B)Pod on Baremetal(BMP) (C)C-VNF on VM

(D)Pod on VM(VMP)

¶

+---+

| Baremetal Node |

| +--------------+ +--------------+ +-------------- + +-------------+ |

| | | | POD | | VM | | VM | |

| | | |+------------+| |+-------------+| | +-------+ | |

| | C-VNF(A) | || C-VNFs(B) || || C-VNFs(C) || | |PODs(D)| | |

| | | |+------------+| |+-----^-------+| | +---^---+ | |

| | | | | | | | | | | |

| | +------+ | | +------+ | | +--v---+ | | +---v--+ | |

| +---| veth |---+ +---| veth |---+ +---|virtio|----+ +--|virtio|---+ |

| +--^---+ +---^--+ +--^---+ +---^--+ |

| | | | | |

| | | +--v---+ +---v--+ |

| +------|-----------------|------------|vhost |---------|vhost |---+ |

| | | | +--^---+ +---^--+ | |

| | | | | | | |

| | +--v---+ +---v--+ +--v---+ +---v--+ | |

| | +-| veth |---------| veth |---------| Tap |---------| Tap |-+ | |

| | | +--^---+ +---^--+ +--^---+ +---^--+ | | |

| | | | | vSwitch | | | | |

| | | +--|-----------------|---------------|-----------------|--+ | | |

| | +-| | | Bridge | | |-+ | |

| | +--|-----------------|---------------|-----------------|--+ | |

| | | +---------+ | +--|-----------------|---+ | |

| | | |Container| | | | Hypervisor | | | |

| | | | Engine | | | | | | | |

| | | +---------+ | +--|-----------------|---+ | |

| | | | Host Kernel | | | |

| +------|-----------------|---------------|-----------------|------+ |

| +--v-----------------v---------------v-----------------v--+ |

+-----| physical network |-----+

 +---+

In [ETSI-TST-009], they described data plane test scenarios in a

single host. In that document, there are two scenarios for

containerized infrastructure; Container2Container which is internal

communication between two containers in the same Pod, and the

Pod2Pod model which is communication between two containers running

in different Pods. According to our new terminologies, we can call

the Pod2Pod model the BMP2BMP scenario. When we consider container

running on VM as an additional deployment option, there can be more

single host test scenarios as follows;

o BMP2VMP scenario

Figure 2: Single Host Test Scenario - BMP2VMP

o VMP2VMP scenario

¶

¶

+---+

| HOST +-----------------------------+ |

| |VM +-------------------+ | |

| | | C-VNF | | |

| +--------------------+ | | +--------------+ | | |

| | C-VNF | | | | Logical Port | | | |

| | +--------------+ | | +-+--^-------^---+--+ | |

| | | Logical Port | | | +----|-------|---+ | |

| +-+--^-------^---+---+ | | Logical Port | | |

| | | +---+----^-------^---+--------+ |

| | | | | |

| +----v-------|----------------------------|-------v-------------+ |

| | l----------------------------l | |

| | Data Plane Networking | |

| | (Kernel or User space) | |

| +----^--^-------------+ |

| | | |

| +----v------+ +----v------+ |

| | Phy Port | | Phy Port | |

| +-----------+ +-----------+

+-------^--^----------------+

 | |

+-------v--v----------------+

| |

| Traffic Generator |

| |

+---+

¶

Figure 3: Single Host Test Scenario - VMP2VMP

4. Networking Models in Containerized Infrastructure

Container networking services are provided as network plugins.

Basically, using them, network services are deployed by using an

isolation environment from container runtime through the host

namespace, creating a virtual interface, allocating interface and IP

address to C-VNF. Since the containerized infrastructure has

different network architecture depending on its using plugins, it is

necessary to specify the plugin used in the infrastructure.

Especially for Kubernetes infrastructure, several Container

Networking Interface (CNI) plugins are developed, which describes

network configuration files in JSON format, and plugins are

instantiated as new namespaces. When the CNI plugin is initiated, it

pushes forwarding rules and networking policies to the existing

vSwitch (i.e., Linux bridge, Open vSwitch), or creates its own

switch functions to provide networking service.

+---+

| HOST |

| +-----------------------------+ +-----------------------------+ |

| |VM +-------------------+ | |VM +-------------------+ | |

| | | C-VNF | | | | C-VNF | | |

| | | +--------------+ | | | | +--------------+ | | |

| | | | Logical Port | | | | | | Logical Port | | | |

| | +-+--^-------^---+--+ | | +-+--^-------^---+--+ | |

| | +----|-------|---+ | | +----|-------|---+ | |

| | | Logical Port | | | | Logical Port | | |

| +---+----^-------^---+--------+ +---+----^-------^---+--------+ |

| | | | | |

| +--------v-------v------------------------|-------v-------------+ |

| | l------------------------l | |

| | Data Plane Networking | |

| | (Kernel or User space) | |

| +----^--^-------------+ |

| | | |

| +----v------+ +----v------+ |

| | Phy Port | | Phy Port | |

| +-----------+ +-----------+ |

+-------^--^----------------+

 | |

+-------v--v----------------+

| |

| Traffic Generator |

| |

+---+

¶

The container network model can be classified according to the

location of the vSwitch component. There are some CNI plugins which

provide networking without the vSwitch components, however, this

draft focuses to plugins using vSwitch components.

4.1. Kernel-space vSwitch Models

Figure 4: Examples of Kernel-Space vSwitch Model

Figure 4 shows kernel-space vSwitch model. In this model, the

vSwitch component is running on kernel space so data packets should

be processed in-network stack of host kernel before transferring

packets to the C-VNF running in user-space. Not only pod2External

but also pod2pod traffic should be processed in the kernel space.

For dynamic networking configuration, the Forwarding policy can be

pushed by the controller/agent located in the user-space. In the

case of Open vSwitch (OVS) [OVS], the first packet of flow can be

sent to the user space agent (ovs-switchd) for forwarding decision.

Kernel-space vSwitch models are listed below;

¶

 +--+

 | User Space |

 | +-----------+ +-----------+ |

 | | C-VNF | | C-VNF | |

 | | +-------+ | | +-------+ | |

 | +-| eth |-+ +-| eth |-+ |

 | +---^---+ +---^---+ |

 | | | |

 | | +----------------------------------+ | |

 | | | | | |

 | | | Networking Controller / Agent | | |

 | | | | | |

 | | +-----------------^^---------------+ | |

 ----------|-----------------------||---------------------|----------

 | +---v---+ || +---v---+ |

 | +--| veth |-------------------vv-----------------| veth |--+ |

 | | +-------+ vSwitch Component +-------+ | |

 | | (OVS Kernel Datapath, Linux Bridge, ..) | |

 | | | |

 | +-------------------------------^----------------------------+ |

 | | |

 | Kernel Space +-----------v----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

¶

o Docker Network[Docker-network], Flannel Network[Flannel],

Calico[Calico], OVS(OpenvSwitch)[OVS], OVN(Open Virtual Network)

[OVN]

4.2. User-space vSwitch Models

Figure 5: Examples of User-Space vSwitch Model

Figure 5 shows user-space vSwitch model, in which data packets from

physical network port are bypassed kernel processing and delivered

directly to the vSwitch running on user-space. This model is

commonly considered as Data Plane Acceleration (DPA) technology

since it can be achieved high-rate packet processing than a kernel-

space network that has limited packet throughput. For bypassing

kernel and directly transferring the packet to vSwitch, Data Plane

Development Kit (DPDK) is essentially required. With DPDK, an

additional driver called Pull-Mode Driver (PMD) is created on

vSwtich. PMD driver must be created for each NIC separately. User-

space vSwitch models are listed below;

¶

 +--+

 | User Space |

 | +---------------+ +---------------+ |

 | | C-VNF | | C-VNF | |

 | | +-----------+ | +-----------------+ | +-----------+ | |

 | | |virtio-user| | | Networking | | |virtio-user|-| |

 | +-| / eth |-+ | Controller/Agent| +-| / eth |-+ |

 | +-----^-----+ +-------^^--------+ +-----^-----+ |

 | | || | |

 | | || | |

 | +-----v-----+ || +-----v-----+ |

 | | vhost-user| || | vhost-user| |

 | +--| / veth |--------------vv--------------| / veth |--+ |

 | | +-----------+ +-----------+ | |

 | | vSwtich | |

 | | +--------------+ | |

 | +----------------------| PMD Driver |----------------------+ |

 | | | |

 | +-------^------+ |

 ----------------------------------|---------------------------------

 | | |

 | | |

 | | |

 | Kernel Space +----------V-----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

¶

o ovs-dpdk[ovs-dpdk], vpp[vpp]

4.3. Smart-NIC Acceleration Model

Figure 6: Examples of Smart-NIC Acceleration Model

Figure 6 shows Smart-NIC acceleration model, which does not use

vSwitch component. This model can be separated into two

technologies. One is Single-Root I/O Virtualization (SR-IOV)[SR-

IOV], which is an extension of PCIe specifications to enable

multiple partitions running simultaneously within a system to share

PCIe devices. In the NIC, there are virtual replicas of PCI

functions known as virtual functions (VF) and each of them is

directly connected to each container's network interfaces. Using SR-

IOV, data packets from external are bypassing both kernel and user

space and are directly forwarded to container's virtual network

interface.

Another smart-NIC acceleration is the extended Berkeley Packet

Filter (eBPF)[eBPF], which enables to run of sandboxed programs in

the Linux kernel without changing kernel source code or loading

kernel module. To accelerate data plane performance, it can attach

eXpress Data Path (XDP) to specific NIC to offload packet processing

without host CPU charge.

The Smart-NIC can use together with vSwitch network model to improve

network performance. In [userspace-cni], several combinations of

¶

 +--+

 | User Space |

 | +-----------------+ +-----------------+ |

 | | C-VNF | | C-VNF | |

 | | +-------------+ | | +-------------+ | |

 | +-| vf driver |-+ +-| vf driver |-+ |

 | +-----^-------+ +------^------+ |

 | | | |

 -------------|---------------------------------------|--------------

 | +---------+ +---------+ |

 | +------|-------------------|------+ |

 | | +----v-----+ +-----v----+ | |

 | | | virtual | | virtual | | |

 | | | function | | function | | |

 | Kernel Space | +----^-----+ NIC +-----^----+ | |

 +---------------| | | |----------------+

 | +----v-------------------v----+ |

 | | Classify and Queue | |

 | +-----------------------------+ |

 +---------------------------------+

¶

¶

user-space vSwitch models with SR-IOV are supported. For eBPF with

DPDK, DPDK libraries to use eBPF can be found at [DPDK_eBPF].

5. Performance Impacts

5.1. CPU Isolation / NUMA Affinity

CPU pinning enables benefits such as maximizing cache utilization,

eliminating operating system thread scheduling overhead as well as

coordinating network I/O by guaranteeing resources. This technology

is very effective to avoid the "noisy neighbor" problem and it is

already proved in existing experience [Intel-EPA].

Using NUMA, performance will be increasing not CPU and memory but

also network since that network interface connected PCIe slot of

specific NUMA node have locality. Using NUMA requires a strong

understanding of VNF's memory requirements. If VNF uses more memory

than a single NUMA node contains, the overhead will be occurred due

to being spilled to another NUMA node. Network performance can be

changed depending on the location of the NUMA node whether it is the

same NUMA node where the physical network interface and CNF are

attached to. There is benchmarking experience for cross-NUMA

performance impacts [ViNePERF]. In that tests, they consist of

cross-NUMA performance with 3 scenarios depending on the location of

the traffic generator and traffic endpoint. As the results, it was

verified as below:

o A single NUMA Node serving multiple interfaces is worse than

Cross-NUMA Node performance degradation

o Worse performance with VNF sharing CPUs across NUMA

5.2. Hugepages

The huge page is that configuring a large page size of memory to

reduce Translation Lookaside Buffer(TLB) miss rate and increase the

application performance. This increases the performance of logical/

virtual to physical address lookups performed by a CPU's memory

management unit, and generally overall system performance. In the

containerized infrastructure, the container is isolated at the

application level and administrators can set huge pages more

granular level (e.g. Kubernetes allows to use of 512M bytes huge

pages for the container as default values). Moreover, this page is

dedicated to the application but another process so the application

uses the page more efficiently way. From a network benchmark point

of view, however, the impact on general packet processing can be

relatively negligible, and it may be necessary to consider the

application level to measure the impact together. In the case of

using the DPDK application, as reported in [Intel-EPA], it was

¶

¶

¶

¶

¶

[Calico]

[Docker-network]

[DPDK_eBPF]

verified to improve network performance because packet handling

processes are running in the application together.

5.3. Additional Considerations

When we consider benchmarking for not only containerized but also

VM-based infrastructure and network functions, benchmarking

scenarios may contain various operational use cases. Traditional

black-box benchmarking is focused to measure the in-out performance

of packets from physical network ports since the hardware is tightly

coupled with its function and only a single function is running on

its dedicated hardware. However, in the NFV environment, the

physical network port commonly will be connected to multiple

VNFs(i.e. Multiple PVP test setup architectures were described in

[ETSI-TST-009]) rather than dedicated to a single VNF. Therefore,

benchmarking scenarios should reflect operational considerations

such as the number of VNFs or network services defined by a set of

VNFs in a single host. [service-density], which proposed a way for

measuring the performance of multiple NFV service instances at a

varied service density on a single host, is one example of these

operational benchmarking aspects.

Regarding the above draft, it can be classified into two types of

traffic for benchmark testing. One is North/South traffic and the

other is East/West traffic. North/South has an architecture that

receives data from other servers and routes them through VNF. On the

other hand, East/West traffic is a form of sending and receiving

data between containers deployed in the same server and can pass

through multiple containers. One example is Service Function

Chaining. Since network acceleration technology in a container

environment has different accelerated areas depending on the method

provided, performance differences may occur depending on traffic

patterns.

6. Security Considerations

TBD

7. References

7.1. Informative References

"Project Calico", July 2019, <https://

docs.projectcalico.org/>.

"Docker, Libnetwork design", July 2019, <https://

github.com/docker/libnetwork/>.

"DPDK-Berkeley Packet Filter Library", August 2021,

<https://doc.dpdk.org/guides/prog_guide/bpf_lib.html>.

¶

¶

¶

¶

https://docs.projectcalico.org/
https://docs.projectcalico.org/
https://github.com/docker/libnetwork/
https://github.com/docker/libnetwork/
https://doc.dpdk.org/guides/prog_guide/bpf_lib.html

[eBPF]

[ETSI-TST-009]

[Flannel]

[Intel-EPA]

[OVN]

[OVS]

[ovs-dpdk]

[RFC2119]

[RFC8172]

[RFC8204]

[service-density]

"eBPF, extended Berkeley Packet Filter", July 2019,

<https://www.iovisor.org/technology/ebpf>.

"Network Functions Virtualisation (NFV) Release 3;

Testing; Specification of Networking Benchmarks and

Measurement Methods for NFVI", October 2018.

"flannel 0.10.0 Documentation", July 2019, <https://

coreos.com/flannel/>.

Intel, "Enhanced Platform Awareness in Kubernetes",

2018, <https://builders.intel.com/docs/networkbuilders/

enhanced-platform-awareness-feature-brief.pdf>.

"How to use Open Virtual Networking with Kubernetes",

July 2019, <https://github.com/ovn-org/ovn-kubernetes>.

"Open Virtual Switch", July 2019, <https://

www.openvswitch.org/>.

"Open vSwitch with DPDK", July 2019, <http://

docs.openvswitch.org/en/latest/intro/install/dpdk/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", RFC 2119, March 1997, <https://

www.rfc-editor.org/rfc/rfc2119>.

Morton, A., "Considerations for Benchmarking Virtual

Network Functions and Their Infrastructure", RFC 8172,

July 2017, <https://www.rfc-editor.org/rfc/rfc8172>.

Tahhan, M., O'Mahony, B., and A. Morton, "Benchmarking

Virtual Switches in the Open Platform for NFV (OPNFV)",

RFC 8204, September 2017, <https://www.rfc-editor.org/

rfc/rfc8204>.

Konstantynowicz, M. and P. Mikus, "NFV Service

Density Benchmarking", March 2019, <https://

https://www.iovisor.org/technology/ebpf
https://coreos.com/flannel/
https://coreos.com/flannel/
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://github.com/ovn-org/ovn-kubernetes
https://www.openvswitch.org/
https://www.openvswitch.org/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8172
https://www.rfc-editor.org/rfc/rfc8204
https://www.rfc-editor.org/rfc/rfc8204
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00

[SR-IOV]

[userspace-cni]

[ViNePERF]

[vpp]

tools.ietf.org/html/draft-mkonstan-nf-service-

density-00>.

"SRIOV for Container-networking", July 2019, <https://

github.com/intel/sriov-cni>.

"Userspace CNI Plugin", August 2021, <https://

github.com/intel/userspace-cni-network-plugin>.

Anuket Project, "Cross-NUMA performance measurements with

VSPERF", March 2019, <https://wiki.anuket.io/display/

HOME/Cross-NUMA+performance+measurements+with+VSPERF>.

"VPP with Containers", July 2019, <https://fdio-

vpp.readthedocs.io/en/latest/usecases/containers.html>.

Appendix A. Benchmarking Experience(Contiv-VPP)

A.1. Benchmarking Environment

In this test, our purpose is that we test performance of user space

based model for container infrastructure and figure out relationship

between resource allocation and network performance. With respect to

this, we setup Contiv-VPP which is one of the user space based

network solution in container infrastructure and tested like below.

o Three physical server for benchmarking

¶

¶

https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-cni
https://github.com/intel/userspace-cni-network-plugin
https://github.com/intel/userspace-cni-network-plugin
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html

Figure 7: Test Environment-Server Specification

o The architecture of benchmarking

+-------------------+----------------------+--------------------------+

| Node Name | Specification | Description |

+-------------------+----------------------+--------------------------+

| Conatiner Control |- Intel(R) Xeon(R) | Container Deployment |

| for Master | CPU E5-2690 | and Network Allocation |

| | (2Socket X 12Core) |- ubuntu 18.04 |

| |- MEM 128G |- Kubernetes Master |

| |- DISK 2T |- CNI Conterller |

| |- Control plane : 1G |.. Contive VPP Controller |

| | |.. Contive VPP Agent |

+-------------------+----------------------+--------------------------+

| Conatiner Service |- Intel(R) Xeon(R) | Container Service |

| for Worker | Gold 6148 |- ubuntu 18.04 |

| | (2socket X 20Core) |- Kubernetes Worker |

| |- MEM 128G |- CNI Agent |

| |- DISK 2T |.. Contive VPP Agent |

| |- Control plane : 1G | |

| |- Data plane : MLX 10G| |

| | (1NIC 2PORT) | |

+-------------------+----------------------+--------------------------+

| Packet Generator |- Intel(R) Xeon(R) | Packet Generator |

| | CPU E5-2690 |- CentOS 7 |

| | (2Socket X 12Core) |- installed Trex 2.4 |

| |- MEM 128G | |

| |- DISK 2T | |

| |- Control plane : 1G | |

| |- Data plane : MLX 10G| |

| | (1NIC 2PORT) | |

+-------------------+----------------------+--------------------------+

¶

Figure 8: Test Environment-Architecture

o Network model of Containerized Infrastructure(User space Model)

 +----+ +--+

 | | | Containerized Infrastructure Master Node |

 | | | +-----------+ |

 | <-------> 1G PORT 0 | |

 | | | +-----------+ |

 | | +--+

 | |

 | | +--+

 | | | Containerized Infrastructure Worker Node |

 | | | +---------------------------------+ |

 | s | | +-----------+ | +------------+ +------------+ | |

 | w <-------> 1G PORT 0 | | | 10G PORT 0 | | 10G PORT 1 | | |

 | i | | +-----------+ | +------^-----+ +------^-----+ | |

 | t | | +--------|----------------|-------+ |

 | c | +-----------------------------|----------------|---------+

 | h | | |

 | | +-----------------------------|----------------|---------+

 | | | Packet Generator Node | | |

 | | | +--------|----------------|-------+ |

 | | | +-----------+ | +------v-----+ +------v-----+ | |

 | <-------> 1G PORT 0 | | | 10G PORT 0 | | 10G PORT 1 | | |

 | | | +-----------+ | +------------+ +------------+ | |

 | | | +---------------------------------+ |

 | | | |

 +----+ +--+

¶

Figure 9: Test Environment-Network Architecture

We setup a Contive-VPP network to benchmark the user space container

network model in the containerized infrastructure worker node. We

setup network interface at NUMA0, and we created different network

subnet VRF1, VRF2 to classify input and output data traffic,

respectively. And then, we assigned two interface which connected to

+---+---------------------+

| NUMA 0 | NUMA 0 |

+---|---------------------+

| Containerized Infrastructure Worker Node | |

| +---------------------------+ | +----------------+ |

| | POD1 | | | POD2 | |

| | +-------------+ | | | +-------+ | |

| | | | | | | | | | |

| | +--v---+ +---v--+ | | | +-v--+ +-v--+ | |

| | | eth1 | | eth2 | | | | |eth1| |eth2| | |

| | +--^---+ +---^--+ | | | +-^--+ +-^--+ | |

| +------|-------------|------+ | +---|-------|----+ |

| +--- | | | | |

| | +-------|---------------|------+ | |

| | | | +------|--------------+ |

| +----------|--------|-------|--------|----+ | |

| | v v v v | | |

| | +-tap10--tap11-+ +-tap20--tap21-+ | | |

| | | ^ ^ | | ^ ^ | | | |

| | | | VRF1 | | | | VRF2 | | | | |

| | +--|--------|--+ +--|--------|--+ | | |

| | | +-----+ | +---+ | | |

| | +-tap01--|--|-------------|----|---+ | | |

| | | +------v--v-+ VRF0 +----v----v-+ | | | |

| | +-| 10G ETH0/0|------| 10G ETH0/1|-+ | | |

| | +---^-------+ +-------^---+ | | |

| | +---v-------+ +-------v---+ | | |

| +---| DPDK PMD0 |------| DPDK PMD1 |------+ | |

| +---^-------+ +-------^---+ | User Space |

+---------|----------------------|------------|---------------------+

| +-----|----------------------|-----+ | Kernal Space |

+---| +---V----+ +----v---+ |------|---------------------+

 | | PORT 0 | 10G NIC | PORT 1 | | |

 | +---^----+ +----^---+ |

 +-----|----------------------|-----+

 +-----|----------------------|-----+

+---| +---V----+ +----v---+ |----------------------------+

| | | PORT 0 | 10G NIC | PORT 1 | | Packet Generator (Trex) |

| | +--------+ +--------+ | |

| +----------------------------------+ |

+---+

VRF1, VRF2 and, we setup routing table to route Trex packet from

eth1 interface to eth2 interface in POD.

A.2. Trouble shooting and Result

In this environment, we confirmed that the routing table doesn't

work when we send packet using Trex packet generator. The reason is

that when kernel space based network configured, ip forwarding rule

is processed to kernel stack level while 'ip packet forwarding rule'

is processed only in vrf0, which is the default virtual routing and

forwarding (VRF0) in VPP. That is, above testing architecture makes

problem since vrf1 and vrf2 interface couldn't route packet.

According to above result, we assigned vrf0 and vrf1 to POD and,

data flow is like below.

Figure 10: Test Environment-Network Architecture(CPU Pinning)

¶

¶

 +---+---------------------+

 | NUMA 0 | NUMA 0 |

 +---|---------------------+

 | Containerized Infrastructure Worker Node | |

 | +---------------------------+ | +----------------+ |

 | | POD1 | | | POD2 | |

 | | +-------------+ | | | +-------+ | |

 | | +--v----+ +---v--+ | | | +-v--+ +-v--+ | |

 | | | eth1 | | eth2 | | | | |eth1| |eth2| | |

 | | +--^---+ +---^--+ | | | +-^--+ +-^--+ | |

 | +------|-------------|------+ | +---|-------|----+ |

 | +-------+ | | | | |

 | | +-------------|---------------|------+ | |

 | | | | +------|--------------+ |

 | +-----|-------|-------------|--------|----+ | |

 | | | | v v | | |

 | | | | +-tap10--tap11-+ | | |

 | | | | | ^ ^ | | | |

 | | | | | | VRF1 | | | | |

 | | | | +--|--------|--+ | | |

 | | | | | +---+ | | |

 | | +-*tap00--*tap01----------|----|---+ | | |

 | | | +-V-------v-+ VRF0 +----v----v-+ | | | |

 | | +-| 10G ETH0/0|------| 10G ETH0/1|-+ | | |

 | | +-----^-----+ +------^----+ | | |

 | | +-----v-----+ +------v----+ | | |

 | +---|*DPDK PMD0 |------|*DPDK PMD1 |------+ | |

 | +-----^-----+ +------^----+ | User Space |

 +-----------|-------------------|-------------|---------------------+

 v v

*- CPU pinning interface

We conducted benchmarking with three conditions. The test

environments are as follows. - Basic VPP switch - General kubernetes

(No CPU Pining) - Shared Mode / Exclusive mode. In the basic

Kubernetes environment, all PODs share a host's CPU. Shared mode is

that some POD share a pool of CPU assigned to a specific PODs.

Exclusive mode is that a specific POD dedicates a specific CPU to

use. In shared mode, we assigned two CPU for several POD, in

exclusive mode, we dedicated one CPU for one POD, independently. The

result is like Figure 11. First, the test was conducted to figure

out the line rate of the VPP switch, and the basic Kubernetes

performance. After that, we applied NUMA to network interface using

Shared Mode and Exclusive Mode in the same node and different node

respectively. In Exclusive and Shared mode tests, we confirmed that

Exclusive mode showed better performance than Shared mode when same

NUMA cpu assigned, respectively. However, we confirmed that

performance is reduced at the section between the vpp switch and the

POD, so that it affect to total result.

Figure 11: Test Results

Appendix B. Benchmarking Experience(SR-IOV with DPDK)

B.1. Benchmarking Environment

In this test, our purpose is that we test performance of user space

based model for container infrastructure and figure out relationship

between resource allocation and network performance. With respect to

this, we setup SRIOV combining with DPDK to bypass the Kernel space

in container infrastructure and tested based on that.

¶

 +--------------------+---------------------+-------------+

 | Model | NUMA Mode (pinning)| Result(Gbps)|

 +--------------------+---------------------+-------------+

 | | N/A | 3.1 |

 | Switch only |---------------------+-------------+

 | | same NUMA | 9.8 |

 +--------------------+---------------------+-------------+

 | K8S Scheduler | N/A | 1.5 |

 +--------------------+---------------------+-------------+

 | | same NUMA | 4.7 |

 | CMK-Exclusive Mode +---------------------+-------------+

 | | Different NUMA | 3.1 |

 +--------------------+---------------------+-------------+

 | | same NUMA | 3.5 |

 | CMK-shared Mode +---------------------+-------------+

 | | Different NUMA | 2.3 |

 +--------------------+---------------------+-------------+

¶

o Three physical server for benchmarking

Figure 12: Test Environment-Server Specification

o The architecture of benchmarking

¶

+-------------------+-------------------------+------------------------+

| Node Name | Specification | Description |

+-------------------+-------------------------+------------------------+

| Conatiner Control |- Intel(R) Core(TM) | Container Deployment |

| for Master | i5-6200U CPU | and Network Allocation |

| | (1socket x 4Core) |- ubuntu 18.04 |

| |- MEM 8G |- Kubernetes Master |

| |- DISK 500GB |- CNI Conterller |

| |- Control plane : 1G | MULTUS CNI |

| | | SRIOV plugin with DPDK|

+-------------------+-------------------------+------------------------+

| Conatiner Service |- Intel(R) Xeon(R) | Container Service |

| for Worker | E5-2620 v3 @ 2.4Ghz |- Centos 7.7 |

| | (1socket X 6Core) |- Kubernetes Worker |

| |- MEM 128G |- CNI Agent |

| |- DISK 2T | MULTUS CNI |

| |- Control plane : 1G | SRIOV plugin with DPDK|

| |- Data plane : XL710-qda2| |

| | (1NIC 2PORT- 40Gb) | |

+-------------------+-------------------------+------------------------+

| Packet Generator |- Intel(R) Xeon(R) | Packet Generator |

| | Gold 6148 @ 2.4Ghz |- CentOS 7.7 |

| | (2Socket X 20Core) |- installed Trex 2.4 |

| |- MEM 128G | |

| |- DISK 2T | |

| |- Control plane : 1G | |

| |- Data plane : XL710-qda2| |

| | (1NIC 2PORT- 40Gb) | |

+-------------------+-------------------------+------------------------+

¶

Figure 13: Test Environment-Architecture

o Network model of Containerized Infrastructure(User space Model)

 +----+ +--+

 | | | Containerized Infrastructure Master Node |

 | | | +-----------+ |

 | <-------> 1G PORT 0 | |

 | | | +-----------+ |

 | | +--+

 | |

 | | +--+

 | | | Containerized Infrastructure Worker Node |

 | | | +---------------------------------+ |

 | s | | +-----------+ | +------------+ +------------+ | |

 | w <-------> 1G PORT 0 | | | 40G PORT 0 | | 40G PORT 1 | | |

 | i | | +-----------+ | +------^-----+ +------^-----+ | |

 | t | | +--------|----------------|-------+ |

 | c | +-----------------------------|----------------|---------+

 | h | | |

 | | +-----------------------------|----------------|---------+

 | | | Packet Generator Node | | |

 | | | +--------|----------------|-------+ |

 | | | +-----------+ | +------v-----+ +------v-----+ | |

 | <-------> 1G PORT 0 | | | 40G PORT 0 | | 40G PORT 1 | | |

 | | | +-----------+ | +------------+ +------------+ | |

 | | | +---------------------------------+ |

 | | | |

 +----+ +--+

¶

Figure 14: Test Environment-Network Architecture

We setup a Multus CNI, SRIOV CNI with DPDK to benchmark the user

space container network model in the containerized infrastructure

worker node. The Multus CNI support to create multiple interfaces

for a container. The traffic is bypassed the Kernel space by SRIOV

with DPDK. We established two modes of CMK: shared core and

exclusive core. We created VFs for each network interface of a

container. Then, we setup TREX to route packet from eth1 to eth2 in

a POD.

+---+---------------------+

| CMK shared core | CMK exclusive core |

+---|---------------------+

| Containerized Infrastructure Worker Node | |

| +---------------------------+ | +----------------+ |

| | POD1 | | | POD2 | |

| | (testpmd) | | | (testpmd) | |

| | +-------------+ | | | +-------+ | |

| | | | | | | | | | |

| | +--v---+ +---v--+ | | | +-v--+ +-v--+ | |

| | | eth1 | | eth2 | | | | |eth1| |eth2| | |

| | +--^---+ +---^--+ | | | +-^--+ +-^--+ | |

| +------|-------------|------+ | +---|-------|----+ |

| | | | | | |

| +------ +-+ | | | |

| | +----|-----------------|------+ | |

| | | | +--------|--------------+ |

| | | | | | User Space|

+---------|------------|----|--------|--------|---------------------+

| | | | | | |

| +--+ +------| | | | |

| | | | | | Kernal Space|

+------|--------|-----------|--------|--------+---------------------+

| +----|--------|-----------|--------|-----+ | |

| | +--v--+ +--v--+ +--v--+ +--v--+ | | NIC|

| | | VF0 | | VF1 | | VF2 | | VF3 | | | |

| | +--|---+ +|----+ +----|+ +-|---+ | | |

| +----|------|---------------|-----|------+ | |

+---| +v------v+ +-v-----v+ |------|---------------------+

 | | PORT 0 | 40G NIC | PORT 1 | |

 | +---^----+ +----^---+ |

 +-----|----------------------|-----+

 +-----|----------------------|-----+

+---| +---V----+ +----v---+ |----------------------------+

| | | PORT 0 | 40G NIC | PORT 1 | | Packet Generator (Trex) |

| | +--------+ +--------+ | |

| +----------------------------------+ |

+---+

¶

Appendix C. Benchmarking Experience(Multi-pod Test)

C.1. Benchmarking Overview

The main goal of this experience was to benchmark multi-pod

scenario, which packet is traversed through two pods. To create

additonal interfaces for forwarding packet between two pods, Multus

CNI was used. We compared two userspace-vSwitch model network

technologies: OVS/DPDK and VPP-memif. Since that vpp-memif has

different packet forwarding mechanism by using shared memory

interface, it is expected that vpp-memif may provide higher

performance that OVS-DPDK. Also, we consider NUMA impact for both

cases, we made 6 scenarios depending on CPU location of vSwitch and

two pods. Figure 15 is packet forwarding scenario in this test,

where two pods are running on the same host and vSwitch is

delieverig packets between two pods.¶

Figure 15: Multi-pod Benchmarking Scenario

C.2. Hardware Configurations

 +--+

 |Worker Node |

 | +--+ |

 | |Kubernetes | |

 | | +--------------+ +--------------+ | |

 | | | pod1 | | pod2 | | |

 | | | +--------+ | | +--------+ | | |

 | | | | L2FWD | | | | L2FWD | | | |

 | | | +---^--v-+ | | +--^--v--+ | | |

 | | | | DPDK | | | | DPDK | | | |

 | | | +---^--v-+ | | +--^--v--+ | | |

 | | +------^--v----+ +-----^--v-----+ | |

 | | ^ v ^ v | |

 | | +------^--v>>>>>>>>>>>>>>>>>>>>>>>>>>>^--v-----+ | |

 | | | ^ OVS-DPDK / VPP-memif vSwitch v | | |

 | | +------^---------------------------------v-----+ | |

 | | | ^ PMD Driver v | | |

 | | +------^---------------------------------v-----+ | |

 | | ^ v | |

 | +----------^---------------------------------v-----------+ |

 | ^ v |

 | +----------^---------------------------------v---------+ |

 | | ^ 40G NIC v | |

 | | +------^-------+ +--------v-----+ | |

 +---|---| Port 0 |----------------| Port 1 |---|-----+

 | +------^-------+ +--------v-----+ |

 +----------^---------------------------------v---------+

 +------^-------+ +--------v-----+

 +-------| Port 0 |----------------| Port 1 |---------+

 | +------^-------+ +--------v-----+ |

 | Traffic Generator (TRex) |

 | |

 +--+

Figure 16: Hardware Configurations for Multi-pod Benchmarking

For installations and configurations of CNIs, we used userspace-cni

network plugin. Among this CNI, multus provides to create multiple

interfaces for each pod. Both OVS-DPDK and VPP-memif bypasses kernel

with DPDK PMD driver. For CPU isolation and NUMA allocation, we used

Intel CMK with exclusive mode. Since Trex generator is upgraded to

the new version, we used the latest version of Trex.

C.3. NUMA Allocation Scenario

For analyzing benchmarking impacts of different NUMA allocation, we

set 6 scenarios depending on location of CPU allocating to two pods

and vSwich. For this scenario, we did not consider cross-NUMA case,

which allocates CPUs to pod or switch in manner that two cores are

+-------------------+-------------------------+------------------------+

| Node Name | Specification | Description |

+-------------------+-------------------------+------------------------+

| Conatiner Control |- Intel(R) Core(TM) | Container Deployment |

| for Master | E5-2620v3 @ 2.40GHz | and Network Allocation |

| | (1socket x 12Cores) |- ubuntu 18.04 |

| |- MEM 32GB |- Kubernetes Master |

| |- DISK 1TB |- CNI Controller |

| |- NIC: Control plane: 1G | - MULTUS CNI |

| |- OS: CentOS Linux7.9 | - DPDK-OVS/VPP-memif |

+-------------------+-------------------------+------------------------+

| Conatiner Service |- Intel(R) Xeon(R) |- Container dpdk-L2fwd |

| for Worker | Gold 6148 @ 2.40GHz |- Kubernetes Worker |

| | (2socket X 40Cores) |- CNI Agent |

| |- MEM 256GB | - Multus CNI |

| |- DISK 2TB | - DPDK-OVS/VPP-memif |

| |- NIC | |

| | - Control plane: 1G | |

| | - Data plane: XL710-qda2| |

| | (1NIC 2PORT- 40Gb) | |

| |- OS: CentOS Linux 7.9 | |

+-------------------+-------------------------+------------------------+

| Packet Generator |- Intel(R) Xeon(R) | Packet Generator |

| | Gold 6148 @ 2.4Ghz |- Installed Trex v2.92 |

| | (2Socket X 40Core) | |

| |- MEM 256GB | |

| |- DISK 2TB | |

| |- NIC | |

| | - Data plane: XL710-qda2| |

| | (1NIC 2PORT - 40Gb) | |

| |- OS: CentOS Lunix 7.9 | |

+-------------------+-------------------------+------------------------+

¶

located in different NUMA nodes. 6 scenarios we considered are

listed in Table 1. Note that, NIC is attaching to the NUMA1.

Scenario # vSwtich pod1 pod2

S1 NUMA1 NUMA0 NUMA0

S2 NUMA1 NUMA1 NUMA1

S3 NUMA0 NUMA0 NUMA0

S4 NUMA0 NUMA1 NUMA1

S5 NUMA1 NUMA1 NUMA0

S6 NUMA0 NUMA0 NUMA1

Table 1: NUMA Allocation Scenarios

C.4. Traffic Generator Configurations

For multi-pod benchmarking, we discovered Non Drop Rate (NDR) with

binary search algorithm. In Trex, it supports command to discover

NDR for each testing. Also, we test for different ethernet frame

sizes from 64bytes to 1518bytes. For running Trex, we used command

as follows;

./ndr --stl --port 0 1 -v --profile stl/bench.py --prof-tun size=x

--opt-bin-search

C.5. Benchmark Results and Trouble-shootings

As the benchmarking results, Table 2 shows packet loss ratio using

1518 kbytes packet in OVS-DPDK/vpp-memif. From that results, we can

say that the vpp-memif has better performance that OVS-DPDK, which

is came from difference the way to forward packet between vswitch

and pod. Also, impact of NUMA is bigger in case of that vswitch and

both pods are located in the same node than allocating CPU to the

node where NIC is attached.

Networking Model S1 S2 S3 S4 S5 S6

OVS-DPDK 21.29 13.17 6.32 19.76 12.43 6.38

vpp-memif 59.96 34.17 45.13 57.1 33.47 44.92

Table 2: Multi-pod Benchmarking Results (% of Line Rate)

Authors' Addresses

Kyoungjae Sun

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

¶

¶

¶

¶

Phone: +82 10 3643 5627

Email: gomjae@dcn.ssu.ac.kr

Hyunsik Yang

KT

KT Research Center 151

Taebong-ro, Seocho-gu

Seoul

06763

Republic of Korea

Phone: +82 10 9005 7439

Email: yangun@dcn.ssu.ac.kr

Jangwon Lee

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 10 7448 4664

Email: jangwon.lee@dcn.ssu.ac.kr

Tran Minh Ngoc

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 2 820 0841

Email: mipearlska1307@dcn.ssu.ac.kr

Younghan Kim

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 10 2691 0904

Email: younghak@ssu.ac.kr

tel:+82%2010%203643%205627
mailto:gomjae@dcn.ssu.ac.kr
tel:+82%2010%209005%207439
mailto:yangun@dcn.ssu.ac.kr
tel:+82%2010%207448%204664
mailto:jangwon.lee@dcn.ssu.ac.kr
tel:+82%202%20820%200841
mailto:mipearlska1307@dcn.ssu.ac.kr
tel:+82%2010%202691%200904
mailto:younghak@ssu.ac.kr

	Considerations for Benchmarking Network Performance in Containerized Infrastructures
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Containerized Infrastructure Overview
	4. Networking Models in Containerized Infrastructure
	4.1. Kernel-space vSwitch Models
	4.2. User-space vSwitch Models
	4.3. Smart-NIC Acceleration Model

	5. Performance Impacts
	5.1. CPU Isolation / NUMA Affinity
	5.2. Hugepages
	5.3. Additional Considerations

	6. Security Considerations
	7. References
	7.1. Informative References

	Appendix A. Benchmarking Experience(Contiv-VPP)
	A.1. Benchmarking Environment
	A.2. Trouble shooting and Result

	Appendix B. Benchmarking Experience(SR-IOV with DPDK)
	B.1. Benchmarking Environment

	Appendix C. Benchmarking Experience(Multi-pod Test)
	C.1. Benchmarking Overview
	C.2. Hardware Configurations
	C.3. NUMA Allocation Scenario
	C.4. Traffic Generator Configurations
	C.5. Benchmark Results and Trouble-shootings

	Authors' Addresses

