
Workgroup:

Benchmarking Methodology Working Group

Internet-Draft:

draft-dcn-bmwg-containerized-infra-07

Published: March 2022

Intended Status: Informational

Expires: 3 September 2022

Authors: K. Sun

ETRI

H. Yang

KT

J. Lee

Soongsil University

T. Ngoc

Soongsil University

Y. Kim

Soongsil University

Considerations for Benchmarking Network Performance in Containerized

Infrastructures

Abstract

This draft describes considerations for benchmarking network

performance in containerized infrastructures. In the containerized

infrastructure, Virtualized Network Functions(VNFs) are deployed on

an operating-system-level virtualization platform by abstracting the

user namespace as opposed to virtualization using a hypervisor.

Hence, the system configurations and networking scenarios for

benchmarking will be partially changed by how the resource

allocation and network technologies are specified for containerized

VNFs. This draft compares the state of the art in the container

networking architecture with VM-based virtualized systems networking

architecture and provides several test scenarios for benchmarking

network performance in containerized infrastructures.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 September 2022.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Containerized Infrastructure Overview

4. Networking Models in Containerized Infrastructure

4.1. Kernel-space vSwitch Model

4.2. User-space vSwitch Model

4.3. eBPF Acceleration Model

4.4. Smart-NIC Acceleration Model

4.5. Model Combination

5. Performance Impacts

5.1. CPU Isolation / NUMA Affinity

5.2. Hugepages

5.3. Service Function Chaining

5.4. Additional Considerations

6. Security Considerations

7. References

7.1. Informative References

Appendix A. Benchmarking Experience(Contiv-VPP)

A.1. Benchmarking Environment

A.2. Trouble shooting and Result

Appendix B. Benchmarking Experience(SR-IOV with DPDK)

B.1. Benchmarking Environment

B.2. Trouble shooting and Results

Appendix C. Benchmarking Experience(Multi-pod Test)

C.1. Benchmarking Overview

C.2. Hardware Configurations

C.3. NUMA Allocation Scenario

C.4. Traffic Generator Configurations

C.5. Benchmark Results and Trouble-shootings

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

The Benchmarking Methodology Working Group(BMWG) has recently

expanded its benchmarking scope from Physical Network Function(PNF)

running on a dedicated hardware system to Network Function

Virtualization(NFV) infrastructure and Virtualized Network

Function(VNF). [RFC8172] described considerations for configuring

NFV infrastructure and benchmarking metrics, and [RFC8204] gives

guidelines for benchmarking virtual switch which connects VNFs in

Open Platform for NFV(OPNFV).

Recently NFV infrastructure has evolved to include a lightweight

virtualized platform called the containerized infrastructure, where

VNFs share the same host Operating System(OS) and are logically

isolated by using a different namespace. While previous NFV

infrastructure uses a hypervisor to allocate resources for Virtual

Machine(VMs) and instantiate VNFs, the containerized infrastructure

virtualizes resources without a hypervisor, making containers very

lightweight and more efficient in infrastructure resource

utilization compared to the VM-based NFV infrastructure. When we

consider benchmarking for VNFs in the containerized infrastructure,

it may have a different System Under Test(SUT) and Device Under

Test(DUT) configuration compared with both black-box benchmarking

and VM-based NFV infrastructure as described in [RFC8172].

Accordingly, additional configuration parameters and testing

strategies may be required.

In the containerized infrastructure, a VNF network is implemented by

running both switch and router functions in the host system. For

example, the internal communication between VNFs in the same host

uses the L2 bridge function, while communication with external

node(s) uses the L3 router function. For container networking, the

host system may use a virtual switch(vSwitch), but other options

exist. In the [ETSI-TST-009], they describe differences in

networking structure between the VM-based and the containerized

infrastructure. Occasioned by these differences, deployment

scenarios for testing network performance described in [RFC8204] may

be partially applied to the containerized infrastructure, but other

scenarios may be required.

This draft aims to distinguish benchmarking of containerized

infrastructure from the previous benchmarking methodology of common

NFV infrastructure. Considering the point in [RFC8204] that virtual

switch (vSwitch) is the networking principle of containerized

infrastructure, this draft investigates different network models

based on vSwitch location and acceleration technologies. At the same

time, it is essential to uncover the impact of different deployment

configurations on containerized infrastructure, such as resource

isolation, hugepages, service function chaining. The benchmark

¶

¶

¶

experiences of various combinations of these mentioned

configurations and and networking models are also presented in this

draft as the references to set up and benchmark containerized

infrastructure. Note that, although the detailed configurations of

both infrastructures differ, the new benchmarks and metrics defined

in [RFC8172] can be equally applied in containerized infrastructure

from a generic-NFV point of view, and therefore defining additional

metrics or methodologies are out of scope.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document is to be interpreted as described in [RFC2119]. This

document uses the terminology described in [RFC8172], [RFC8204],

[ETSI-TST-009].

3. Containerized Infrastructure Overview

For benchmarking of the containerized infrastructure, as mentioned

in [RFC8172], the basic approach is to reuse existing benchmarking

methods developed within the BMWG. Various network function

specifications defined in BMWG should still be applied to

containerized VNF(C-VNF)s for the performance comparison with

physical network functions and VM-based VNFs. A major distinction of

the containerized infrastructure from the VM-based infrastructure is

the absence of a hypervisor. Without hypervisor, all C- VNFs share

the same host resources, including but not limited to computing,

storage, and networking resources, as well as the host Operating

System(OS), kernel, and libraries. These architectural differences

bring additional considerations of resource management impacts for

benchmarking.

In a common containerized infrastructure, thanks to the

proliferation of Kubernetes, the pod is defined as a basic unit for

orchestration and management that can host multiple containers.

Based on that, [ETSI-TST-009] defined two test scenario for

container infrastructure as follows.

o Container2Container: Communication between containers running in

the same pod. it can be done by shared volumes or Inter-process

communication (IPC).

o Pod2Pod: Communication between containers running in the different

pods.

As mentioned in [RFC8204], vSwitch is also an important aspect of

the containerized infrastructure. For Pod2Pod communication, every

pod has only one virtual Ethernet (vETH) interface. This interface

is connected to the vSwitch via vETH pair for each container. Not

¶

¶

¶

¶

¶

¶

only Pod2Pod but also Pod2External scenario that communicates with

an external node is also required. In this case, vSwitch SHOULD

support gateway and Network Address Translation (NAT)

functionalities.

Figure 1 shows briefly differences of network architectures based on

container deployment models. Basically, on bare metal, C-VNFs can be

deployed as a cluster called POD by Kubernetes. Otherwise, each C-

VNF can be deployed separately using Docker. In the former case,

there is only one external network interface, even a POD containing

more than one C-VNF. An additional deployment model considers a

scenario where C-VNFs or PODs are running on VM. In our draft, we

define new terminologies; BMP, which is Pod on bare metal, and VMP,

which is Pod on VM.

¶

¶

+---+

| Baremetal Node |

| +--------------+ +--------------+ +-------------- + +-------------+ |

| | | | POD | | VM | | VM | |

| | | |+------------+| |+-------------+| | +-------+ | |

| | C-VNF(A) | || C-VNFs(B) || || C-VNFs(C) || | |PODs(D)| | |

| | | |+------------+| |+-----^-------+| | +---^---+ | |

| | | | | | | | | | | |

| | +------+ | | +------+ | | +--v---+ | | +---v--+ | |

| +---| veth |---+ +---| veth |---+ +---|virtio|----+ +--|virtio|---+ |

| +--^---+ +---^--+ +--^---+ +---^--+ |

| | | | | |

| | | +--v---+ +---v--+ |

| +------|-----------------|------------|vhost |---------|vhost |---+ |

| | | | +--^---+ +---^--+ | |

| | | | | | | |

| | +--v---+ +---v--+ +--v---+ +---v--+ | |

| | +-| veth |---------| veth |---------| Tap |---------| Tap |-+ | |

| | | +--^---+ +---^--+ +--^---+ +---^--+ | | |

| | | | | vSwitch | | | | |

| | | +--|-----------------|---------------|-----------------|--+ | | |

| | +-| | | Bridge | | |-+ | |

| | +--|-----------------|---------------|-----------------|--+ | |

| | | +---------+ | +--|-----------------|---+ | |

| | | |Container| | | | Hypervisor | | | |

| | | | Engine | | | | | | | |

| | | +---------+ | +--|-----------------|---+ | |

| | | | Host Kernel | | | |

| +------|-----------------|---------------|-----------------|------+ |

| +--v-----------------v---------------v-----------------v--+ |

+-----| physical network |-----+

 +---+

Figure 1: Examples of Networking Architecture based on Deployment

Models - (A)C-VNF on Baremetal (B)Pod on Baremetal(BMP) (C)C-VNF on VM

(D)Pod on VM(VMP)

In [ETSI-TST-009], they described data plane test scenarios in a

single host. In that document, there are two scenarios for

containerized infrastructure; Container2Container, which is internal

communication between two containers in the same Pod, and the

Pod2Pod model, which is communication between two containers running

in different Pods. According to our new terminologies, we can call

the Pod2Pod model the BMP2BMP scenario. When we consider container

running on VM as an additional deployment option, there can be more

single host test scenarios as follows;

o BMP2VMP scenario

Figure 2: Single Host Test Scenario - BMP2VMP

o VMP2VMP scenario

¶

¶

+---+

| HOST +-----------------------------+ |

| |VM +-------------------+ | |

| | | C-VNF | | |

| +--------------------+ | | +--------------+ | | |

| | C-VNF | | | | Logical Port | | | |

| | +--------------+ | | +-+--^-------^---+--+ | |

| | | Logical Port | | | +----|-------|---+ | |

| +-+--^-------^---+---+ | | Logical Port | | |

| | | +---+----^-------^---+--------+ |

| | | | | |

| +----v-------|----------------------------|-------v-------------+ |

| | l----------------------------l | |

| | Data Plane Networking | |

| | (Kernel or User space) | |

| +----^--^-------------+ |

| | | |

| +----v------+ +----v------+ |

| | Phy Port | | Phy Port | |

| +-----------+ +-----------+

+-------^--^----------------+

 | |

+-------v--v----------------+

| |

| Traffic Generator |

| |

+---+

¶

Figure 3: Single Host Test Scenario - VMP2VMP

4. Networking Models in Containerized Infrastructure

Container networking services are provided as network plugins.

Basically, by using them, network services are deployed as an

isolation environment from container runtime through the host

namespace, creating a virtual interface, allocating interface and IP

address to C-VNF. Since the containerized infrastructure has

different network architecture depending on its using plugins, it is

necessary to specify the plugin used in the infrastructure.

Especially for Kubernetes infrastructure, several Container

Networking Interface (CNI) plugins are developed, which describes

network configuration files in JSON format, and plugins are

instantiated as new namespaces. When the CNI plugin is initiated, it

pushes forwarding rules and networking policies to the existing

vSwitch (i.e., Linux bridge, Open vSwitch) or creates its own switch

functions to provide networking service.

+---+

| HOST |

| +-----------------------------+ +-----------------------------+ |

| |VM +-------------------+ | |VM +-------------------+ | |

| | | C-VNF | | | | C-VNF | | |

| | | +--------------+ | | | | +--------------+ | | |

| | | | Logical Port | | | | | | Logical Port | | | |

| | +-+--^-------^---+--+ | | +-+--^-------^---+--+ | |

| | +----|-------|---+ | | +----|-------|---+ | |

| | | Logical Port | | | | Logical Port | | |

| +---+----^-------^---+--------+ +---+----^-------^---+--------+ |

| | | | | |

| +--------v-------v------------------------|-------v-------------+ |

| | l------------------------l | |

| | Data Plane Networking | |

| | (Kernel or User space) | |

| +----^--^-------------+ |

| | | |

| +----v------+ +----v------+ |

| | Phy Port | | Phy Port | |

| +-----------+ +-----------+ |

+-------^--^----------------+

 | |

+-------v--v----------------+

| |

| Traffic Generator |

| |

+---+

¶

The container network model can be classified according to the

location of the vSwitch component. There are some CNI plugins that

provide networking without the vSwitch components; however, this

draft focuses on plugins using vSwitch components.

4.1. Kernel-space vSwitch Model

Figure 4: Examples of Kernel-Space vSwitch Model

Figure 4 shows kernel-space vSwitch model. In this model, because

the vSwitch component is running on kernel space, data packets

should be processed in-network stack of host kernel before

transferring packets to the C-VNF running in user-space. Not only

pod2External but also pod2pod traffic should be processed in the

kernel space. For dynamic networking configuration, the Forwarding

policy can be pushed by the controller/agent located in the user-

space. In the case of Open vSwitch (OVS) [OVS], the first packet of

flow can be sent to the user space agent (ovs-switchd) for

forwarding decision. Kernel-space vSwitch models are listed below;

o Docker Network[Docker-network], Flannel Network[Flannel],

OVS(OpenvSwitch)[OVS], OVN(Open Virtual Network)[OVN]

¶

 +--+

 | User Space |

 | +-----------+ +-----------+ |

 | | C-VNF | | C-VNF | |

 | | +-------+ | | +-------+ | |

 | +-| eth |-+ +-| eth |-+ |

 | +---^---+ +---^---+ |

 | | | |

 | | +----------------------------------+ | |

 | | | | | |

 | | | Networking Controller / Agent | | |

 | | | | | |

 | | +-----------------^^---------------+ | |

 ----------|-----------------------||---------------------|----------

 | +---v---+ || +---v---+ |

 | +--| veth |-------------------vv-----------------| veth |--+ |

 | | +-------+ vSwitch Component +-------+ | |

 | | (OVS Kernel Datapath, Linux Bridge, ..) | |

 | | | |

 | +-------------------------------^----------------------------+ |

 | | |

 | Kernel Space +-----------v----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

¶

¶

4.2. User-space vSwitch Model

Figure 5: Examples of User-Space vSwitch Model

Figure 5 shows user-space vSwitch model, in which data packets from

physical network port are bypassed kernel processing and delivered

directly to the vSwitch running on user-space. This model is

commonly considered as Data Plane Acceleration (DPA) technology

since it can achieve high-rate packet processing than a kernel-space

network with limited packet throughput. For bypassing kernel and

directly transferring the packet to vSwitch, Data Plane Development

Kit (DPDK) is essentially required. With DPDK, an additional driver

called Pull-Mode Driver (PMD) is created on vSwtich. PMD driver must

be created for each NIC separately. User-space vSwitch models are

listed below;

o ovs-dpdk[ovs-dpdk], vpp[vpp]

4.3. eBPF Acceleration Model

 +--+

 | User Space |

 | +---------------+ +---------------+ |

 | | C-VNF | | C-VNF | |

 | | +-----------+ | +-----------------+ | +-----------+ | |

 | | |virtio-user| | | Networking | | |virtio-user|-| |

 | +-| / eth |-+ | Controller/Agent| +-| / eth |-+ |

 | +-----^-----+ +-------^^--------+ +-----^-----+ |

 | | || | |

 | | || | |

 | +-----v-----+ || +-----v-----+ |

 | | vhost-user| || | vhost-user| |

 | +--| / memif |--------------vv--------------| / memif |--+ |

 | | +-----------+ +-----------+ | |

 | | vSwtich | |

 | | +--------------+ | |

 | +----------------------| PMD Driver |----------------------+ |

 | | | |

 | +-------^------+ |

 ----------------------------------|---------------------------------

 | | |

 | | |

 | | |

 | Kernel Space +----------V-----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

¶

¶

Figure 6: Examples of eBPF Acceleration Model

Figure 6 shows eBPF Acceleration model, which leverages extended

Berkeley Packet Filter (eBPF) technology [eBPF] to achieve high-

performance packet processing. It enables execution of sandboxed

programs inside abstract virtual machines within the Linux kernel

without changing the kernel source code or loading the kernel

module. To accelerate data plane performance, eBPF programs are

attached to different BPF hooks inside the linux kernel stack.

One type of BPF hook is the eXpress Data Path (XDP) at the

networking driver. It is the first hook that triggers eBPF program

upon packet reception from external network. The other type of BPF

hook is Traffic Control Ingress/Egress eBPF hook (tc eBPF). These

hooks are attached to the vETH pair of the pod and the XDP hook. The

tc Egress eBPF hooks at the vETH pair enforce policy on all traffic

 +--+

 | User Space |

 | +----------------+ +----------------+ |

 | | C-VNF | | C-VNF | |

 | | +------------+ | | +------------+ | |

 | +-| veth |-+ +-| veth |-+ |

 | +-----^------+ +------^-----+ |

 | | | |

 -------------|---------------------------------------|--------------

 | +-----v------+ +------v-----+ |

 | | veth | | veth | |

 | +-----^------+ +------^-----+ |

 | | | |

 | +-----v------+ +------v-----+ |

 | | tc eBPF | | tc eBPF | |

 | | Egress | | Egress | |

 | +-----^------+ +------^-----+ |

 | | | |

 | +--------------+ +-------------+ |

 | | | |

 | +-v----------v-+ |

 | | tc eBPF | |

 | | Ingress | |

 | +------^-------+ |

 | | |

 | +------v-------+ |

 | | XDP | |

 | +------^-------+ |

 | | |

 | Kernel Space +--------v--------+ |

 +-----------------------| NIC |------------------------+

 +-----------------+

¶

exit the pod, while the tc Ingress eBPF hook at the end of the

kernel networking runs after initial packet processing from XDP

hook.

On the egress datapath side, whenever a packet exits the pod, it

goes through vETH pair then is picked up by the tc egress eBPF hook.

These hooks trigger eBPF programs to forward the packet directly to

the external facing network interface, bypassing all of the kernel

network layer processing such as iptables. On the ingress datapath

side, eBPF programs at the XDP and tc ingress eBPF hook pick up

packets from the network device and directly deliver it to the vETH

interface pair, or bypassing context-switching process to the pod

network namespace in the case of Cilium project [Cilium].

Notable eBPF Acceleration models are 2 CNI plugin projects:

Calico[Calico], Cilium[Cilium]. In the case of Cilium, eBPF/XDP

program can be offloaded directly on the smart NIC card, which

allows data plane acceleration without using the CPU. Container

network performance of these eBPF-based project is reported in

[cilium-benchmark].

4.4. Smart-NIC Acceleration Model

Figure 7: Examples of Smart-NIC Acceleration Model

¶

¶

¶

 +--+

 | User Space |

 | +-----------------+ +-----------------+ |

 | | C-VNF | | C-VNF | |

 | | +-------------+ | | +-------------+ | |

 | +-| vf driver |-+ +-| vf driver |-+ |

 | +-----^-------+ +------^------+ |

 | | | |

 -------------|---------------------------------------|--------------

 | +---------+ +---------+ |

 | +------|-------------------|------+ |

 | | +----v-----+ +-----v----+ | |

 | | | virtual | | virtual | | |

 | | | function | | function | | |

 | Kernel Space | +----^-----+ NIC +-----^----+ | |

 +---------------| | | |----------------+

 | +----v-------------------v----+ |

 | | Classify and Queue | |

 | +-----------------------------+ |

 +---------------------------------+

Figure 7 shows Smart-NIC acceleration model, which does not use

vSwitch component. This model can be separated into two

technologies.

One is Single-Root I/O Virtualization (SR-IOV)[SR-IOV], which is an

extension of PCIe specifications to enable multiple partitions

running simultaneously within a system to share PCIe devices. In the

NIC, there are virtual replicas of PCI functions known as virtual

functions (VF), and each of them is directly connected to each

container's network interfaces. Using SR-IOV, data packets from

external bypass both kernel and user space and are directly

forwarded to container's virtual network interface.

The other technology is eBPF/XDP programs offloading to Smart-NIC

card as mentioned in the previous section. It enables general

acceleration of eBPF. eBPF programs are attached to XDP and run at

the Smart-NIC card, which allows server CPUs to perform more

application-level work. However, not all Smart-NIC cards provide

eBPF/XDP offloading support.

4.5. Model Combination

¶

¶

¶

 +---+

 | User Space |

 | +--------------------+ +--------------------+ |

 | | C-VNF | | C-VNF | |

 | | +------+ +------+ | | +------+ +------+ | |

 | +-| veth |--| veth |-+ +-| veth |--| veth |-+ |

 | +---^--+ +---^--+ +--^---+ +---^--+ |

 | | | | | |

 | | | | | |

 | | +---v--------+ +-------v----+ | |

 | | | vhost-user | | vhost-user | | |

 | | +--| / memif |--| / memif |--+ | |

 | | | +------------+ +------------+ | | |

 | | | vSwitch | | |

 | | +----------------------------------+ | |

 | | | |

 --------|--|-------

 | +-----------+ +-------------+ |

 | +----|--------------|---+ |

 | |+---v--+ +---v--+| |

 | || vf | | vf || |

 | |+------+ +------+| |

 | Kernel Space | | |

 +--------------| NIC |----------------+

 +-----------------------+

Figure 8: Examples of Model Combination deployment

Figure 8 shows the networking model when combining user-space

vSwitch model and Smart-NIC acceleration model. This model is

frequently considered in service function chain scenarios when two

different types of traffic flows are present. These two types are

North/South traffic and East/West traffic.

North/South traffic is the type that packets are received from other

servers and routed through VNF. For this traffic type, Smart-NIC

model such as SR-IOV is preferred because packets always have to

pass the NIC. User-space vSwitch involvement in north-south traffic

will create more bottlenecks. On the other hand, East/West traffic

is a form of sending and receiving data between containers deployed

in the same server and can pass through multiple containers. For

this type, user-space vSwitch models such as OVS-DPDK and VPP are

preferred because packets are routed within the user space only and

not through the NIC.

The throughput advantages of these different networking models with

different traffic direction cases are reported in [Intel-SRIOV-NFV].

5. Performance Impacts

5.1. CPU Isolation / NUMA Affinity

CPU pinning enables benefits such as maximizing cache utilization,

eliminating operating system thread scheduling overhead as well as

coordinating network I/O by guaranteeing resources. This technology

is very effective in avoiding the "noisy neighbor" problem, and it

is already proved in existing experience [Intel-EPA].

Using NUMA, performance will be increasing not CPU and memory but

also network since that network interface connected PCIe slot of

specific NUMA node have locality. Using NUMA requires a strong

understanding of VNF's memory requirements. If VNF uses more memory

than a single NUMA node contains, the overhead will occurr due to

being spilled to another NUMA node. Network performance can be

changed depending on the location of the NUMA node whether it is the

same NUMA node where the physical network interface and CNF are

attached to. There is benchmarking experience for cross-NUMA

performance impacts [ViNePERF]. In that tests, they consist of

cross-NUMA performance with 3 scenarios depending on the location of

the traffic generator and traffic endpoint. As the results, it was

verified as below:

o A single NUMA Node serving multiple interfaces is worse than

Cross-NUMA Node performance degradation

o Worse performance with VNF sharing CPUs across NUMA

¶

¶

¶

¶

¶

¶

¶

5.2. Hugepages

Hugepage configures a large page size of memory to reduce

Translation Lookaside Buffer(TLB) miss rate and increase the

application performance. This increases the performance of logical/

virtual to physical address lookups performed by a CPU's memory

management unit, and overall system performance. In the

containerized infrastructure, the container is isolated at the

application level, and administrators can set huge pages more

granular level (e.g., Kubernetes allows to use of 512M bytes huge

pages for the container as default values). Moreover, this page is

dedicated to the application but another process, so the application

uses the page more efficiently way. From a network benchmark point

of view, however, the impact on general packet processing can be

relatively negligible, and it may be necessary to consider the

application level to measure the impact together. In the case of

using the DPDK application, as reported in [Intel-EPA], it was

verified to improve network performance because packet handling

processes are running in the application together.

5.3. Service Function Chaining

When we consider benchmarking for containerized and VM-based

infrastructure and network functions, benchmarking scenarios may

contain various operational use cases. Traditional black-box

benchmarking focuses on measuring the in-out performance of packets

from physical network ports since the hardware is tightly coupled

with its function and only a single function is running on its

dedicated hardware. However, in the NFV environment, the physical

network port commonly will be connected to multiple VNFs(i.e.,

Multiple PVP test setup architectures were described in [ETSI-

TST-009]) rather than dedicated to a single VNF. This scenario is

called Service Function Chaining. Therefore, benchmarking scenarios

should reflect operational considerations such as the number of VNFs

or network services defined by a set of VNFs in a single host.

[service-density] proposed a way for measuring the performance of

multiple NFV service instances at a varied service density on a

single host, which is one example of these operational benchmarking

aspects. Another aspect in benchmarking service function chaining

scenario should be considered is different network acceleration

technologies. Network performance differences may occur because of

different traffic patterns based on the provided acceleration

method.

5.4. Additional Considerations

Apart from the single-host test scenario, the multi-hosts scenario

should also be considered in container network benchmarking, where

container services are deployed across different servers. To provide

¶

¶

network connectivity for container-based VNFs between different

server nodes, inter-node networking is required. According to [ETSI-

NFV-IFA-038], there are several technologies to enable inter-node

network: overlay technologies using a tunnel endpoint (e.g. VXLAN,

IP in IP), routing using Border Gateway Protocol (BGP), layer 2

underlay, direct network using dedicated NIC for each pod, or load

balancer using LoadBalancer service type in Kubernetes. Different

protocols from these technologies may cause performance differences

in container networking.

6. Security Considerations

TBD

¶

¶

[Calico]

[Cilium]

[cilium-benchmark]

[Docker-network]

[DPDK_eBPF]

[eBPF]

[ETSI-NFV-IFA-038]

[ETSI-TST-009]

[Flannel]

[Intel-EPA]

[Intel-SRIOV-NFV]

[OVN]

[OVS]

[ovs-dpdk]

7. References

7.1. Informative References

"Project Calico", July 2019, <https://

docs.projectcalico.org/>.

"Cilium Documentation", March 2022, <https://

docs.cilium.io/en/stable//>.

Cilium, "CNI Benchmark: Understanding Cilium

Network Performance", May 2021, <https://cilium.io/blog/

2021/05/11/cni-benchmark>.

"Docker, Libnetwork design", July 2019, <https://

github.com/docker/libnetwork/>.

"DPDK-Berkeley Packet Filter Library", August 2021,

<https://doc.dpdk.org/guides/prog_guide/bpf_lib.html>.

"eBPF, extended Berkeley Packet Filter", July 2019,

<https://www.iovisor.org/technology/ebpf>.

"Network Functions Virtualisation (NFV) Release

4; Architectural Framework; Report on network

connectivity for container-based VNF", November 2021.

"Network Functions Virtualisation (NFV) Release 3;

Testing; Specification of Networking Benchmarks and

Measurement Methods for NFVI", October 2018.

"flannel 0.10.0 Documentation", July 2019, <https://

coreos.com/flannel/>.

Intel, "Enhanced Platform Awareness in Kubernetes",

2018, <https://builders.intel.com/docs/networkbuilders/

enhanced-platform-awareness-feature-brief.pdf>.

Patrick, K. and J. Brian, "SR-IOV for NFV

Solutions Practical Considerations and Thoughts",

February 2017.

"How to use Open Virtual Networking with Kubernetes",

July 2019, <https://github.com/ovn-org/ovn-kubernetes>.

"Open Virtual Switch", July 2019, <https://

www.openvswitch.org/>.

"Open vSwitch with DPDK", July 2019, <http://

docs.openvswitch.org/en/latest/intro/install/dpdk/>.

https://docs.projectcalico.org/
https://docs.projectcalico.org/
https://docs.cilium.io/en/stable//
https://docs.cilium.io/en/stable//
https://cilium.io/blog/2021/05/11/cni-benchmark
https://cilium.io/blog/2021/05/11/cni-benchmark
https://github.com/docker/libnetwork/
https://github.com/docker/libnetwork/
https://doc.dpdk.org/guides/prog_guide/bpf_lib.html
https://www.iovisor.org/technology/ebpf
https://coreos.com/flannel/
https://coreos.com/flannel/
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://github.com/ovn-org/ovn-kubernetes
https://www.openvswitch.org/
https://www.openvswitch.org/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/

[RFC2119]

[RFC8172]

[RFC8204]

[service-density]

[SR-IOV]

[userspace-cni]

[ViNePERF]

[vpp]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", RFC 2119, March 1997, <https://

www.rfc-editor.org/rfc/rfc2119>.

Morton, A., "Considerations for Benchmarking Virtual

Network Functions and Their Infrastructure", RFC 8172,

July 2017, <https://www.rfc-editor.org/rfc/rfc8172>.

Tahhan, M., O'Mahony, B., and A. Morton, "Benchmarking

Virtual Switches in the Open Platform for NFV (OPNFV)",

RFC 8204, September 2017, <https://www.rfc-editor.org/

rfc/rfc8204>.

Konstantynowicz, M. and P. Mikus, "NFV Service

Density Benchmarking", March 2019, <https://

tools.ietf.org/html/draft-mkonstan-nf-service-

density-00>.

"SRIOV for Container-networking", July 2019, <https://

github.com/intel/sriov-cni>.

"Userspace CNI Plugin", August 2021, <https://

github.com/intel/userspace-cni-network-plugin>.

Anuket Project, "Cross-NUMA performance measurements with

VSPERF", March 2019, <https://wiki.anuket.io/display/

HOME/Cross-NUMA+performance+measurements+with+VSPERF>.

"VPP with Containers", July 2019, <https://fdio-

vpp.readthedocs.io/en/latest/usecases/containers.html>.

Appendix A. Benchmarking Experience(Contiv-VPP)

A.1. Benchmarking Environment

In this test, our purpose is to test the performance of user-space

based model for container infrastructure and figure out the

relationship between resource allocation and network performance.

With respect to this, we set up Contiv-VPP, one of the user-space

based network solutions in container infrastructure and tested like

below.

o Three physical server for benchmarking

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8172
https://www.rfc-editor.org/rfc/rfc8204
https://www.rfc-editor.org/rfc/rfc8204
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://github.com/intel/sriov-cni
https://github.com/intel/sriov-cni
https://github.com/intel/userspace-cni-network-plugin
https://github.com/intel/userspace-cni-network-plugin
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html

Figure 9: Test Environment-Server Specification

o The architecture of benchmarking

+-------------------+----------------------+--------------------------+

| Node Name | Specification | Description |

+-------------------+----------------------+--------------------------+

| Conatiner Control |- Intel(R) Xeon(R) | Container Deployment |

| for Master | CPU E5-2690 | and Network Allocation |

| | (2Socket X 12Core) |- ubuntu 18.04 |

| |- MEM 128G |- Kubernetes Master |

| |- DISK 2T |- CNI Conterller |

| |- Control plane : 1G |.. Contive VPP Controller |

| | |.. Contive VPP Agent |

+-------------------+----------------------+--------------------------+

| Conatiner Service |- Intel(R) Xeon(R) | Container Service |

| for Worker | Gold 6148 |- ubuntu 18.04 |

| | (2socket X 20Core) |- Kubernetes Worker |

| |- MEM 128G |- CNI Agent |

| |- DISK 2T |.. Contive VPP Agent |

| |- Control plane : 1G | |

| |- Data plane : MLX 10G| |

| | (1NIC 2PORT) | |

+-------------------+----------------------+--------------------------+

| Packet Generator |- Intel(R) Xeon(R) | Packet Generator |

| | CPU E5-2690 |- CentOS 7 |

| | (2Socket X 12Core) |- installed Trex 2.4 |

| |- MEM 128G | |

| |- DISK 2T | |

| |- Control plane : 1G | |

| |- Data plane : MLX 10G| |

| | (1NIC 2PORT) | |

+-------------------+----------------------+--------------------------+

¶

Figure 10: Test Environment-Architecture

o Network model of Containerized Infrastructure(User space Model)

 +----+ +--+

 | | | Containerized Infrastructure Master Node |

 | | | +-----------+ |

 | <-------> 1G PORT 0 | |

 | | | +-----------+ |

 | | +--+

 | |

 | | +--+

 | | | Containerized Infrastructure Worker Node |

 | | | +---------------------------------+ |

 | s | | +-----------+ | +------------+ +------------+ | |

 | w <-------> 1G PORT 0 | | | 10G PORT 0 | | 10G PORT 1 | | |

 | i | | +-----------+ | +------^-----+ +------^-----+ | |

 | t | | +--------|----------------|-------+ |

 | c | +-----------------------------|----------------|---------+

 | h | | |

 | | +-----------------------------|----------------|---------+

 | | | Packet Generator Node | | |

 | | | +--------|----------------|-------+ |

 | | | +-----------+ | +------v-----+ +------v-----+ | |

 | <-------> 1G PORT 0 | | | 10G PORT 0 | | 10G PORT 1 | | |

 | | | +-----------+ | +------------+ +------------+ | |

 | | | +---------------------------------+ |

 | | | |

 +----+ +--+

¶

Figure 11: Test Environment-Network Architecture

We set up a Contive-VPP network to benchmark the user space

container network model in the containerized infrastructure worker

node. We set up network interface at NUMA0, and we created different

network subnets VRF1, VRF2 to classify input and output data

traffic, respectively. And then, we assigned two interfaces which

+---+---------------------+

| NUMA 0 | NUMA 0 |

+---|---------------------+

| Containerized Infrastructure Worker Node | |

| +---------------------------+ | +----------------+ |

| | POD1 | | | POD2 | |

| | +-------------+ | | | +-------+ | |

| | | | | | | | | | |

| | +--v---+ +---v--+ | | | +-v--+ +-v--+ | |

| | | eth1 | | eth2 | | | | |eth1| |eth2| | |

| | +--^---+ +---^--+ | | | +-^--+ +-^--+ | |

| +------|-------------|------+ | +---|-------|----+ |

| +--- | | | | |

| | +-------|---------------|------+ | |

| | | | +------|--------------+ |

| +----------|--------|-------|--------|----+ | |

| | v v v v | | |

| | +-tap10--tap11-+ +-tap20--tap21-+ | | |

| | | ^ ^ | | ^ ^ | | | |

| | | | VRF1 | | | | VRF2 | | | | |

| | +--|--------|--+ +--|--------|--+ | | |

| | | +-----+ | +---+ | | |

| | +-tap01--|--|-------------|----|---+ | | |

| | | +------v--v-+ VRF0 +----v----v-+ | | | |

| | +-| 10G ETH0/0|------| 10G ETH0/1|-+ | | |

| | +---^-------+ +-------^---+ | | |

| | +---v-------+ +-------v---+ | | |

| +---| DPDK PMD0 |------| DPDK PMD1 |------+ | |

| +---^-------+ +-------^---+ | User Space |

+---------|----------------------|------------|---------------------+

| +-----|----------------------|-----+ | Kernal Space |

+---| +---V----+ +----v---+ |------|---------------------+

 | | PORT 0 | 10G NIC | PORT 1 | | |

 | +---^----+ +----^---+ |

 +-----|----------------------|-----+

 +-----|----------------------|-----+

+---| +---V----+ +----v---+ |----------------------------+

| | | PORT 0 | 10G NIC | PORT 1 | | Packet Generator (Trex) |

| | +--------+ +--------+ | |

| +----------------------------------+ |

+---+

connected to VRF1, VRF2 and, we setup routing table to route Trex

packet from eth1 interface to eth2 interface in POD.

A.2. Trouble shooting and Result

In this environment, we confirmed that the routing table doesn't

work when we send packets using Trex packet generator. The reason is

that when kernel space based network configured, ip forwarding rule

is processed to kernel stack level while 'ip packet forwarding rule'

is processed only in vrf0, which is the default virtual routing and

forwarding (VRF0) in VPP. The above testing architecture makes

problem since vrf1 and vrf2 interface couldn't route packet.

According to above result, we assigned vrf0 and vrf1 to POD and,

data flow is like below.

Figure 12: Test Environment-Network Architecture(CPU Pinning)

¶

¶

 +---+---------------------+

 | NUMA 0 | NUMA 0 |

 +---|---------------------+

 | Containerized Infrastructure Worker Node | |

 | +---------------------------+ | +----------------+ |

 | | POD1 | | | POD2 | |

 | | +-------------+ | | | +-------+ | |

 | | +--v----+ +---v--+ | | | +-v--+ +-v--+ | |

 | | | eth1 | | eth2 | | | | |eth1| |eth2| | |

 | | +--^---+ +---^--+ | | | +-^--+ +-^--+ | |

 | +------|-------------|------+ | +---|-------|----+ |

 | +-------+ | | | | |

 | | +-------------|---------------|------+ | |

 | | | | +------|--------------+ |

 | +-----|-------|-------------|--------|----+ | |

 | | | | v v | | |

 | | | | +-tap10--tap11-+ | | |

 | | | | | ^ ^ | | | |

 | | | | | | VRF1 | | | | |

 | | | | +--|--------|--+ | | |

 | | | | | +---+ | | |

 | | +-*tap00--*tap01----------|----|---+ | | |

 | | | +-V-------v-+ VRF0 +----v----v-+ | | | |

 | | +-| 10G ETH0/0|------| 10G ETH0/1|-+ | | |

 | | +-----^-----+ +------^----+ | | |

 | | +-----v-----+ +------v----+ | | |

 | +---|*DPDK PMD0 |------|*DPDK PMD1 |------+ | |

 | +-----^-----+ +------^----+ | User Space |

 +-----------|-------------------|-------------|---------------------+

 v v

*- CPU pinning interface

We conducted benchmarking with three conditions. The test

environments are as follows. - Basic VPP switch - General kubernetes

(No CPU Pining) - Shared Mode / Exclusive mode. In the basic

Kubernetes environment, all PODs share a host's CPU. Shared mode is

that some POD share a pool of CPU assigned to specific PODs.

Exclusive mode is that a specific POD dedicates a specific CPU to

use. In shared mode, we assigned two CPUs for several PODs, in

exclusive mode, we dedicated one CPU for one POD, independently. The

result is like Figure 13. First, the test was conducted to figure

out the line rate of the VPP switch, and the basic Kubernetes

performance. After that, we applied NUMA to the network interface

using Shared Mode and Exclusive Mode in the same node and different

node. In Exclusive and Shared mode tests, we confirmed that

Exclusive mode showed better performance than Shared mode when same

NUMA CPU was assigned, respectively. However, we confirmed that

performance is reduced at the section between the vpp switch and the

POD, affecting the total result.

Figure 13: Test Results

Appendix B. Benchmarking Experience(SR-IOV with DPDK)

B.1. Benchmarking Environment

In this test, our purpose is to test the performance of Smart-NIC

acceleration model for container infrastructure and figure out

relationship between resource allocation and network performance.

With respect to this, we setup SRIOV combining with DPDK to bypass

the Kernel space in container infrastructure and tested based on

that.

¶

 +--------------------+---------------------+-------------+

 | Model | NUMA Mode (pinning)| Result(Gbps)|

 +--------------------+---------------------+-------------+

 | | N/A | 3.1 |

 | Maximum Line Rate |---------------------+-------------+

 | | same NUMA | 9.8 |

 +--------------------+---------------------+-------------+

 | Without CMK | N/A | 1.5 |

 +--------------------+---------------------+-------------+

 | | same NUMA | 4.7 |

 | CMK-Exclusive Mode +---------------------+-------------+

 | | Different NUMA | 3.1 |

 +--------------------+---------------------+-------------+

 | | same NUMA | 3.5 |

 | CMK-shared Mode +---------------------+-------------+

 | | Different NUMA | 2.3 |

 +--------------------+---------------------+-------------+

¶

o Three physical server for benchmarking

Figure 14: Test Environment-Server Specification

o The architecture of benchmarking

¶

+-------------------+-------------------------+------------------------+

| Node Name | Specification | Description |

+-------------------+-------------------------+------------------------+

| Conatiner Control |- Intel(R) Core(TM) | Container Deployment |

| for Master | i5-6200U CPU | and Network Allocation |

| | (1socket x 4Core) |- ubuntu 18.04 |

| |- MEM 8G |- Kubernetes Master |

| |- DISK 500GB |- CNI Conterller |

| |- Control plane : 1G | MULTUS CNI |

| | | SRIOV plugin with DPDK|

+-------------------+-------------------------+------------------------+

| Conatiner Service |- Intel(R) Xeon(R) | Container Service |

| for Worker | E5-2620 v3 @ 2.4Ghz |- Centos 7.7 |

| | (1socket X 6Core) |- Kubernetes Worker |

| |- MEM 128G |- CNI Agent |

| |- DISK 2T | MULTUS CNI |

| |- Control plane : 1G | SRIOV plugin with DPDK|

| |- Data plane : XL710-qda2| |

| | (1NIC 2PORT- 40Gb) | |

+-------------------+-------------------------+------------------------+

| Packet Generator |- Intel(R) Xeon(R) | Packet Generator |

| | Gold 6148 @ 2.4Ghz |- CentOS 7.7 |

| | (2Socket X 20Core) |- installed Trex 2.4 |

| |- MEM 128G | |

| |- DISK 2T | |

| |- Control plane : 1G | |

| |- Data plane : XL710-qda2| |

| | (1NIC 2PORT- 40Gb) | |

+-------------------+-------------------------+------------------------+

¶

Figure 15: Test Environment-Architecture

o Network model of Containerized Infrastructure(User space Model)

 +----+ +--+

 | | | Containerized Infrastructure Master Node |

 | | | +-----------+ |

 | <-------> 1G PORT 0 | |

 | | | +-----------+ |

 | | +--+

 | |

 | | +--+

 | | | Containerized Infrastructure Worker Node |

 | | | +---------------------------------+ |

 | s | | +-----------+ | +------------+ +------------+ | |

 | w <-------> 1G PORT 0 | | | 40G PORT 0 | | 40G PORT 1 | | |

 | i | | +-----------+ | +------^-----+ +------^-----+ | |

 | t | | +--------|----------------|-------+ |

 | c | +-----------------------------|----------------|---------+

 | h | | |

 | | +-----------------------------|----------------|---------+

 | | | Packet Generator Node | | |

 | | | +--------|----------------|-------+ |

 | | | +-----------+ | +------v-----+ +------v-----+ | |

 | <-------> 1G PORT 0 | | | 40G PORT 0 | | 40G PORT 1 | | |

 | | | +-----------+ | +------------+ +------------+ | |

 | | | +---------------------------------+ |

 | | | |

 +----+ +--+

¶

Figure 16: Test Environment-Network Architecture

We set up a Multus CNI, SRIOV CNI with DPDK to benchmark the user-

space container network model in the containerized infrastructure

worker node. The Multus CNI support creates multiple interfaces for

a container. The traffic is bypassed the Kernel space by SRIOV with

DPDK. We established two modes of CMK: shared core and exclusive

core. We created VFs for each network interface of a container.

Then, we set up TREX to route packet from eth1 to eth2 in a POD.

+---+---------------------+

| CMK shared core | CMK exclusive core |

+---|---------------------+

| Containerized Infrastructure Worker Node | |

| +---------------------------+ | +----------------+ |

| | POD1 | | | POD2 | |

| | (testpmd) | | | (testpmd) | |

| | +-------------+ | | | +-------+ | |

| | | | | | | | | | |

| | +--v---+ +---v--+ | | | +-v--+ +-v--+ | |

| | | eth1 | | eth2 | | | | |eth1| |eth2| | |

| | +--^---+ +---^--+ | | | +-^--+ +-^--+ | |

| +------|-------------|------+ | +---|-------|----+ |

| | | | | | |

| +------ +-+ | | | |

| | +----|-----------------|------+ | |

| | | | +--------|--------------+ |

| | | | | | User Space|

+---------|------------|----|--------|--------|---------------------+

| | | | | | |

| +--+ +------| | | | |

| | | | | | Kernal Space|

+------|--------|-----------|--------|--------+---------------------+

| +----|--------|-----------|--------|-----+ | |

| | +--v--+ +--v--+ +--v--+ +--v--+ | | NIC|

| | | VF0 | | VF1 | | VF2 | | VF3 | | | |

| | +--|---+ +|----+ +----|+ +-|---+ | | |

| +----|------|---------------|-----|------+ | |

+---| +v------v+ +-v-----v+ |------|---------------------+

 | | PORT 0 | 40G NIC | PORT 1 | |

 | +---^----+ +----^---+ |

 +-----|----------------------|-----+

 +-----|----------------------|-----+

+---| +---V----+ +----v---+ |----------------------------+

| | | PORT 0 | 40G NIC | PORT 1 | | Packet Generator (Trex) |

| | +--------+ +--------+ | |

| +----------------------------------+ |

+---+

¶

B.2. Trouble shooting and Results

Figure 17 shows the test results when using 1518 bytes packet

traffic from the T-Rex traffic generator. First, we get the maximum

line rate of the system using SR-IOV as the packet acceleration

technique. Then we measured throughput when applying the CMK

feature. We observed similar results as VPP CPU Pinning test. The

default Kubernetes system without CMK feature enabled had the worst

performance as the CPU resources are shared without any isolation.

When the CMK feature is enabled, Exclusive Mode performed better

than Shared Mode because each pod had its own dedicated CPU.

Figure 17: SR-IOV CPU Pinning Test Results

Appendix C. Benchmarking Experience(Multi-pod Test)

C.1. Benchmarking Overview

The main goal of this experience was to benchmark the multi-pod

scenario, in which packets are traversed through two pods. To create

additional interfaces for forwarding packets between two pods,

Multus CNI was used. We compared two userspace-vSwitch model network

technologies: OVS/DPDK and VPP-memif. Since that vpp-memif has a

different packet forwarding mechanism by using shared memory

interface, it is expected that vpp-memif may provide higher

performance that OVS-DPDK. Also, we consider NUMA impact for both

cases, and made 6 scenarios depending on CPU location of vSwitch and

two pods. Figure 18 is packet forwarding scenario in this test,

where two pods run on the same host and vSwitch delivers packets

between two pods.

¶

 +--------------------+-------------+

 | Model | Result(Gbps)|

 +--------------------+-------------+

 | Maximum Line Rate | 39.3 |

 +--------------------+-------------+

 | Without CMK | 11.5 |

 +--------------------+-------------+

 | CMK-Exclusive Mode | 39.2 |

 +--------------------+-------------+

 | CMK-shared Mode | 29.6 |

 +--------------------+-------------+

¶

Figure 18: Multi-pod Benchmarking Scenario

C.2. Hardware Configurations

 +--+

 |Worker Node |

 | +--+ |

 | |Kubernetes | |

 | | +--------------+ +--------------+ | |

 | | | pod1 | | pod2 | | |

 | | | +--------+ | | +--------+ | | |

 | | | | L2FWD | | | | L2FWD | | | |

 | | | +---^--v-+ | | +--^--v--+ | | |

 | | | | DPDK | | | | DPDK | | | |

 | | | +---^--v-+ | | +--^--v--+ | | |

 | | +------^--v----+ +-----^--v-----+ | |

 | | ^ v ^ v | |

 | | +------^--v>>>>>>>>>>>>>>>>>>>>>>>>>>>^--v-----+ | |

 | | | ^ OVS-DPDK / VPP-memif vSwitch v | | |

 | | +------^---------------------------------v-----+ | |

 | | | ^ PMD Driver v | | |

 | | +------^---------------------------------v-----+ | |

 | | ^ v | |

 | +----------^---------------------------------v-----------+ |

 | ^ v |

 | +----------^---------------------------------v---------+ |

 | | ^ 40G NIC v | |

 | | +------^-------+ +--------v-----+ | |

 +---|---| Port 0 |----------------| Port 1 |---|-----+

 | +------^-------+ +--------v-----+ |

 +----------^---------------------------------v---------+

 +------^-------+ +--------v-----+

 +-------| Port 0 |----------------| Port 1 |---------+

 | +------^-------+ +--------v-----+ |

 | Traffic Generator (TRex) |

 | |

 +--+

Figure 19: Hardware Configurations for Multi-pod Benchmarking

For installations and configurations of CNIs, we used userspace-cni

network plugin. Among this CNI, multus provides to create multiple

interfaces for each pod. Both OVS-DPDK and VPP-memif bypass kernel

with DPDK PMD driver. For CPU isolation and NUMA allocation, we used

Intel CMK with exclusive mode. Since Trex generator is upgraded to

the new version, we used the latest version of Trex.

C.3. NUMA Allocation Scenario

To analyze benchmarking impacts of different NUMA allocation, we set

6 scenarios depending on CPU location allocating to two pods and

vSwich. For this scenario, we did not consider cross-NUMA case,

which allocates CPUs to pod or switch in a manner that two cores are

+-------------------+-------------------------+------------------------+

| Node Name | Specification | Description |

+-------------------+-------------------------+------------------------+

| Conatiner Control |- Intel(R) Core(TM) | Container Deployment |

| for Master | E5-2620v3 @ 2.40GHz | and Network Allocation |

| | (1socket x 12Cores) |- ubuntu 18.04 |

| |- MEM 32GB |- Kubernetes Master |

| |- DISK 1TB |- CNI Controller |

| |- NIC: Control plane: 1G | - MULTUS CNI |

| |- OS: CentOS Linux7.9 | - DPDK-OVS/VPP-memif |

+-------------------+-------------------------+------------------------+

| Conatiner Service |- Intel(R) Xeon(R) |- Container dpdk-L2fwd |

| for Worker | Gold 6148 @ 2.40GHz |- Kubernetes Worker |

| | (2socket X 40Cores) |- CNI Agent |

| |- MEM 256GB | - Multus CNI |

| |- DISK 2TB | - DPDK-OVS/VPP-memif |

| |- NIC | |

| | - Control plane: 1G | |

| | - Data plane: XL710-qda2| |

| | (1NIC 2PORT- 40Gb) | |

| |- OS: CentOS Linux 7.9 | |

+-------------------+-------------------------+------------------------+

| Packet Generator |- Intel(R) Xeon(R) | Packet Generator |

| | Gold 6148 @ 2.4Ghz |- Installed Trex v2.92 |

| | (2Socket X 40Core) | |

| |- MEM 256GB | |

| |- DISK 2TB | |

| |- NIC | |

| | - Data plane: XL710-qda2| |

| | (1NIC 2PORT - 40Gb) | |

| |- OS: CentOS Lunix 7.9 | |

+-------------------+-------------------------+------------------------+

¶

located in different NUMA nodes. 6 scenarios we considered are

listed in Table 1. Note that, NIC is attached to the NUMA1.

Scenario # vSwtich pod1 pod2

S1 NUMA1 NUMA0 NUMA0

S2 NUMA1 NUMA1 NUMA1

S3 NUMA0 NUMA0 NUMA0

S4 NUMA0 NUMA1 NUMA1

S5 NUMA1 NUMA1 NUMA0

S6 NUMA0 NUMA0 NUMA1

Table 1: NUMA Allocation Scenarios

C.4. Traffic Generator Configurations

For multi-pod benchmarking, we discovered Non Drop Rate (NDR) with

binary search algorithm. In Trex, it supports command to discover

NDR for each testing. Also, we test for different ethernet frame

sizes from 64bytes to 1518bytes. For running Trex, we used command

as follows;

./ndr --stl --port 0 1 -v --profile stl/bench.py --prof-tun size=x

--opt-bin-search

C.5. Benchmark Results and Trouble-shootings

As the benchmarking results, Table 2 shows packet loss ratio using

1518 bytes packet in OVS-DPDK/vpp-memif. From that result, we can

say that the vpp-memif has better performance that OVS-DPDK, which

is came from the difference in the way to forward packets between

vswitch and pod. Also, the impact of NUMA is bigger when vswitch and

both pods are located in the same node than when allocating CPU to

the node where NIC is attached.

Networking Model S1 S2 S3 S4 S5 S6

OVS-DPDK 21.29 13.17 6.32 19.76 12.43 6.38

vpp-memif 59.96 34.17 45.13 57.1 33.47 44.92

Table 2: Multi-pod Benchmarking Results (% of Line Rate)

Authors' Addresses

Kyoungjae Sun

ETRI

218, Gajeong-ro, Yuseung-gu

Dajeon

34065

Republic of Korea

¶

¶

¶

¶

Phone: +82 10 3643 5627

Email: kjsun@etri.re.kr

Hyunsik Yang

KT

KT Research Center 151

Taebong-ro, Seocho-gu

Seoul

06763

Republic of Korea

Phone: +82 10 9005 7439

Email: yangun@dcn.ssu.ac.kr

Jangwon Lee

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 10 7448 4664

Email: jangwon.lee@dcn.ssu.ac.kr

Tran Minh Ngoc

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 2 820 0841

Email: mipearlska1307@dcn.ssu.ac.kr

Younghan Kim

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 10 2691 0904

Email: younghak@ssu.ac.kr

tel:+82%2010%203643%205627
mailto:kjsun@etri.re.kr
tel:+82%2010%209005%207439
mailto:yangun@dcn.ssu.ac.kr
tel:+82%2010%207448%204664
mailto:jangwon.lee@dcn.ssu.ac.kr
tel:+82%202%20820%200841
mailto:mipearlska1307@dcn.ssu.ac.kr
tel:+82%2010%202691%200904
mailto:younghak@ssu.ac.kr

	Considerations for Benchmarking Network Performance in Containerized Infrastructures
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Containerized Infrastructure Overview
	4. Networking Models in Containerized Infrastructure
	4.1. Kernel-space vSwitch Model
	4.2. User-space vSwitch Model
	4.3. eBPF Acceleration Model
	4.4. Smart-NIC Acceleration Model
	4.5. Model Combination

	5. Performance Impacts
	5.1. CPU Isolation / NUMA Affinity
	5.2. Hugepages
	5.3. Service Function Chaining
	5.4. Additional Considerations

	6. Security Considerations
	7. References
	7.1. Informative References

	Appendix A. Benchmarking Experience(Contiv-VPP)
	A.1. Benchmarking Environment
	A.2. Trouble shooting and Result

	Appendix B. Benchmarking Experience(SR-IOV with DPDK)
	B.1. Benchmarking Environment
	B.2. Trouble shooting and Results

	Appendix C. Benchmarking Experience(Multi-pod Test)
	C.1. Benchmarking Overview
	C.2. Hardware Configurations
	C.3. NUMA Allocation Scenario
	C.4. Traffic Generator Configurations
	C.5. Benchmark Results and Trouble-shootings

	Authors' Addresses

