
Workgroup:

Benchmarking Methodology Working Group

Internet-Draft:

draft-dcn-bmwg-containerized-infra-13

Published: October 2023

Intended Status: Informational

Expires: 10 April 2024

Authors: N. Tran

Soongsil University

S. Rao

The Linux Foundation

J. Lee

Soongsil University

Y. Kim

Soongsil University

Considerations for Benchmarking Network Performance in Containerized

Infrastructures

Abstract

Recently, the Benchmarking Methodology Working Group has extended

the laboratory characterization from physical network functions

(PNFs) to virtual network functions (VNFs). Considering the network

function implementation trend moving from virtual machine-based to

container-based, system configurations and deployment scenarios for

benchmarking will be partially changed by how the resource

allocation and network technologies are specified for containerized

network functions. This draft describes additional considerations

for benchmarking network performance when network functions are

containerized and performed in general-purpose hardware.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 April 2024.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Requirements Language

3. Terminology

4. Scope

5. Benchmarking Considerations

5.1. Networking Models

5.1.1. Kernel-space non-Acceleration Model

5.1.2. User-space Acceleration Model

5.1.3. eBPF Acceleration Model

5.1.4. Smart-NIC Acceleration Model

5.1.5. Model Combination

5.2. Resources Configuration

5.2.1. CPU Isolation / NUMA Affinity

5.2.2. Pod Hugepages

5.2.3. Pod CPU Cores and Memory Allocation

5.2.4. Service Function Chaining

5.2.5. Additional Considerations

6. Security Considerations

7. References

7.1. Informative References

Appendix A. Change Log (to be removed by RFC Editor before

publication)

A.1. Since draft-dcn-bmwg-containerized-infra-12

A.2. Since draft-dcn-bmwg-containerized-infra-11

A.3. Since draft-dcn-bmwg-containerized-infra-10

A.4. Since draft-dcn-bmwg-containerized-infra-09

A.5. Since draft-dcn-bmwg-containerized-infra-08

A.6. Since draft-dcn-bmwg-containerized-infra-07

A.7. Since draft-dcn-bmwg-containerized-infra-06

A.8. Since draft-dcn-bmwg-containerized-infra-05

A.9. Since draft-dcn-bmwg-containerized-infra-04

A.10. Since draft-dcn-bmwg-containerized-infra-03

A.11. Since draft-dcn-bmwg-containerized-infra-02

A.12. Since draft-dcn-bmwg-containerized-infra-01

A.13. Since draft-dcn-bmwg-containerized-infra-00

Contributors

Acknowledgments

¶

https://trustee.ietf.org/license-info

Authors' Addresses

1. Introduction

The Benchmarking Methodology Working Group(BMWG) has recently

expanded its benchmarking scope from Physical Network Function (PNF)

running on a dedicated hardware system to Network Function

Virtualization(NFV) infrastructure and Virtualized Network

Function(VNF). [RFC8172] described considerations for configuring

NFV infrastructure and benchmarking metrics, and [RFC8204] gives

guidelines for benchmarking virtual switch which connects VNFs in

Open Platform for NFV (OPNFV).

Recently NFV infrastructure has evolved to include a lightweight

virtualized platform called the containerized infrastructure. Most

benchmarking methodologies and configuration parameters specified in

[RFC8172] and [RFC8204] can be equally applied to benchmark

container networking. However, major architecture differences

between virtual machine (VM)-based and container-based

infrastructure cause additional considerations.

In terms of virtualization method, containerized network functions

(CNF) are virtualized using the host operating system (OS)

virtualization instead of hypervisor-based hardware virtualization

in VM-based infrastructure. In comparison to VMs, containers do not

have a separate hardware and kernel. CNFs share the same kernel

space on the same host, while their resources are logically isolated

in different namespaces. Hence, benchmarking container network

performance might require different resources configuration

settings.

In terms of networking, to route traffic between containers which

are isolated in different network namespaces, a container network

plugin is required. Initially, when a pod or container is first

instantiated, it has no network. container network plugins insert a

network interface into the isolated container network namespace, and

performs other necessary tasks to connect the host and container

network namespaces. It then allocates IP address to the interface,

configures routing consistent with the IP address management plugin.

Different CNIs use different networking technologies to implement

this connection. Based on the plugins' networking technologies, and

how the packet is processed/accelerated via the kernel-space and/or

the user-space of the host, these plugins can be categorized into

different container networking models. These models should be

considered while benchmarking container network performance.

¶

¶

¶

¶

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document is to be interpreted as described in [RFC2119].

3. Terminology

This document uses the terminology described in [RFC8172],

[RFC8204], [ETSI-TST-009].

Besides, with the proliferation and popularity of Kubernetes as a

container orchestration platform, this document uses Kubernetes’

terminologies for general containerized infrastructure.

Pod is defined as a basic and smallest unit for orchestration and

management that can host multiple containers, with shared storage

and network resources. Generally, each CNF is deployed as a

container in a single pod. In this document, the terms container and

pod are used interchangeably.

Container Network Interface (CNI) plugin is the framework that

dynamically create and configure network for containers.

4. Scope

The primary scope of this document is to fill in the gaps of

previous BMWG’s NFV benchmarking consideration works ([RFC8172] and

[RFC8204]) when applying to containerized NFV infrastructure. The

first gap is different network models/topologies configured by

container network interfaces (especially the extended Berkeley

Packet Filter model which was not mentioned in previous documents).

The other gap is resources configuration for containers. This

document investigates these gaps as additional benchmarking

considerations for NFV infrastructure.

Note that apart from the unique characteristics, benchmarking test

and assessment methodologies defined in the above mentioned RFCs can

be equally applied to containerized infrastructure from a generic-

NFV point of view.

5. Benchmarking Considerations

5.1. Networking Models

Compared with VNFs, selected CNI Plugin is an important software

detail parameter for containerized infrastructure benchmarking.

Different CNI plugins configure different network architecture for

CNFs in terms of network interfaces, virtual switch usage, and

¶

¶

¶

¶

¶

¶

¶

packet acceleration techniques. This section categorizes container

networking models based on CNI plugin characteristics.

Note that mentioned CNI plugins in each category are notable

examples, and any other current CNI plugins can fall into one of the

categories mentioned in this section.

5.1.1. Kernel-space non-Acceleration Model

Figure 1: Example architecture of the Kernel-Space non-Acceleration

Model

Figure 1 shows kernel-space non-Acceleration model. In this model,

the virtual ethernet (veth) interface on the host side can be

attached to different switching/routing components based on the

chosen CNI. In the case of Calico, it is the direct point-to-point

attachment to the host namespace then using Kernel routing table for

routing between containers. For Flannel, it is the Linux Bridge. In

the case of MACVLAN/IPVLAN, it is the corresponding virtual sub-

interfaces. For dynamic networking configuration, the Forwarding

policy can be pushed by the controller/agent located in the user-

¶

¶

 +--+

 | User Space |

 | +-----------+ +-----------+ |

 | | CNF | | CNF | |

 | | +-------+ | | +-------+ | |

 | +-| eth |-+ +-| eth |-+ |

 | +---^---+ +---^---+ |

 | | | |

 | | +----------------------------------+ | |

 | | | | | |

 | | | Networking Controller / Agent | | |

 | | | | | |

 | | +-----------------^^---------------+ | |

 ----------|-----------------------||---------------------|----------

 | +---v---+ || +---v---+ |

 | +--| veth |-------------------vv-----------------| veth |--+ |

 | | +-------+ Switching/Routing Component +-------+ | |

 | | (Kernel Routing Table, OVS Kernel Datapath, | |

 | | Linux Bridge, MACVLAN/IPVLAN sub-interfaces) | |

 | | | |

 | +-------------------------------^----------------------------+ |

 | | |

 | Kernel Space +-----------v----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

space. In the case of Open vSwitch (OVS) [OVS], configured with

Kernel Datapath, the first packet of the 'non-matching' flow can be

sent to the user space networking controller/agent (ovs-switchd) for

dynamic forwarding decision.

In general, the switching/routing component is running on kernel

space, data packets should be processed in-network stack of host

kernel before transferring packets to the CNF running in user-space.

Not only pod-to-External but also pod-to-pod traffic should be

processed in the kernel space. This design makes networking

performance worse than other networking models which utilize packet

acceleration techniques described in below sections. Kernel-space

vSwitch models are listed below:

o Docker Network [Docker-network], Flannel Network [Flannel],

Calico [Calico], OVS (OpenvSwitch) [OVS], OVN (Open Virtual

Network) [OVN], MACVLAN, IPVLAN

5.1.2. User-space Acceleration Model

¶

¶

¶

 +--+

 | User Space |

 | +---------------+ +---------------+ |

 | | CNF | | CNF | |

 | | +-----------+ | +-----------------+ | +-----------+ | |

 | | | virtio | | | Networking | | | virtio |-| |

 | +-| /memif |-+ | Controller/Agent| +-| /memif |-+ |

 | +-----^-----+ +-------^^--------+ +-----^-----+ |

 | | || | |

 | | || | |

 | +-----v-----+ || +-----v-----+ |

 | | vhost-user| || | vhost-user| |

 | +--| / memif |--------------vv--------------| / memif |--+ |

 | | +-----------+ +-----------+ | |

 | | vSwitch | |

 | | +--------------+ | |

 | +----------------------| PMD |----------------------+ |

 | | | |

 | +-------^------+ |

 ----------------------------------|---------------------------------

 | | |

 | | |

 | | |

 | Kernel Space +----------V-----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

Figure 2: Example architecture of the User-Space Acceleration Model

Figure 2 shows user-space vSwitch model, in which data packets from

physical network port are bypassed kernel processing and delivered

directly to the vSwitch running on user-space. This model is

commonly considered as Data Plane Acceleration (DPA) technology

since it can achieve high-rate packet processing than a kernel-space

network with limited packet throughput. For bypassing kernel and

directly transferring the packet to vSwitch, Data Plane Development

Kit (DPDK) is essentially required. With DPDK, an additional driver

called Pull-Mode Driver (PMD) is created on vSwtich. PMD driver must

be created for each NIC separately. Userspace CNI [userspace-cni] is

required to create user-space network interface (virtio or memif) at

each container. User-space vSwitch models are listed below:

o OVS-DPDK [ovs-dpdk], VPP [vpp]

5.1.3. eBPF Acceleration Model

¶

¶

Figure 3: Example architecture of the eBPF Acceleration Model - non-

AFXDP

 +--+

 | User Space |

 | +----------------+ +----------------+ |

 | | CNF | | CNF | |

 | | +------------+ | | +------------+ | |

 | +-| eth |-+ +-| eth |-+ |

 | +-----^------+ +------^-----+ |

 | | | |

 -------------|---------------------------------------|--------------

 | +-----v-------+ +-----v-------+ |

 | | +------+ | | +------+ | |

 | | | eBPF | | | | eBPF | | |

 | | +------+ | | +------+ | |

 | | veth tc hook| | veth tc hook| |

 | +-----^-------+ +------^------+ |

 | | | |

 | | +-------------------------------+ | |

 | | | | | |

 | | | Networking Stack | | |

 | | | | | |

 | | +-------------------------------+ | |

 | +-----v-------+ +-----v-------+ |

 | | +------+ | | +------+ | |

 | | | eBPF | | | | eBPF | | |

 | | +------+ | | +------+ | |

 | | veth tc hook| | veth tc hook| |

 | +-------------+ +-------------+ |

 | | OR | | OR | |

 | +-|-------------|------------------------|-------------|--+ |

 | | +-------------+ +-------------+ | |

 | | | +------+ | | +------+ | | |

 | | | | eBPF | | NIC Driver | | eBPF | | | |

 | | | +------+ | | +------+ | | |

 | | | XDP hook | | XDP hook | | |

 | | +-------------+ +------------ + | |

 | +---------------------------^-----------------------------+ |

 | | |

 | Kernel Space +--------v--------+ |

 +-----------------------| NIC |------------------------+

 +-----------------+

Figure 4: Example architecture of the eBPF Acceleration Model - using

AFXDP supported CNI

 +--+

 | User Space |

 | +-----------------+ +-----------------+ |

 | | CNF | | CNF | |

 | | +-------------+ | +--------------+ | +-------------+ | |

 | +-| eth |-+ | CNDP APIs | +-| eth |-+ |

 | +-----^-------+ +--------------+ +------^------+ |

 | | | |

 | +-----v-------+ +------v------+ |

 -------| AFXDP |------------------------| AFXDP |------|

 | | socket | | socket | |

 | +-----^-------+ +-----^-------+ |

 | | | |

 | | +-------------------------------+ | |

 | | | | | |

 | | | Networking Stack | | |

 | | | | | |

 | | +-------------------------------+ | |

 | | | |

 | +-------|---------------------------------------|--------+ |

 | | +-----|------+ +----|-------+| |

 | | | +--v---+ | | +-v----+ || |

 | | | | eBPF | | NIC Driver | | eBPF | || |

 | | | +------+ | | +------+ || |

 | | | XDP hook | | XDP hook || |

 | | +-----^------+ +----^-------+| |

 | +-------|-------------------^-------------------|--------+ |

 | | | |

 -------------|---------------------------------------|--------------

 | +---------+ +---------+ |

 | +------|-------------------|----------+ |

 | | +----v-------+ +----v-------+ | |

 | | | netdev | | netdev | | |

 | | | OR | | OR | | |

 | | | sub/virtual| | sub/virtual| | |

 | | | function | | function | | |

 | Kernel Space | +------------+ NIC +------------+ | |

 +---------------| |------------+

 +-------------------------------------+

Figure 5: Example architecture of the eBPF Acceleration Model - using

user-space vSwitch which support AFXDP PMD

 +--+

 | User Space |

 | +---------------+ +---------------+ |

 | | CNF | | CNF | |

 | | +-----------+ | +-----------------+ | +-----------+ | |

 | | | virtio | | | Networking | | | virtio |-| |

 | +-| /memif |-+ | Controller/Agent| +-| /memif |-+ |

 | +-----^-----+ +-------^^--------+ +-----^-----+ |

 | | || | |

 | | || | |

 | +-----v-----+ || +-----v-----+ |

 | | vhost-user| || | vhost-user| |

 | +--| / memif |--------------vv--------------| / memif |--+ |

 | | +-----^-----+ +-----^-----+ | |

 | | | vSwitch | | |

 | | +-----v-----+ +-----v-----+ | |

 | +--| AFXDP PMD |------------------------------| AFXDP PMD |--+ |

 | +-----^-----+ +-----^-----+ |

 | | | |

 | +-----v-----+ +-----v-----+ |

 ------| AFXDP |------------------------------| AFXDP |-----|

 | | socket | | socket | |

 | +-----^----+ +-----^-----+ |

 | | | |

 | | +-------------------------------+ | |

 | | | | | |

 | | | Networking Stack | | |

 | | | | | |

 | | +-------------------------------+ | |

 | | | |

 | +------|--|--------+ |

 | | +----|-------+ +------|-----+ | |

 | | | +-v----+ | | +---v--+ | | |

 | | | | eBPF | | NIC Driver | | eBPF | | | |

 | | | +------+ | | +------+ | | |

 | | | XDP hook | | XDP hook | | |

 | | +------------+ +------------+ | |

 | +----------------------------^-----------------------------+ |

 | | |

 ----------------------------------|---------------------------------

 | | |

 | Kernel Space +----------v-----------+ |

 +----------------------| NIC |--------------------+

 +----------------------+

The eBPF Acceleration model leverages the extended Berkeley Packet

Filter (eBPF) technology [eBPF] to achieve high-performance packet

processing. It enables execution of sandboxed programs inside

abstract virtual machines within the Linux kernel without changing

the kernel source code or loading the kernel module. To accelerate

data plane performance, eBPF programs are attached to different BPF

hooks inside the linux kernel stack.

One type of BPF hook is the eXpress Data Path (XDP) at the

networking driver. It is the first hook that triggers eBPF program

upon packet reception from external network. The other type of BPF

hook is Traffic Control Ingress/Egress eBPF hook (tc eBPF). The eBPF

program running at the tc hook enforce policy on all traffic exit

the pod, while the eBPF program running at the XDP hook enforce

policy on all traffic coming from NIC.

On the egress datapath side, whenever a packet exits the pod, it

first goes through the pod’s veth interface. Then, the destination

that received the packet depends on the chosen CNI plugin that is

used to create container networking. If the chosen CNI plugin is a

non-AFXDP-based CNI, the packet is received by the eBPF program

running at veth interface tc hook. If the chosen CNI plugin is an

AFXDP-supported CNI, the packet is received by the AFXDP socket

[AFXDP]. AFXDP socket is a new Linux socket type which allows a fast

packet delivery tunnel between itself and the XDP hook at the

networking driver. This tunnel bypasses the network stack in kernel

space to provide high-performance raw packet networking. Packets are

transmitted between user space and AFXDP socket via a shared memory

buffer. Once the egress packet arrived at the AFXDP socket or tc

hook, it is directly forwarded to the NIC.

On the ingress datapath side, eBPF programs at the XDP hook/tc hook

pick up packets from the NIC network devices (NIC ports). In case of

using AFXDP CNI plugin [afxdp-cni], there are two operation modes:

“primary” and “cdq”. In “primary” mode, NIC network devices can be

directly allocated to pods. Meanwhile, in “cdq” mode, NIC network

devices can be efficiently partioned to subfunctions or SR-IOV

virtual functions, which enables multiple pods to share a primary

network device. Then, from network devices, packets are directly

delivered to the veth interface pair or AFXDP socket (via or not via

AFXDP socket depends on the chosen CNI), bypass all of the kernel

network layer processing such as iptables. In case of Cilium CNI

[Cilium], context-switching process to the pod network namespace can

also be bypassed.

Notable eBPF Acceleration models can be classified into 3 categories

below. Their corresponding model architecture are shown in Figure 3,

Figure 4, Figure 5.

¶

¶

¶

¶

¶

o non-AFXDP: eBPF supported CNI such as Calico [Calico], Cilium

[Cilium]

o using AFXDP supported CNI: AFXDP K8s plugin [afxdp-cni] used by

Cloud Native Data Plane project [CNDP]

o using user-space vSwitch which support AFXDP PMD: OVS-DPDK

[ovs-dpdk] and VPP [vpp] are the vSwitches that have AFXDP device

driver support. Userspace CNI [userspace-cni] is used to enable

container networking via these vSwitches.

Container network performance of Cilium project is reported by the

project itself in [cilium-benchmark]. Meanwhile, AFXDP performance

and comparison against DPDK are reported in [intel-AFXDP] and

[LPC18-DPDK-AFXDP], respectively.

5.1.4. Smart-NIC Acceleration Model

Figure 6: Examples of Smart-NIC Acceleration Model

Figure 6 shows Smart-NIC acceleration model, which does not use

vSwitch component. This model can be separated into two

technologies.

One is Single-Root I/O Virtualization (SR-IOV), which is an

extension of PCIe specifications to enable multiple partitions

running simultaneously within a system to share PCIe devices. In the

NIC, there are virtual replicas of PCI functions known as virtual

¶

¶

¶

¶

 +--+

 | User Space |

 | +-----------------+ +-----------------+ |

 | | CNF | | CNF | |

 | | +-------------+ | | +-------------+ | |

 | +-| vf driver |-+ +-| vf driver |-+ |

 | +-----^-------+ +------^------+ |

 | | | |

 -------------|---------------------------------------|--------------

 | +---------+ +---------+ |

 | +------|-------------------|------+ |

 | | +----v-----+ +-----v----+ | |

 | | | virtual | | virtual | | |

 | | | function | | function | | |

 | Kernel Space | +----^-----+ NIC +-----^----+ | |

 +---------------| | | |----------------+

 | +----v-------------------v----+ |

 | | Classify and Queue | |

 | +-----------------------------+ |

 +---------------------------------+

¶

functions (VF), and each of them is directly connected to each

container's network interfaces. Using SR-IOV, data packets from

external bypass both kernel and user space and are directly

forwarded to container’s virtual network interface. SRIOV network

device plugin for Kubernetes [SR-IOV] is recommended to create an

special interface at each container controlled by the VF driver.

The other technology is eBPF/XDP programs offloading to Smart-NIC

card as mentioned in the previous section. It enables general

acceleration of eBPF. eBPF programs are attached to XDP and run at

the Smart-NIC card, which allows server CPUs to perform more

application-level work. However, not all Smart-NIC cards provide

eBPF/XDP offloading support.

5.1.5. Model Combination

Figure 7: Examples of Model Combination deployment

Figure 7 shows the networking model when combining user-space

vSwitch model and Smart-NIC acceleration model. This model is

frequently considered in service function chain scenarios when two

¶

¶

 +---+

 | User Space |

 | +--------------------+ +--------------------+ |

 | | CNF | | CNF | |

 | | +------+ +------+ | | +------+ +------+ | |

 | +-| eth |--| eth |-+ +-| eth |--| eth |-+ |

 | +---^--+ +---^--+ +--^---+ +---^--+ |

 | | | | | |

 | | | | | |

 | | +---v--------+ +-------v----+ | |

 | | | vhost-user | | vhost-user | | |

 | | +--| / memif |--| / memif |--+ | |

 | | | +------------+ +------------+ | | |

 | | | vSwitch | | |

 | | +----------------------------------+ | |

 | | | |

 --------|--|-------

 | +-----------+ +-------------+ |

 | +----|--------------|---+ |

 | |+---v--+ +---v--+| |

 | || vf | | vf || |

 | |+------+ +------+| |

 | Kernel Space | | |

 +--------------| NIC |----------------+

 +-----------------------+

different types of traffic flows are present. These two types are

North/South traffic and East/West traffic.

North/South traffic is the type that packets are received from other

servers and routed through CNF. For this traffic type, Smart-NIC

model such as SR-IOV is preferred because packets always have to

pass the NIC. User-space vSwitch involvement in north-south traffic

will create more bottlenecks. On the other hand, East/West traffic

is a form of sending and receiving data between containers deployed

in the same server and can pass through multiple containers. For

this type, user-space vSwitch models such as OVS-DPDK and VPP are

preferred because packets are routed within the user space only and

not through the NIC.

The throughput advantages of these different networking models with

different traffic direction cases are reported in [Intel-SRIOV-NFV].

5.2. Resources Configuration

The resources configuration consideration list here is not only

applied for the CNF but also other components in a containerized

SUT. A Containerized SUT is composed of NICs, possible cables

between hosts, kernel and/or vSwitch, and CNFs.

5.2.1. CPU Isolation / NUMA Affinity

CPU pinning enables benefits such as maximizing cache utilization,

eliminating operating system thread scheduling overhead as well as

coordinating network I/O by guaranteeing resources. One example

technology of CPU Pinning in containerized infrastructure is the CPU

Manager for Kubernetes (CMK) [CMK]. This technology was proved to be

effective in avoiding the "noisy neighbor" problem, as shown in an

existing experience [Intel-EPA]. Besides, CPU Isolation techniques'

benefits are not only applied for "noisy neighbor" problem.

Different CNFs also neighbor each other and neighbor vSwitch if

used.

NUMA affects the speed of different CPU cores when accessing

different memory regions. CPU cores in the same NUMA nodes can

locally access to the shared memory in that node, which is faster

than remotely accessing the memory in a different NUMA node. In

containerized network, packet forwarding is processed through NIC,

CNF and a possible vSwitch based on chosen networking model. NIC's

NUMA node alignment can be checked via the PCI devices' node

affinity. Meanwhile, specific CPU cores can be direclty assigned to

CNF and vSwtich via their configuration settings. Network

performance can be changed depending on the location of the NUMA

node whether it is the same NUMA node where the physical network

interface, vSwitch and CNF are attached to. There is benchmarking

¶

¶

¶

¶

¶

experience for cross-NUMA performance impacts [cross-NUMA-vineperf].

In that tests, they consist of cross-NUMA performance with 3

scenarios depending on the location of the traffic generator and

traffic endpoint. As the results, it was verified as below:

o A single NUMA Node serving multiple interfaces is worse than

Cross-NUMA Node performance degradation

o Worse performance with CNF sharing CPUs across NUMA

Note that CPU Pinning and NUMA Affinity configurations

considerations might also applied to VM-based VNF. As mentioned

above, dedicated CPU cores of a specific NUMA node can be assigned

to VNF and vSwitch via their own running configurations. NIC's NUMA

node can be checked from the PCI devices' infomration. Host's NUMA

nodes can be scheduled to virtual machines by specifying in their

settings the chosen nodes.

For this consideration, the additional configuration parameters

should be considered for containerized infrastructure benchmarking

are:

- Selected CPU Isolation level

- NUMA cores allocation to pod

5.2.2. Pod Hugepages

Hugepage configures a large page size of memory to reduce

Translation Lookaside Buffer(TLB) miss rate and increase the

application performance. This increases the performance of logical/

virtual to physical address lookups performed by a CPU's memory

management unit, and overall system performance. In the

containerized infrastructure, the container is isolated at the

application level, and administrators can set huge pages more

granular level (e.g., Kubernetes allows to use of 2M bytes or 1G

bytes huge pages for the container). Moreover, this page is

dedicated to the application but another process, so the application

uses the page more efficiently way. From a network benchmark point

of view, however, the impact on general packet processing can be

relatively negligible, and it may be necessary to consider the

application level to measure the impact together. In the case of

using the DPDK application, as reported in [Intel-EPA], it was

verified to improve network performance because packet handling

processes are running in the application together.

For this consideration, the additional configuration parameters

should be considered for containerized infrastructure benchmarking

are:

¶

¶

¶

¶

¶

¶

¶

¶

¶

- Pod's hugepage size

5.2.3. Pod CPU Cores and Memory Allocation

Different resources allocation choices may impact the container

network performance. These include different CPU cores and RAM

allocation to Pods, and different CPU cores allocation to the Poll

Mode Driver and the vSwitch. Benchmarking experience from [ViNePERF]

which was published in [GLOBECOM-21-benchmarking-kubernetes]

verified that:

o 2 CPUs per Pod is insufficient for all packet frame sizes. With

large packet frame sizes (over 1024), increasing CPU per pods

significantly increases the throughput. Different RAM allocation to

Pods also causes different throughput results

o Not assigning dedicated CPU cores to DPDK PMD causes significant

performance dropss

o Increasing CPU core allocation to OVS-DPDK vSwitch does not affect

its performance. However, increasing CPU core allocation to VPP

vSwitch results in better latency.

Besides, regarding user-space acceleration model which uses PMD to

poll packets to the user-space vSwitch, dedicated CPU cores

assignment to PMD’s Rx Queues might improve the network performance.

For this consideration, the additional configuration parameters

should be considered for containerized infrastructure benchmarking

are:

- Pod's CPU cores allocation

- Pod's RAM allocation

5.2.4. Service Function Chaining

When we consider benchmarking for containerized and VM-based

infrastructure and network functions, benchmarking scenarios may

contain various operational use cases. Traditional black-box

benchmarking focuses on measuring the in-out performance of packets

from physical network ports since the hardware is tightly coupled

with its function and only a single function is running on its

dedicated hardware. However, in the NFV environment, the physical

network port commonly will be connected to multiple CNFs(i.e.,

Multiple PVP test setup architectures were described in

[ETSI-TST-009]) rather than dedicated to a single CNF. This scenario

is called Service Function Chaining. Therefore, benchmarking

scenarios should reflect operational considerations such as the

number of CNFs or network services defined by a set of VNFs in a

¶

¶

¶

¶

¶

¶

¶

¶

¶

single host. [service-density] proposed a way for measuring the

performance of multiple NFV service instances at a varied service

density on a single host, which is one example of these operational

benchmarking aspects. Another aspect in benchmarking service

function chaining scenario should be considered is different network

acceleration technologies. Network performance differences may occur

because of different traffic patterns based on the provided

acceleration method.

For this consideration, the additional configuration parameters

should be considered for containerized infrastructure benchmarking

are:

- Number of CNFs/pod

- Selected CNI Plugin

5.2.5. Additional Considerations

Apart from the single-host test scenario, the multi-hosts scenario

should also be considered in container network benchmarking, where

container services are deployed across different servers. To provide

network connectivity for CNFs between different server nodes, inter-

node networking is required. According to [ETSI-NFV-IFA-038], there

are several technologies to enable inter-node network: overlay

technologies using a tunnel endpoint (e.g. VXLAN, IP in IP), routing

using Border Gateway Protocol (BGP), layer 2 underlay, direct

network using dedicated NIC for each pod, or load balancer using

LoadBalancer service type in Kubernetes. Different protocols from

these technologies may cause performance differences in container

networking.

6. Security Considerations

Benchmarking activities as described in this memo are limited to

technology characterization of a Device Under Test/System Under Test

(DUT/SUT) using controlled stimuli in a laboratory environment with

dedicated address space and the constraints specified in the

sections above.

The benchmarking network topology will be an independent test setup

and MUST NOT be connected to devices that may forward the test

traffic into a production network or misroute traffic to the test

management network.

Further, benchmarking is performed on a "black-box" basis and relies

solely on measurements observable external to the DUT/SUT.

Special capabilities SHOULD NOT exist in the DUT/SUT specifically

for benchmarking purposes. Any implications for network security

¶

¶

¶

¶

¶

¶

¶

¶

[AFXDP]

[afxdp-cni]

[Calico]

[Cilium]

[cilium-benchmark]

[CMK]

[CNDP]

[cross-NUMA-vineperf]

[Docker-network]

[eBPF]

[ETSI-NFV-IFA-038]

[ETSI-TST-009]

[Flannel]

arising from the DUT/SUT SHOULD be identical in the lab and in

production networks.

7. References

7.1. Informative References

"AF_XDP", September 2022, <https://www.kernel.org/doc/

html/v4.19/networking/af_xdp.html>.

"AF_XDP Plugins for Kubernetes", <https://github.com/

intel/afxdp-plugins-for-kubernetes>.

"Project Calico", July 2019, <https://

docs.projectcalico.org/>.

"Cilium Documentation", March 2022, <https://

docs.cilium.io/en/stable//>.

Cilium, "CNI Benchmark: Understanding Cilium

Network Performance", May 2021, <https://cilium.io/blog/

2021/05/11/cni-benchmark>.

Intel, "Userspace CNI Plugin", February 2021, <https://

github.com/intel/CPU-Manager-for-Kubernetes>.

"CNDP - Cloud Native Data Plane", September 2022,

<https://cndp.io/>.

Anuket Project, "Cross-NUMA performance

measurements with VSPERF", March 2019, <https://

wiki.anuket.io/display/HOME/Cross-

NUMA+performance+measurements+with+VSPERF>.

"Docker, Libnetwork design", July 2019, <https://

github.com/docker/libnetwork/>.

"eBPF, extended Berkeley Packet Filter", July 2019,

<https://www.iovisor.org/technology/ebpf>.

"Network Functions Virtualisation (NFV) Release

4; Architectural Framework; Report on network

connectivity for container-based VNF", November 2021.

"Network Functions Virtualisation (NFV) Release 3;

Testing; Specification of Networking Benchmarks and

Measurement Methods for NFVI", October 2018.

"flannel 0.10.0 Documentation", July 2019, <https://

coreos.com/flannel/>.

¶

https://www.kernel.org/doc/html/v4.19/networking/af_xdp.html
https://www.kernel.org/doc/html/v4.19/networking/af_xdp.html
https://github.com/intel/afxdp-plugins-for-kubernetes
https://github.com/intel/afxdp-plugins-for-kubernetes
https://docs.projectcalico.org/
https://docs.projectcalico.org/
https://docs.cilium.io/en/stable//
https://docs.cilium.io/en/stable//
https://cilium.io/blog/2021/05/11/cni-benchmark
https://cilium.io/blog/2021/05/11/cni-benchmark
https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/intel/CPU-Manager-for-Kubernetes
https://cndp.io/
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://wiki.anuket.io/display/HOME/Cross-NUMA+performance+measurements+with+VSPERF
https://github.com/docker/libnetwork/
https://github.com/docker/libnetwork/
https://www.iovisor.org/technology/ebpf
https://coreos.com/flannel/
https://coreos.com/flannel/

[GLOBECOM-21-benchmarking-kubernetes]

[intel-AFXDP]

[Intel-EPA]

[Intel-SRIOV-NFV]

[LPC18-DPDK-AFXDP]

[OVN]

[OVS]

[ovs-dpdk]

[RFC2119]

[RFC2544]

[RFC8172]

[RFC8204]

[service-density]

Sridhar, R., Paganelli, F.,

and A. Morton, "Benchmarking Kubernetes Container-

Networking for Telco Usecases", December 2021.

Karlsson, M., "AF_XDP Sockets: High Performance

Networking for Cloud-Native Networking Technology Guide",

January 2021.

Intel, "Enhanced Platform Awareness in Kubernetes",

2018, <https://builders.intel.com/docs/networkbuilders/

enhanced-platform-awareness-feature-brief.pdf>.

Patrick, K. and J. Brian, "SR-IOV for NFV

Solutions Practical Considerations and Thoughts",

February 2017.

Karlsson, M. and B. Topel, "The Path to DPDK

Speeds for AF_XDP", November 2018.

"How to use Open Virtual Networking with Kubernetes",

July 2019, <https://github.com/ovn-org/ovn-kubernetes>.

"Open Virtual Switch", July 2019, <https://

www.openvswitch.org/>.

"Open vSwitch with DPDK", July 2019, <http://

docs.openvswitch.org/en/latest/intro/install/dpdk/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", RFC 2119, March 1997, <https://

www.rfc-editor.org/rfc/rfc2119>.

Bradner, S. and J. McQuaid, "Benchmarking Methodology for

Network Interconnect Devices", RFC 2544, March 1999,

<https://www.rfc-editor.org/rfc/rfc2544>.

Morton, A., "Considerations for Benchmarking Virtual

Network Functions and Their Infrastructure", RFC 8172,

July 2017, <https://www.rfc-editor.org/rfc/rfc8172>.

Tahhan, M., O'Mahony, B., and A. Morton, "Benchmarking

Virtual Switches in the Open Platform for NFV (OPNFV)",

RFC 8204, September 2017, <https://www.rfc-editor.org/

rfc/rfc8204>.

Konstantynowicz, M. and P. Mikus, "NFV Service

Density Benchmarking", March 2019, <https://

tools.ietf.org/html/draft-mkonstan-nf-service-

density-00>.

https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://builders.intel.com/docs/networkbuilders/enhanced-platform-awareness-feature-brief.pdf
https://github.com/ovn-org/ovn-kubernetes
https://www.openvswitch.org/
https://www.openvswitch.org/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2544
https://www.rfc-editor.org/rfc/rfc8172
https://www.rfc-editor.org/rfc/rfc8204
https://www.rfc-editor.org/rfc/rfc8204
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00
https://tools.ietf.org/html/draft-mkonstan-nf-service-density-00

[SR-IOV]

[userspace-cni]

[ViNePERF]

[vpp]

"SRIOV for Container-networking", July 2019, <https://

github.com/intel/sriov-cni>.

Intel, "CPU Manager for Kubernetes", August 2021,

<https://github.com/intel/userspace-cni-network-plugin>.

"Project: Virtual Network Performance for Telco NFV",

<https://wiki.anuket.io/display/HOME/ViNePERF>.

"VPP with Containers", July 2019, <https://fdio-

vpp.readthedocs.io/en/latest/usecases/containers.html>.

Appendix A. Change Log (to be removed by RFC Editor before

publication)

A.1. Since draft-dcn-bmwg-containerized-infra-12

Updated scope to clearly specify the gaps of related RFCs.

A.2. Since draft-dcn-bmwg-containerized-infra-11

Merged Containerized infrastructure overview into Introduction

section

Added Scope section which briefly explains the draft contribution in

a clear way.

Mentioned the additional benchmarking configuration parameters for

containerized infrastructure benchmarking in each Benchmarking

Consideration sub-sections.

Removed Benchmarking Experiences Appendixes

A.3. Since draft-dcn-bmwg-containerized-infra-10

Updated Benchmarking Experience appendixes with latest results from

Hackathon events.

Re-orgianized Benchmarking Experience appendixes to match with the

the proposed benchmarking consideration inside the draft (Networking

Models and Resources Configuration)

Minor enhancement changes to Introduction and Resource Configuration

consideration sections such as general description for container

network plugin, which resource can also be applied for VM-VNF.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/intel/sriov-cni
https://github.com/intel/sriov-cni
https://github.com/intel/userspace-cni-network-plugin
https://wiki.anuket.io/display/HOME/ViNePERF
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html
https://fdio-vpp.readthedocs.io/en/latest/usecases/containers.html

A.4. Since draft-dcn-bmwg-containerized-infra-09

Removed Additional Deployment Scenarios (section 4.1 of version 09).

We agreed with reviews from VinePerf that performance difference

between with-VM and without-VM scenarios are negligible

Removed Additional Configuration Parameters (section 4.2 of version

09). We agreed with reviews from VinePerf that these parameters are

explained in Performance Impacts/Resources Configuration section

As VinePerf suggestion to categorize the networking models based on

how they can accelerate the network performances, rename titles of

section 4.3.1 and 4.3.2 of version 09: Kernel-space vSwitch model

and User-space vSwitch model to Kernel-space non-Acceleration model

and User-space Acceleration model. Update corresponding explanation

of kernel-space non-Acceleration model

VinePerf suggested to replace the general architecture of eBPF

Acceleration model with 3 seperate architecture for 3 different eBPF

Acceleration model: non-AFXDP, using AFXDP supported CNI, and using

user-space vSwitch which support AFXDP PMD. Update corresponding

explanation of eBPF Acceleration model

Renamed Performance Impacts section (section 4.4 of version 09) to

Resources Configuration.

We agreed with VinePerf reviews to add "CPU Cores and Memory

Allocation" consideration into Resources Configuration section

A.5. Since draft-dcn-bmwg-containerized-infra-08

Added new Section 4. Benchmarking Considerations. Previous Section

4. Networking Models in Containerized Infrastructure was moved into

this new Section 4 as a subsection

Re-organized Additional Deployment Scenarios for containerized

network benchmarking contents from Section 3. Containerized

Infrastructure Overview to new Section 4. Benchmarking

Considerations as the Addtional Deployment Scenarios subsection

Added new Addtional Configuration Parameters subsection to new

Section 4. Benchmarking Considerations

Moved previous Section 5. Performance Impacts into new Section 4.

Benchmarking Considerations as the Deployment settings impact on

network performance section

Updated eBPF Acceleration Model with AFXDP deployment option

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Enhanced Abstract and Introduction's description about the draft's

motivation and contribution.

A.6. Since draft-dcn-bmwg-containerized-infra-07

Added eBPF Acceleration Model in Section 4. Networking Models in

Containerized Infrastructure

Added Model Combination in Section 4. Networking Models in

Containerized Infrastructure

Added Service Function Chaining in Section 5. Performance Impacts

Added Troubleshooting and Results for SRIOV-DPDK Benchmarking

Experience

A.7. Since draft-dcn-bmwg-containerized-infra-06

Added Benchmarking Experience of Multi-pod Test

A.8. Since draft-dcn-bmwg-containerized-infra-05

Removed Section 3. Benchmarking Considerations, Removed Section 4.

Benchmarking Scenarios for the Containerized Infrastructure

Added new Section 3. Containerized Infrastructure Overview, Added

new Section 4. Networking Models in Containerized Infrastructure.

Added new Section 5. Performance Impacts

Re-organized Subsection Comparison with the VM-based Infrastructure

of previous Section 3. Benchmarking Considerations and previous

Section 4.Benchmarking Scenarios for the Containerized

Infrastructure to new Section 3. Containerized Infrastructure

Overview

Re-organized Subsection Container Networking Classification of

previous Section 3. Benchmarking Considerations to new Section 4.

Networking Models in Containerized Infrastructure. Kernel-space

vSwitch models and User-space vSwitch models were presented as

seperate subsections in this new Section 4.

Re-organized Subsection Resource Considerations of previous Section

3. Benchmarking Considerations to new Section 5. Performance Impacts

as 2 seperate subsections CPU Isolation / NUMA Affinity and

Hugepages. Previous Section 5. Additional Considerations was moved

into this new Section 5 as the Additional Considerations subsection.

Moved Benchmarking Experience contents to Appendix

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A.9. Since draft-dcn-bmwg-containerized-infra-04

Added Benchmarking Experience of SRIOV-DPDK.

A.10. Since draft-dcn-bmwg-containerized-infra-03

Added Benchmarking Experience of Contiv-VPP.

A.11. Since draft-dcn-bmwg-containerized-infra-02

Editorial changes only.

A.12. Since draft-dcn-bmwg-containerized-infra-01

Editorial changes only.

A.13. Since draft-dcn-bmwg-containerized-infra-00

Added Container Networking Classification in Section 3.Benchmarking

Considerations (Kernel Space network model and User Space network

model).

Added Resource Considerations in Section 3.Benchmarking

Considerations(Hugepage, NUMA, RX/TX Multiple-Queue).

Renamed Section 4.Test Scenarios to Benchmarking Scenarios for the

Containerized Infrastructure, added 2 additional scenarios BMP2VMP

and VMP2VMP.

Added Additional Consideration as new Section 5.

Contributors

Kyoungjae Sun - ETRI - Republic of Korea

Email: kjsun@etri.re.kr

Hyunsik Yang - KT - Republic of Korea

Email: yangun@dcn.ssu.ac.kr

Acknowledgments

The authors would like to thank Al Morton for their valuable ideas

and comments for this work.

Authors' Addresses

Minh-Ngoc Tran

Soongsil University

369, Sangdo-ro, Dongjak-gu

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Seoul

06978

Republic of Korea

Phone: +82 28200841

Email: mipearlska1307@dcn.ssu.ac.kr

Sridhar Rao

The Linux Foundation

B801, Renaissance Temple Bells, Yeshwantpur

Bangalore 560022

India

Phone: +91 9900088064

Email: srao@linuxfoundation.org

Jangwon Lee

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 1074484664

Email: jangwon.lee@dcn.ssu.ac.kr

Younghan Kim

Soongsil University

369, Sangdo-ro, Dongjak-gu

Seoul

06978

Republic of Korea

Phone: +82 1026910904

Email: younghak@ssu.ac.kr

tel:+82%2028200841
mailto:mipearlska1307@dcn.ssu.ac.kr
tel:+91%209900088064
mailto:srao@linuxfoundation.org
tel:+82%201074484664
mailto:jangwon.lee@dcn.ssu.ac.kr
tel:+82%201026910904
mailto:younghak@ssu.ac.kr

	Considerations for Benchmarking Network Performance in Containerized Infrastructures
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Terminology
	4. Scope
	5. Benchmarking Considerations
	5.1. Networking Models
	5.1.1. Kernel-space non-Acceleration Model
	5.1.2. User-space Acceleration Model
	5.1.3. eBPF Acceleration Model
	5.1.4. Smart-NIC Acceleration Model
	5.1.5. Model Combination

	5.2. Resources Configuration
	5.2.1. CPU Isolation / NUMA Affinity
	5.2.2. Pod Hugepages
	5.2.3. Pod CPU Cores and Memory Allocation
	5.2.4. Service Function Chaining
	5.2.5. Additional Considerations

	6. Security Considerations
	7. References
	7.1. Informative References

	Appendix A. Change Log (to be removed by RFC Editor before publication)
	A.1. Since draft-dcn-bmwg-containerized-infra-12
	A.2. Since draft-dcn-bmwg-containerized-infra-11
	A.3. Since draft-dcn-bmwg-containerized-infra-10
	A.4. Since draft-dcn-bmwg-containerized-infra-09
	A.5. Since draft-dcn-bmwg-containerized-infra-08
	A.6. Since draft-dcn-bmwg-containerized-infra-07
	A.7. Since draft-dcn-bmwg-containerized-infra-06
	A.8. Since draft-dcn-bmwg-containerized-infra-05
	A.9. Since draft-dcn-bmwg-containerized-infra-04
	A.10. Since draft-dcn-bmwg-containerized-infra-03
	A.11. Since draft-dcn-bmwg-containerized-infra-02
	A.12. Since draft-dcn-bmwg-containerized-infra-01
	A.13. Since draft-dcn-bmwg-containerized-infra-00

	Contributors
	Acknowledgments
	Authors' Addresses

