
N/A A. Deason

Internet-Draft M. Meffie

Intended status: Experimental T. Keiser

Expires: July 17, 2010 Sine Nomine

January 13, 2010

Methods of Specifying Restrictions on AFS3 ACLs

draft-deason-afs3-acl-restrictions-01

Abstract

The AFS-3 ACL 'a' bit gives users unfettered power to grant, or revoke,

privileges, with no provision for enforcing site policy. This memo

provides several alternative mechanisms for creating restrictions on

what powers the 'a' bit denotes. Three alternative mechanisms for

restricting the power of the 'a' bit are proposed: a method for

overlaying the ACL with a site-controlled ACL; a method for masking the

ACL with a site-controlled privilege mask; and a finely granular meta-

acl mechanism for restricting to whom privileges may be delegated, and

which privileges may be given to different classes of principals. This

memo will serve as a basis for the ACL restriction discussion with the

AFS-3 protocol working group. The intended goal of this discussion is

to reach consensus on standardization of one or more solutions, and

then publish a BCP status memo.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF), its areas, and its working groups. Note that other groups

may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://

www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 17, 2010.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the BSD License.

1. Introduction

Currently sites may give users administrative rights on certain

directories in AFS, such as home directories and shared project

directories. Users should not, but can, give overly permissive ACLs to

those directories. For example, a user could give write and even admin

permissions to the system:anyuser group ('fs sa $HOME system:anyuser

rlidwka').

This can which can lead to problematic situations, especially for

directories that can be served over http. As it stands today, the only

possible way for AFS administrators to prevent this (at least in

OpenAFS) is to monitor the fileserver's audit log, and correct ACLs

that are overly permissive. But this is suboptimal, and is an after-

the-fact check.

If you see a viable solution to this problem not listed here, or see

any problems with our methods, please let us know. Or if a solution to

this problem is valuable to you or your organization, also please let

us know.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 (Bradner, S.,

“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

2. Proposed solutions

Discussions have shown that preventing this is not a simple issue, and

that there are a few ways to go about it, each with advantages and

disadvantages. Here we will outline 3 general approaches, and show how

to use them to meet certain illustrative use cases.

Since the rest of this is quite long, here's a quick summary of the

conclusions. We have three methods: 'method A' is the "volume-level ACL

overlays" idea, 'method B' is the "volume ACL masks" idea, and 'method

C' is the "volume ACL policies" idea. While none of these in themselves

cover all corners of all possible use cases, we would probably

implement either C by itself, or A and B together to cover a large

enough majority of use cases. Of course, unless a serious problem is

found, there is no reason to not implement all three.

The bottom line is that I find method C to be the most flexible and the

least confusing to end-users, but it is the most confusing to

administrators, and it is the slowest (when changing the volume-level

permissions). Using methods A+B has the opposite pros/cons.

Here are the details. Each method has an explanation for what it

generally is and how it works, followed by its use in a few simple use-

case scenarios, followed by the pros/cons.

2.1. Method A: volume-level ACL overlays

With this method, we maintain a single additional ACL in the volume

metadata, which is applied to access checks in the volume after

performing the per-directory ACL check. It can be thought of as similar

to the OpenAFS fileserver's -implicit flag, but more generalized.

For example, if we wanted a volume where system:backups was guaranteed

to have 'rl' rights, and system:evilusers was guaranteed to not have

any rights, the volume-level ACL overlay would look like this:

positive:

 system:backups rl

negative:

 system:evilusers rlidwka

Thus, any time an access check is done on an ACL anywhere in the

volume: after we do the normal directory ACL check, we look at this

volume-level ACL. If the accessing user is in system:backups, they will

get rl rights, and if they are in system:evilusers, all of their rights

will go away.

2.1.1. How do I prevent system:anyuser/system:authuser write access?

To prevent system:anyuser from having write access, we will need to

allow specifying the 'anonymous' user in the volume-level ACL, which

refers only to unauthenticated accesses. Then, you just give negative

write rights to the anonymous user. The command would look something

like:

 vos setacl -vol user.adeason -acl anonymous idwka -neg

For system:authuser, you cannot prevent write access with this method.

It is a limitation of this approach. (Giving system:authuser negative

idwka rights would revoke those rights from _all_ authenticated users,

which is probably not what you want to do.)

2.1.2. How do I ensure nobody in group.foo gets write access?

Just grant negative idwka access to group.foo on the volume. Something

like:

 vos setacl -vol user.adeason -acl group.foo idwka -neg

Members of group.foo will now not be able to write anything in the

volume.

2.1.3. How do I guarantee group.bar read access?

Same as above, just grant positive read rights. Something like:

 vos setacl -vol user.adeason -acl group.bar rl

2.1.4. Method A advantages

Changing the volume-level rights is quick. *

Minimal end-administrator confusion; this is relatively simple to

understand.

Simpler than method C to implement.

2.1.5. Method A disadvantages

We have no way to restrict access of special groups like

system:authuser or host IP groups. To get this, we'd have to

combine with method with method B or C.

There is no way to override the volume-level ACL, and have an

administrator force e.g. system:anyuser write access on a

particular directory.

Higher end-user confusion. With legacy 'fs listacl', there is no

way to see that there is a volume-level ACL in play, and users

may have no idea why access is failing for certain cases. Of

course, releasing new tools can fix that.

Performance impact is an extra O(n) ACL calculation for the

volume-level ACL overlay in the critical path. But those ACLs

should be small anyway.

2.2. Method B: volume ACL masks

With this method, we maintain a mapping of users to a rights mask. Any

time an ACL access check is performed, if a positive ACL entry matches

a user in that table, the acquires rights are masked to the rights mask

in the table.

For example, if we wanted to prevent users from giving away write

access to system:anyuser, and prevent users from giving admin access to

system:authuser, we could have a table like so:

system:anyuser rl

system:authuser rlidwk

So any time an ACL entry for system:anyuser appears, everything is

treated as if the rights in that ACL entry were logically ANDed with

'rl'. So no user can gain more than 'rl' rights on a directory simply

by being in system:anyuser.

*

*

*

*

*

*

2.2.1. How do I prevent system:anyuser/system:authuser write access?

Set the rights mask for them to just 'rl'. Something like:

 vos setaclmask -vol user.adeason -user system:anyuser -mask rl

So any time an ACL entry for system:anyuser appears in the volume,

everything will act as if the rights were limited to rl.

2.2.2. How do I ensure nobody in group.foo gets write access?

You cannot _prevent_ access for an arbitrary group with this method,

but you can make it harder to do accidentally. You can set the rights

mask like so:

 vos setaclmask -vol user.adeason -user group.foo -mask rl

Which restricts any rights for group.foo on any ACL to be restricted to

'rl'. However, a user can intentionally work around this by simply

placing group.foo in another group:

 pts creategroup adeason:foo

 pts adduser group.foo adeason:foo

 fs setacl $DIR adeason:foo rlidwka

Since group.foo itself never apears in the ACL, the ACL mask is

bypassed.

2.2.3. How do I guarantee group.bar read access?

You cannot. This method cannot grant additional rights.

2.2.4. Method B advantages

Changing the rights mask is quick.

Runtime performance overhead in the critical path is O(1).

2.2.5. Method B disadvantages

Not as useful for non-'special' groups. That is, it can be

trivially worked around, unless you only use this for groups like

system:anyuser, system:authuser, or host IP groups.

No way to override the ACL masks on a particular directory, if

the administrator wants to.

Higher end-user confusion with legacy client tools. There's no

way to see what the ACL rights are restricted to until newer

client tools are deployed.

2.3. Method C: volume ACL policies

With this method, we maintain policies of who is allowed to set what

ACLs in a volume. That is, unlike methods A and B, we perform

additional access checks at SetACL time, not at the time when the files

are accessed. We would have 4 volume-level ACLs that define what users

are allowed to add positive rights ('add-positive'), remove positive

rights ('remove-positive'), add negative rights ('add-negative'), and

remove negative rights ('remove-negative').

For example, to allow nobody but system:powerusers to grant idwka

rights to system:anyuser, we'd have a policy for system:anyuser that

would look like this:

add-positive:

 system:powerusers rlidwka

 system:anyuser rl

After that policy is set, any time a user not in system:powerusers

tries to grant system:anyuser more than rl rights, they will get an

EACCES error. This does not change the existing ACLs in the volume; an

administrator will need to run an auditing tool to make sure that

existing ACLs comply with the volume policy.

*

*

*

*

*

2.3.1. How do I prevent system:anyuser/system:authuser write access?

You would call something like this

 vos setpolicy -add-positive \

 -user system:anyuser \

 -set-rights rl \

 -for-user system:anyuser \

 -in-volume user.adeason

to prevent people from giving system:anyuser write access. To ensure

that existing ACLs don't permit write access, you would need to run

something like

 vos auditpolicy -vol user.adeason

2.3.2. How do I ensure nobody in group.foo gets write access?

To prevent an arbitrary normal group from getting write access, things

are slightly different. You would need to prevent users from taking

away negative idwka rights, and then assign negative idwka rights to

all directories in the volume. So, something like

 vos setpolicy -remove-negative \

 -user system:anyuser \

 -set-rights rl \

 -for-user group.foo \

 -in-volume user.adeason

Would allow users to only remove 'rl' rights from group.foo in negative

ACLs. Then you would need to set negative idwka ACLs on all directories

in the volume.

2.3.3. How do I guarantee group.bar read access?

Prevent normal users from taking away read access from group.bar, and

from granting negative read access for group.bar:

 vos setpolicy -remove-positive \

 -user system:anyuser \

 -set-rights idwka \

 -for-user group.bar \

 -in-volume user.adeason

 vos setpolicy -add-negative \

 -user system:anyuser \

 -set-rights idwka \

 -for-user group.bar \

 -in-volume user.adeason

Then, grant read access for group.bar in all directories in the volume.

2.3.4. Method C advantages

More flexible for a variety of situations. In particular, this

allows administrators (or an arbitrary administrator-defined set

of users) to override the volume policies, and set e.g.

system:anyuser write on a particular directory if they so wish.

No performance overhead at access-check time. All of the

additional access checks are done during SetACL.

Minimal end-user confusion. ACLs accurately represent exactly

what rights different users have. Trying to set an ACL that

violates the policy will result in EACCES, so they know the

SetACL operation didn't work. It may be confusing as to why it

did not, but at least it is clear that the ACL was not changed.

2.3.5. Method C disadvantages

Volumes need to be 'audited' (or all of the ACLs just need to be

set) to make sure they comply with the ACL policy, which can be

very slow.

*

*

*

*

Higher end-administrator confusion. This by far the most

confusing method for administrators to set ACL policies.

3. Summary

As I mentioned, we could just do all of these, since they are

potentially best suited to different scenarios. Either method C by

itself or methods A and B together do seem to cover most of the

immediately-apparent use cases, though. To summarize the general areas

in which the different methods are better or worse:

 Better | Worse

flexibility: : method C | method A+B

end-user confusion : method C | method A+B

end-admin confusion: method A+B | method C

policy-change speed: method A+B | method C

There are other pros and cons, but I think those areas are the only

ones where it matters much. If you see any problems that aren't listed

here, or if you particularly want one of the described methods, please

let us know.

4. Acknowledgements

The authors would like to thank Jim Rowan for discussing problematic

interactions between the proposed ACL policy management techniques and

PTS user-managed groups, and Jeffrey Altman for helping to better frame

the problem statement and proposing alternative implementations.

5. IANA Considerations

This memo includes no request to IANA.

*

6. Security Considerations

The existing security model is known to be flawed. This draft attempts

to improve the situation by limiting the extent to which end users can

modify file system permissions. However, it is known that this is not

sufficient to address all possible ACL attack vectors. Two key areas of

concern are authorization for modification of policy metadata, and

interaction with user-managed PTS groups.

How modification of policy data will be authorized in an environment

using RBAC is not clear; it is known that system:administrators is not

always the appropriate group of principals. In highly secured

environments there may be a desire to restrict modification of policy

to a security-related group, rather than the group responsible for

maintaining the AFS server plant. This is not addressed in the memo,

although it could be addressed by means of additional per-volume

metadata.

There are proposed attack vectors by which a user-managed group can be

used to get around ACL restrictions. While these attacks can bypass a

naive ACL policy specification, it is possible to circumvent these

techniques through the use of negative access control policy entries.

7. Normative References

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate

Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,

HTML, XML).

Authors' Addresses

Andrew Deason

Sine Nomine Associates

43596 Blacksmith Square

Ashburn, Virginia 20147-4606

USA

Phone: +1 703 723 6673

Email: adeason@sinenomine.net

Michael Meffie

Sine Nomine Associates

43596 Blacksmith Square

Ashburn, Virginia 20147-4606

USA

Phone: +1 703 723 6673

Email: mmeffie@sinenomine.net

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:adeason@sinenomine.net
mailto:mmeffie@sinenomine.net

Thomas Keiser

Sine Nomine Associates

43596 Blacksmith Square

Ashburn, Virginia 20147-4606

USA

Phone: +1 703 723 6673

Email: tkeiser@sinenomine.net

mailto:tkeiser@sinenomine.net

	Methods of Specifying Restrictions on AFS3 ACLsdraft-deason-afs3-acl-restrictions-01
	Abstract
	Status of this Memo
	Copyright Notice
	1. Introduction
	1.1. Requirements Language
	2. Proposed solutions
	2.1. Method A: volume-level ACL overlays
	2.1.1. How do I prevent system:anyuser/system:authuser write access?
	2.1.2. How do I ensure nobody in group.foo gets write access?
	2.1.3. How do I guarantee group.bar read access?
	2.1.4. Method A advantages
	2.1.5. Method A disadvantages
	2.2. Method B: volume ACL masks
	2.2.1. How do I prevent system:anyuser/system:authuser write access?
	2.2.2. How do I ensure nobody in group.foo gets write access?
	2.2.3. How do I guarantee group.bar read access?
	2.2.4. Method B advantages
	2.2.5. Method B disadvantages
	2.3. Method C: volume ACL policies
	2.3.1. How do I prevent system:anyuser/system:authuser write access?
	2.3.2. How do I ensure nobody in group.foo gets write access?
	2.3.3. How do I guarantee group.bar read access?
	2.3.4. Method C advantages
	2.3.5. Method C disadvantages
	3. Summary
	4. Acknowledgements
	5. IANA Considerations
	6. Security Considerations
	7. Normative References
	Authors' Addresses

