
N/A A.P.D. Deason

Internet-Draft Sine Nomine

Intended status: Informational August 27, 2011

Expires: February 28, 2012

Base Types for Time in AFS-3

draft-deason-afs3-type-time-03

Abstract

This document defines three types to be used in future AFS-3 Rx Remote

Procedure Calls (RPCs) to represent time. Current AFS-3 RPCs represent

time as 32-bit integers representing seconds. This is insufficient in

both granularity and range, so new types to represent time are defined

in this document to overcome these limitations.

Internet Draft Comments

Comments regarding this draft are solicited. Please include the AFS-3

protocol standardization mailing list (afs3-

standardization@openafs.org) as a recipient of any comments.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on February 28, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document.

Table of Contents

1. Introduction*

2. Conventions Used in this Document

3. Data Types

3.1. AFSAbsTime64

3.2. AFSRelTime64

3.3. AFSAbsTime64Res

3.3.1. Resolution Assumptions

4. Time Resolution

4.1. Sources of Differing Time Resolutions

4.2. Relevance to AFS-3

4.3. When to Include Resolution Information

5. Resolution Limitations

6. Times Before UTC

7. Converting Time Types

7.1. Special Cases

7.2. Sample Code

8. Security Considerations

9. IANA Considerations

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Author's Address

1. Introduction

All extant AFS-3 RPCs represent time as a 32-bit integer, as encoded by

XDR in [RFC4506], which represents a number of seconds. For RPCs that

specify an absolute time, this is the number of seconds that have

passed since since midnight or 0 hour January 1, 1970 Coordinated

Universal Time (UTC), not counting leap seconds. These time structures

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

will be unusable after January 2038, and are already insufficient to

represent time with more granularity than one second.

This limited granularity creates inefficiencies in various parts of the

AFS-3 protocol when it must be determined in what order two events have

occurred (for example, whether or not a file was changed since the last

time a volume has been backed up). When those two events have occurred

during the same second, implementations must take a conservative

assumption about which event occurred first, often resulting in

unnecessary duplication or retransmission of data. In addition,

metadata can be lost when files are copied to AFS from other

filesystems that store file modification times with finer granularity

than one second.

This document defines three new types to represent time to overcome

these limitations: AFSAbsTime64, AFSRelTime64, and AFSAbsTime64Res. All

of these support a much wider time range at a much higher granularity

than the current time representations. AFSRelTime64 is to be used to

represent times relative to some other event, and AFSAbsTime64 is to be

used to represent absolute time stamps. AFSAbsTime64Res is to be used

to represent a small range of absolute time, which is necessary for

determining relative ordering of events, as described in Section 4.

All of these new types also have the additional benefit of providing

standard type identifiers to be used when specifying absolute or

relative time in AFS-3 RPC arguments and structures. Currently, all

time values are just defined as "afs_int32" types in the XDR language

definitions. This can make it confusing whether or not a field is an

absolute time, relative time, or something else completely. Using the

new standard time types will make this clear and unambiguous.

2. Conventions Used in this Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Data Types

This document defines three new data types: AFSAbsTime64, AFSRelTime64,

and AFSAbsTime64Res. All of these are encoded on the wire using the XDR

standard described in [RFC4506], and are described using the XDR

language specification therein.

3.1. AFSAbsTime64

The new AFSAbsTime64 type is represented as an XDR-encoded 64-bit

signed integer representing the timestamp. It is defined as thus in

XDR:

 typedef hyper AFSAbsTime64;

The AFSAbsTime64 type represents time relative to midnight or 0 hour

January 1, 1970 Coordinated Universal Time (UTC), represented in

increments of 100 nanoseconds (ns). If the value is greater than zero,

the value represents the amount of time that has passed since midnight

January 1, 1970 UTC, excluding any leap seconds. If the value is less

than zero, the value represents the amount of time before midnight

January 1, 1970 UTC.

For example, to represent the time 60 seconds after midnight on January

1, 1970 UTC, the value of the field would be 600000000 (600 million).

To represent the time 60 seconds before midnight January, 1970 UTC, the

value of the field would be -600000000 (negative 600 million).

This type can represent any time in the year 27258 BCE through any time

in the year 31196 CE with 100-ns granularity. For timestamps before

1972, see the notes in Section 6.

3.2. AFSRelTime64

The new AFSRelTime64 type has same representation on the wire as

AFSAbsTime64 in Section 3.1:

 typedef hyper AFSRelTime64;

The AFSRelTime64 type represents an amount of time that has passed

since some other event, represented in increments of 100 nanoseconds

(ns). The event to which this time is relative is unspecified, and can

be anything; it must be specified by the RPC or structure that defines

a field of the AFSRelTime type.

Values greater than 0 represent dates that occur after the relative

event, and values less than 0 represent dates that occur before the

relative event.

For example, to represent the time 5 seconds before some other event,

the value of the timestamp field would be -50000000 (negative 50

million).

3.3. AFSAbsTime64Res

The new AFSAbsTime64Res type is represented as an XDR-encoded structure

on the wire, containing an AFSAbsTime64 and a 32-bit unsigned integer

representing the resolution. It is defined as thus in XDR:

 struct AFSAbsTime64Res {

 AFSAbsTime64 timestamp;

 unsigned int resolution;

 };

The AFSAbsTime64Res structure represents the amount of time that has

passed since midnight or 0 hour January 1, 1970 Coordinated Universal

Time (UTC), excluding any leap seconds. The value of the timestamp

field is this amount of time represented as described in Section 3.1.

The resolution field represents the resolution of the time source from

which the timestamp was obtained. The value of the resolution field is

the difference between the represented time, and another time after the

represented time that is guaranteed to be after the actual time at

which the event in question occurred.

In other words, let X be the time that some event occurred, Y be the

value of the timestamp field in an AFSAbsTime64Res structure, and Z be

the value of the resolution field. To construct an AFSAbsTime64Res

structure that represents X, the values of the timestamp and resolution

field MUST be specified such that Y <= X < Y + Z. Typically the value

of the resolution field will just be the resolution of the time source

from which the timestamp was obtained, if the resolution of the time

source is constant.

For example, to represent the time 60 seconds after midnight on January

1, 1970, the value of the timestamp field would be 600000000 (600

million) as described in Section 3.1. If this time stamp was obtained

from a source that only represents time in seconds, the next

representable time is 61 seconds after midnight on January 1, 1970, so

it is guaranteed that the event in question occurred before that time

(otherwise the time source would give us a time of 61 seconds). So the

value of the resolution field should be 10000000 (10 million). In

effect, this AFSAbsTime64Res structure represents an event that

occurred at or after 60 seconds after January 1, 1970, but occurred

before 61 seconds after January 1, 1970.

For more details about the resolution field (including the motivation

for its existence), see Section 4.

3.3.1. Resolution Assumptions

If the resolution field has the value of 0, the resolution of the

specified timestamp is unknown. If an implementation has absolutely no

mechanism to determine the resolution of a time source when creating a

time stamp, it MUST specify a resolution of 0. If an implementation

needs to use an AFSAbsTime64Res value for calculating event ordering,

and the resolution is 0, it SHOULD assume a resolution of 1 second, and

round the timestamp down to the nearest second.

An AFS-3 implementation MUST NOT ever specify a resolution greater than

1 second (10000000 100-ns increments). Implementations of the AFS-3

protocol that exist prior to the introduction of the new time types in

this document assume that the time resolution is 1 second, and may not

behave correctly with time sources that are less granular than 1

second. No systems nor file formats that are related to any AFS-3

implementation are known that do not have at least 1-second

granularity, so adhering to this should not be a problem.

If an implementation receives an AFSAbsTime64Res structure with a

granularity coarser than 1 second, it MUST treat it as an invalid time

representation. What that entails depends on the context, but the

AFSAbsTime64Res value MUST NOT be used for any calculations and SHOULD

be immediately discarded. Typically an RPC will raise some kind of

error in this condition, but the exact behavior is up to the relevant

RPC or other operation.

4. Time Resolution

The new type AFSAbsTime64Res includes information about the resolution

or granularity of the time it represents. The reason for including this

information may not be immediately clear, so this section provides some

information on why this information is beneficial.

4.1. Sources of Differing Time Resolutions

All current AFS-3 implementations represent time as a 32-bit integer on

the wire, and so it is common for implementations to internally

represent time as 32-bit integers, with 1-second granularity. As such,

when implementations support the time types defined in this document,

it is likely that there will be a period of time where implementations

cannot store or represent time with greater granularity than 1-second,

even though the protocol allows them to do so.

In addition, due to technical restrictions of various platforms, or

other sources of time (such as file formats), implementations may be

only able to transmit time information in certain granularities. For

example, the operating system that an AFS-3 Volume Server

implementation runs on may only be able to retrieve the current time in

increments of 1 millisecond. Or, an AFS-3 Volume Server implementation

may be reading the time information from a file, and the file only

represents time in increments of 1 second.

From this, it is clear that implementations will send time of various

granularity when communicating with other services and clients in

AFS-3, and the granularity of time may vary even within the same

implementation process (depending on from where it is obtaining the

time).

4.2. Relevance to AFS-3

Timestamps are sometimes used in AFS-3 to establish a relative non-

strict total ordering of events. That is, given the events X and Y, we

must determine whether X or Y occurred first, or if they occurred at

approximately the same time. This primarily occurs in volume operations

when incremental data is sent, and exactly what incremental data is

sent is determined by the timestamps of other volumes. If we get the

ordering wrong, problems with data inconsistency can occur. If we

conservatively determine that two events occurred at the same time when

we could have correctly made the determination that one occurred before

the other, inefficiencies arise.

In order to be able to order such events, then, we must know the

resolution of the time value that is stored. This is so we know the

earliest possible time that the event occurred, and the latest possible

time that the event occurred.

4.3. When to Include Resolution Information

There are two time types defined in this document to represent an

absolute timestamp: AFSAbsTime64 and AFSAbsTime64Res. The only

difference between these two types is that AFSAbsTime64Res includes

resolution information, and AFSAbsTime64 does not. This section serves

to guide designers of future AFS-3 RPCs in what circumstances each type

should be used.

When deciding whether to use AFSAbsTime64 or AFSAbsTime64Res in a

structure field or RPC argument, the first determination that must be

made is whether the timestamp value will or could ever be used to make

ordering decisions by an AFS-3 service. If it will or could, then the

argument or field should be of the AFSAbsTime64Res type.

Otherwise, the determination should be made whether or not any service

(possibly unrelated to AFS-3) may realistically make ordering decisions

based on the field or argument. If it may, then the AFSAbsTime64Res

type should be considered; otherwise, the AFSAbsTime64 type should be

used.

For example, as mentioned in Section 4.2, the AFS-3 Volume Service and

clients make ordering decisions based on timestamps related to when

volume operations have occurred. So, timestamp fields related to volume

operations should probably use the AFSAbsTime64Res type.

However, when a timestamp is used to represent the modification time of

a file in AFS, that timestamp is not used by AFS-3 services to make any

ordering decisions. While it is possible that some software unrelated

to AFS-3 may try to make ordering decisions based off of that

timestamp, it is unlikely to be able to do so reliably. This is because

file modification timestamps can usually be set to any time by humans,

and any time resolution information stored is usually not available to

programs that are not AFS-3-aware. And in general, AFS-3 file metadata

is not intended to be a general-purpose distributed synchronization

mechanism. So, file modification timestamps should probably use the

AFSAbsTime64 type.

5. Resolution Limitations

The types specified in this document are limited to 100-nanosecond

resolution or coarser. There are other systems which may interact with

AFS-3 that have finer resolution; for example, the NFSv4 nfstime4

structure in Section 2.2 of [RFC3530] and the timespec structure in

[POSIX] both allow for timestamps with a resolution of 1-ns. Because of

this, there are inherent problems with interacting with such systems.

It is believed that for a large majority of use cases, timestamps with

resolution finer than 100-nanoseconds are not necessary, and so the

types defined in this document should be sufficient. However, there may

be use cases in which resolution finer than 100-ns is required. In

addition, there are also several use cases where the legacy 32-bit

timestamps are adequate, and the additional space overhead of the types

defined by this document may be considered unnecessary overhead.

This document does not accommodate for those cases, but this document

does not restrict AFS-3 to only use the time types defined in this

document. It is recommended that future AFS-3 RPCs are designed such

that they make take advantage of several different time types of

varying resolutions, so that such use cases can be accommodated while

not sacrificing the space efficiency for the common case addressed by

the time types defined in this document. Any such method of

accommodating for different time types are left up to the individual

RPCs or wire structures, and are not discussed here.

6. Times Before UTC

The absolute time types defined in this document are specified as

relative to midnight January 1, 1970 UTC, excluding leap seconds, and

times far earlier than that are also representable. It is worthy to

note that UTC did not exist until January 1, 1972, and so times before

1972 specified as UTC are technically meaningless. However, it is

convenient to assume that UTC has existed for all eternity. For all

times before 1972, we represent time as if UTC has always existed,

using the obvious backwards projection of the current UTC time zone and

Gregorian calendar rules.

7. Converting Time Types

In general, when converting an AFSAbsTime64 or AFSAbsTime64Res value to

some other type that has granularity coarser than 100 ns granularity,

the resulting value MUST always be rounded down to the nearest lower

increment of the resultant type. When converting to the POSIX time_t

type, for example, the AFSAbsTime or AFSAbsTime64Res value MUST be

rounded down to the nearest lower second. When converting to the POSIX

struct timeval type, the value MUST be rounded down to the nearest

lower microsecond.

When converting to or from the Microsoft FILETIME format, a constant

value must be added or subtracted, since FILETIME specifies time

relative to midnight 1 January 1601 UTC, but AFSAbsTime64 and

AFSAbsTime64Res specify time relative to midnight 1 January 1970 UTC.

When converting from an AFSAbsTime64 to a Microsoft FILETIME, the value

116444736000000000 must be subtracted from the AFSAbsTime64 value. When

converting to an AFSAbsTime64 from a Microsoft FILETIME, the value

116444736000000000 must be added to the FILETIME value.

It is also important to keep in mind that when converting from

AFSAbsTime64Res to time_t or FILETIME types, strictly speaking the

AFSAbsTime64Res structure represents two times: the beginning and end

time. So it is impossible to accurately convert an AFSAbsTime64Res

structure to a single time value. This is often unavoidable when

converting to legacy AFS-3 interfaces, or interfaces unrelated to

AFS-3, however, and when only one time value is given to convert to,

implementations MUST specify the beginning time (that is, the time

represented by the timestamp field).

7.1. Special Cases

Extant AFS-3 RPCs often use a timestamp of 0 to represent a special

meaning. That is, a timestamp of 0 often does not indicate midnight 1

January 1970 UTC, but may represent a logical value of "negative

infinity", or indicates some special meaning that is specific to that

RPC. The value of 0 was often just used because it is the earliest

representable time for a 32-bit unsigned integer.

Any such special meanings must be specified by the RPC in question, and

this document assigns no special meaning to the value of 0 for any of

the types defined in this document. However, this document recommends

that any future RPCs keep the special meaning of the 0 timestamp, if

the RPC is replacing an RPC that previously had a special meaning for

timestamp 0, even though that is no longer the earliest representable

time. If the new RPC uses an AFSAbsTime64Res argument, the resolution

field should be 0, as well.

For example, say there is an AFS-3 RPC called AFSFoo that accepts an

afs_uint32 absolute timestamp argument, and it specifies that a

timestamp of 0 represents some special case. Let another RPC, AFSFoo64,

define an RPC that is identical to AFSFoo except that it accepts an

AFSAbsTime64Res parameter. AFSFoo64 should specify that a caller should

specify an AFSAbsTime64Res with timestamp 0, resolution 0, to indicate

the special case previously indicated by giving a 32-bit timestamp of

0.

7.2. Sample Code

Sample C code is provided here to convert AFSAbsTime64, AFSRelTime64,

and AFSAbsTime64Res values to and from FILETIME and POSIX time_t values

where appropriate. Also provided is a function to compare two

AFSAbsTime64Res values, and functions to add an AFSRelTime64 to an

AFSAbsTime64Res and AFSAbsTime64.

The conversion functions follow the recommendations in Section 7.1. So,

a time_t with the value of 0 will be converted to an AFSAbsTime with

the value of 0, or an AFSAbsTime64Res value of timestamp 0, resolution

0. AFSAbsTime64Res structures with a resolution of 0 (and a non-zero

timestamp) are treated as having an effective resolution of 1 second,

as suggested in Section 3.3.1.

These functions do not handle overflow, underflow, or other errors, and

are just guidelines for the general conversion algorithms.

#define AFSTIME64_WINNT_SHIFT 116444736000000000ULL

#define AFSTIME64_POSIX_SCALE 10000000U

#define AFSTIME64_DEFAULT_RES 10000000U

void

timet_to_AFSAbsTime64(time_t t, AFSAbsTime64 *atsp)

{

 *atsp = (t * AFSTIME64_POSIX_SCALE);

}

void

AFSAbsTime64_to_timet(AFSAbsTime64 ats, time_t *tp)

{

 *tp = (ats / AFSTIME64_POSIX_SCALE);

}

void

timet_to_AFSRelTime64(time_t t, AFSRelTime64 *artsp)

{

 *artsp = (t * AFSTIME64_POSIX_SCALE);

}

void

AFSRelTime64_to_timet(AFSRelTime64 arts, time_t *tp)

{

 *tp = (arts / AFSTIME64_POSIX_SCALE);

}

void

timet_to_AFSAbsTime64Res(time_t t, AFSAbsTime64Res *atp)

{

 timet_to_AFSAbsTime64(t, &atp->timestamp);

 if (t == 0) {

 atp->resolution = 0;

 } else {

 atp->resolution = AFSTIME64_POSIX_SCALE;

 }

}

void

AFSAbsTime64Res_to_timet(AFSAbsTime64Res *atp, time_t *t1, time_t *t2)

{

 unsigned int res = atp->resolution;

 if (res == 0) {

 res = AFSTIME64_DEFAULT_RES;

 }

 AFSAbsTime64_to_timet(atp->timestamp, t1);

 AFSAbsTime64_to_timet(atp->timestamp + res, t2);

}

void

FILETIME_to_AFSAbsTime64(FILETIME *ftp, AFSAbsTime64 *atsp)

{

 ULARGE_INTEGER uli;

 uli.LowPart = ftp->dwLowDateTime;

 uli.HighPart = ftp->dwHighDateTime;

 *atsp = uli.QuadPart - AFSTIME64_WINNT_SHIFT;

}

void

AFSAbsTime64_to_FILETIME(AFSAbsTime64 ats, FILETIME *ftp)

{

 ULARGE_INTEGER uli;

 uli.QuadPart = ats + AFSTIM64_WINNT_SHIFT;

 ftp->dwLowDateTime = uli.LowPart;

 ftp->dwHighDateTime = uli.HighPart;

}

void

AFSAbsTime64Res_to_FILETIME(AFSAbsTime64Res *atp, FILETIME *ft1,

 FILETIME *ft2)

{

 unsigned int res = atp->resolution;

 if (res == 0) {

 res = AFSTIME64_DEFAULT_RES;

 }

 AFSAbsTime64_to_FILEMTIME(atp->timestamp, ft1);

 AFSAbsTime64_to_FILEMTIME(atp->timestamp + res, ft2);

}

void

AFSAbsTime64Res_add_AFSRelTime64(AFSAbsTime64Res *atp,

 AFSRelTime64 arts)

{

 atp->timestamp += arts;

}

void

AFSAbsTime64_add_AFSRelTime64(AFSAbsTime *atsp,

 AFSRelTime arts)

{

 *atsp += arts;

}

int

cmp_AFSAbsTime64Res(AFSAbsTime64Res *atp1, AFSAbsTime64Res *atp2)

{

 unsigned int res1 = atp1->resolution;

 unsigned int res2 = atp2->resolution;

 if (res1 == 0) {

 res1 = AFSTIME64_DEFAULT_RES;

 }

 if (res2 == 0) {

 res2 = AFSTIME64_DEFAULT_RES;

 }

 if (atp1->timestamp + res1 <= atp2->timestamp) {

 return -1;

 }

 if (atp2->timestamp + res2 <= atp1->timestamp) {

 return 1;

 }

 return 0;

}

8. Security Considerations

This memo raises no security issues.

9. IANA Considerations

This document makes no request of the IANA.

10. Acknowledgements

The author thanks Simon Wilkinson and Jeffrey Altman for some

background text, Jeffrey Altman, David Boyes, Tom Keiser, and Simon

Wilkinson for discussion on the problem of time resolution, Steven

Jenkins for discussion on interoperability concerns, Russ Allbery for

input on UTC, leap seconds, and dates before 1970, and the general

membership of the afs3-standardization@openafs.org mailing list for

general discussion on the balance between time granularity and field

width overhead.

11. References

11.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

[RFC3530]

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,

Beame, C., Eisler, M. and D. Noveck, "Network File

System (NFS) version 4 Protocol", RFC 3530, April 2003.

[RFC4506]
Eisler, M., "XDR: External Data Representation

Standard", STD 67, RFC 4506, May 2006.

[POSIX]

Institute of Electrical and Electronics Engineers ,

"IEEE Standard for Information Technology - Portable

Operating System Interface (POSIX) Base Specifications,

Issue 7 ", IEEE Std 1003.1-2008, 2008.

Author's Address

Andrew Deason Deason Sine Nomine Associates 43596 Blacksmith Square

Ashburn, Virginia 20147-4606 USA Phone: +1 703 723 6673 EMail:

adeason@sinenomine.net

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3530
http://tools.ietf.org/html/rfc3530
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc4506
mailto:adeason@sinenomine.net

	Abstract
	Internet Draft Comments
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in this Document
	3. Data Types
	3.1. AFSAbsTime64
	3.2. AFSRelTime64
	3.3. AFSAbsTime64Res
	3.3.1. Resolution Assumptions
	4. Time Resolution
	4.1. Sources of Differing Time Resolutions
	4.2. Relevance to AFS-3
	4.3. When to Include Resolution Information
	5. Resolution Limitations
	6. Times Before UTC
	7. Converting Time Types
	7.1. Special Cases
	7.2. Sample Code
	8. Security Considerations
	9. IANA Considerations
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References
	Author's Address

