
QUIC Working Group Q. De Coninck
Internet-Draft O. Bonaventure
Intended status: Standards Track UCLouvain
Expires: 4 November 2021 3 May 2021

Multipath Extensions for QUIC (MP-QUIC)
draft-deconinck-quic-multipath-07

Abstract

 This document specifies extensions to the QUIC protocol to enable the
 simultaneous usage of multiple paths for a single connection. These
 extensions are compliant with the single-path QUIC design and
 preserve QUIC privacy features.

 Discussion about this draft is encouraged either on the QUIC IETF
 mailing list quic@ietf.org or on the GitHub repository which contains
 the draft: https://github.com/qdeconinck/draft-deconinck-multipath-

quic.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 4 November 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

De Coninck & Bonaventure Expires 4 November 2021 [Page 1]

https://github.com/qdeconinck/draft-deconinck-multipath-quic
https://github.com/qdeconinck/draft-deconinck-multipath-quic
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft MP-QUIC May 2021

 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Definitions 4
2.1. Notation Conventions 5

3. Overview . 5
3.1. Moving from Bidirectional Paths to Uniflows 5
3.2. Beyond Connection Migration 7
3.3. Establishment of a Multipath QUIC Connection 8
3.4. Architecture of Multipath QUIC 9
3.5. Uniflow Establishment 11
3.6. Exchanging Data over Multiple Uniflows 12
3.7. Exchanging Addresses 14
3.8. Coping with Address Removals 15
3.9. Uniflow Migration . 15
3.10. Handling Multiple Network Paths 15
3.11. Congestion Control 16

4. Mapping Uniflow IDs to Connection IDs 16
5. Using Multiple Uniflows 16
5.1. Multipath Negotiation 17
5.1.1. Transport Parameter Definition 17

5.2. Coping with Additional Remote Addresses 17
5.3. Receiving Uniflow State 18
5.4. Sending Uniflow State 19
5.5. Losing Addresses . 20

6. New Frames . 21
6.1. MP_NEW_CONNECTION_ID Frames 22
6.2. MP_RETIRE_CONNECTION_ID Frame 22
6.3. MP_ACK Frame . 23
6.4. ADD_ADDRESS Frame . 24
6.5. REMOVE_ADDRESS Frame 25
6.6. UNIFLOWS Frame . 26

7. Extension of the Meaning of Existing QUIC Frames 27
8. Security Considerations 27
8.1. Nonce Computation . 27
8.2. Validation of Exchanged Addresses 28

9. IANA Considerations . 28
9.1. QUIC Transport Parameter Registry 28

10. Acknowledgments . 29
11. References . 29
11.1. Normative References 29
11.2. Informative References 30

Appendix A. Comparison with Multipath TCP 31
A.1. Multipath TCP Bidirectional Paths vs. QUIC Uniflows . . . 31

https://trustee.ietf.org/license-info

De Coninck & Bonaventure Expires 4 November 2021 [Page 2]

Internet-Draft MP-QUIC May 2021

A.2. Negotiating the Multipath Extensions 32
A.3. Uniflow Establishment 32
A.4. Exchanging Data over Multiple Uniflows 33
A.5. Advertising Host's Addresses 33
A.6. Congestion Control 34

Appendix B. Change Log . 34
B.1. Since draft-deconinck-quic-multipath-06 34
B.2. Since draft-deconinck-quic-multipath-05 34
B.3. Since draft-deconinck-quic-multipath-04 34
B.4. Since draft-deconinck-quic-multipath-03 34
B.5. Since draft-deconinck-quic-multipath-02 35
B.6. Since draft-deconinck-quic-multipath-01 35
B.7. Since draft-deconinck-quic-multipath-00 35
B.8. Since draft-deconinck-multipath-quic-00 35

 Authors' Addresses . 36

1. Introduction

 Today's endhosts are equipped with several network interfaces. Users
 expect to be able to seamlessly switch from one interface to another
 one or use them simultaneously to aggregate bandwidth whenever
 needed. During the last years, several multipath extensions to
 transport protocols have been proposed (e.g., [RFC8684], [MPRTP], or
 [SCTPCMT]). Multipath TCP [RFC8684] is the most mature one. It is
 already deployed on popular smartphones, but also for other use cases
 [RFC8041] [IETFJ].

 With regular TCP and UDP, all the packets that belong to a given flow
 share the same 4-tuple {source IP address, source port number,
 destination IP address, destination port number} that acts as an
 identifier for this flow. This prevents these flows from using
 multiple paths.

 QUIC [I-D.ietf-quic-transport] does not use the 4-tuple as an
 implicit connection identifier. Instead, a QUIC flow is identified
 by a Connection ID. This enables QUIC to cope with events affecting
 the 4-tuple, such as NAT rebinding or IP address changes. The QUIC
 connection migration feature, specified in Section 9 of
 [I-D.ietf-quic-transport], enables migrating a flow from one 4-tuple
 to another one, sustaining in particular a connection over different
 network paths.

 Still, there is a void to specify simultaneous usage of QUIC over
 available network paths for a single connection. Use cases such as
 bandwidth aggregation or seamless network handovers would be
 applicable to QUIC, as they are now with Multipath TCP
 [RFC8041][IETFJ]. Experience with Multipath TCP on smartphones shows
 that the ability to simultaneously use WLAN and cellular during

https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-06
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-05
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-04
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-03
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-02
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-00
https://datatracker.ietf.org/doc/html/draft-deconinck-multipath-quic-00
https://datatracker.ietf.org/doc/html/rfc8684
https://datatracker.ietf.org/doc/html/rfc8684
https://datatracker.ietf.org/doc/html/rfc8041
https://datatracker.ietf.org/doc/html/rfc8041

De Coninck & Bonaventure Expires 4 November 2021 [Page 3]

Internet-Draft MP-QUIC May 2021

 handovers improves the user perceived quality of experience. A
 performance evaluation of an early solution for such use cases and a
 comparison between Multipath QUIC and Multipath TCP may be found in
 [MPQUIC]. A recent publication [MFQUIC] shows how the design
 presented in this draft enables implementations to take advantage of
 highly asymmetrical network paths such as satellite links.

 In this document, we leverage many of the lessons learned from the
 design of Multipath TCP and the comments received on the first
 versions of this document to propose extensions to the current QUIC
 design to enable it to simultaneously use several network paths.
 This document focuses mainly on network paths that are
 distinguishable by the endpoints.

 This document is organized as follows. It first provides in
Section 3 an overview of the operation of Multipath QUIC. It then

 states in Section 4 how Connection IDs can map to different
 unidirectional flows (called uniflows) in use. Section 5 specifies
 the required changes in the current QUIC design
 [I-D.ietf-quic-transport] to enable the simultaneous usage of
 multiple network paths. These extensions introduce new frames that
 are described in Section 6 and Section 7. Finally, Section 8
 discusses some security considerations.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 We assume that the reader is familiar with the terminology used in
 [I-D.ietf-quic-transport]. In addition, we define the following
 terms:

 * Uniflow: A unidirectional flow of packets between a QUIC host and
 its peer. This flow is identified by an internal identifier,
 called Uniflow ID. Packets sent over a uniflow use a Destination
 Connection ID that may change during the lifetime of the
 connection. When being in use, an uniflow is temporarily bound to
 a 4-tuple (Source IP Address, Source Port Number, Destination IP
 Address, Destination Port Number).

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

De Coninck & Bonaventure Expires 4 November 2021 [Page 4]

Internet-Draft MP-QUIC May 2021

 * Initial Uniflows: The two uniflows used by peers for the
 establishment of a QUIC connection. One is the uniflow from the
 client to the server and the other is the uniflow from the server
 to the client. The cryptographic handshake is done on these
 uniflows. These are identified by Uniflow ID 0.

2.1. Notation Conventions

 Packet and frame diagrams use the format described in Section 12 of
 [I-D.ietf-quic-transport].

3. Overview

 The design of QUIC [I-D.ietf-quic-transport] provides reliable
 transport with multiplexing, confidentiality, integrity, and
 authenticity of data flows. A wide range of devices on today's
 Internet are multihomed. Examples include smartphones equipped with
 both WLAN and cellular interfaces, but also regular dual-stack hosts
 that use both IPv4 and IPv6.

 The current design of QUIC does not enable multihomed devices to
 efficiently use different paths simultaneously. This document
 proposes multipath extensions with the following design goals:

 * Each host keeps control on the number of uniflows being used over
 the connection.

 * The simultaneous usage of multiple uniflows should not introduce
 new privacy concerns.

 * A host must ensure that all the paths it uses actually reach its
 peer to avoid packet flooding towards a victim (see
 Section 21.12.3 of [I-D.ietf-quic-transport])

 * The multipath extensions should handle the asymmetrical nature of
 paths between two peers.

 We first explain why a multipath extension would be beneficial to
 QUIC and then describe it at a high level.

3.1. Moving from Bidirectional Paths to Uniflows

 To understand the overall architecture of the multipath extensions,
 let us first refine the notion of "path". A path may be denoted by a
 4-tuple (Source IP Address, Source Port Number, Destination IP
 Address, Destination Port Number). In QUIC, this is namely a UDP
 path from the local host to the remote one. Considering a smartphone
 interacting with a single-homed server, the smartphone might want to

De Coninck & Bonaventure Expires 4 November 2021 [Page 5]

Internet-Draft MP-QUIC May 2021

 use one path over the WLAN network and another over the cellular one.
 Those paths are not necessarily disjoint. For example, when
 interacting with a dual-stack server, a smartphone may create two
 paths over WLAN: one over IPv4 and the other one over IPv6.

 A regular QUIC connection is composed of two independent active
 packet flows. The first flow gathers the packets from the client to
 the server and the other the packets from the server to the client.
 To illustrate this, let us consider the example depicted in Figure 1.
 In this example, the client has two IP addresses: IPc1 and IPc2. The
 server has one single address: IPs1.

 Probed flow IPc2 to IPs1
 +---+
 | |
 | From IPc1 to IPs1 v
 | +--------+ Client to Server Flow +--------+
 | | | =====================================> | |
 +-- | Client | | Server |
 | | <===================================== | |
 +--------+ Server to Client Flow +--------+
 From IPc1* to IPs1*

 Figure 1: Identifying Unidirectional Flows in QUIC

 The client initiates the QUIC connection by sending packets towards
 the server. The server then replies to the client if it accepts the
 connection. If the handshake succeeds, the connection is
 established. Still, this "path" actually consists in two independent
 UDP flows. Each host has its own view of (i) the 4-tuple used to
 send packets and (ii) the 4-tuple on which it receives packets.
 While the 4-tuple used by the client to send packets may be the same
 as the one seen and used by the server, this is not always the case
 since middleboxes (e.g., NATs) may alter the 4-tuple of packets.

 To further emphasize on this flow asymmetry, QUIC embeds a path
 validation mechanism [I-D.ietf-quic-transport] assessing whether a
 host can reach its peer through a given 4-tuple. This process is
 unidirectional, i.e., the sender checks that it can reach the
 receiver, but not the reverse. A host receiving a PATH_CHALLENGE
 frame on a new 4-tuple may in turn initiate a path validation, but
 this is up to the peer.

 A QUIC connection is a collection of unidirectional flows (called,
 uniflows). A plain QUIC connection is composed of a main uniflow
 from client to server and another main uniflow from server to client.
 These uniflows have their own Connection IDs. They are host-
 specific, i.e., the uniflow(s) from A to B are different from the

De Coninck & Bonaventure Expires 4 November 2021 [Page 6]

Internet-Draft MP-QUIC May 2021

 ones from B to A. This potentially enables the use of unidirectional
 links such as non-broadcast satellite links [RFC3077], which cannot
 be used with TCP.

3.2. Beyond Connection Migration

 Unlike TCP [RFC0793], QUIC is not bound to a particular 4-tuple
 during the lifetime of a connection. A QUIC connection is identified
 by a (set of) Connection ID(s), placed in the public header of each
 QUIC packet. This enables hosts to continue the connection even if
 the 4-tuple changes due to, e.g., NAT rebinding. This ability to
 shift a connection from one 4-tuple to another is called: Connection
 Migration. One of its use cases is fail-over when the IP address in
 use fails but another one is available. A smartphone losing the WLAN
 connectivity can then continue the connection over its cellular
 interface, for instance.

 A QUIC connection can thus start on a given set of uniflows, denoted
 as the initial uniflows, and end on another ones. However, the
 current QUIC design [I-D.ietf-quic-transport] assumes that only one
 pair of uniflows is in use for a given connection. The current
 transport specification [I-D.ietf-quic-transport] does not provide
 means to distinguish path migration from simultaneous usage of
 available uniflows for a given connection.

 This document fills that void. It first proposes mechanisms to
 communicate endhost addresses to the peer. It then leverages the
 Address Validation procedure with PATH_CHALLENGE and PATH_RESPONSE
 frames described in Section 8 of [I-D.ietf-quic-transport] to verify
 whether the additional addresses advertised by the host are
 reachable. In this case, those addresses can be used to initiate new
 uniflows to spread packets over several network paths following a
 packet scheduling policy that is out of scope of this document.

 The example of Figure 2 illustrates a data exchange between a dual-
 homed client sending a request spanning two packets and a single-
 homed server. Uniflow IDs are independently chosen by each host. In
 the presented example, the client sends packets over WLAN on Uniflow
 0 and over LTE on Uniflow 1, while the packets sent by the server
 over WLAN are on Uniflow 2 and those over LTE are on Uniflow 1.

https://datatracker.ietf.org/doc/html/rfc3077
https://datatracker.ietf.org/doc/html/rfc0793

De Coninck & Bonaventure Expires 4 November 2021 [Page 7]

Internet-Draft MP-QUIC May 2021

 Server Phone Server
 via WLAN via LTE
 ------- ------- -----
 | Pkt(DCID=A,PN=5,frames=[| | |
 | STREAM("Request (1/2)")]) | Pkt(DCID=B,PN=1,frames=[|
 |<----------------------------| STREAM("Request (2/2)")]) |
 | Pkt(DCID=E,PN=1,frames=[|-------- |
 | ACK(LargestAcked=5)]) | |---------- |
 |---------------------------->| |-------- |
 | Pkt(DCID=E,PN=2,frames=[| |-->|
 | STREAM("Response 1")]) | Pkt(DCID=D,PN=1,frames=[|
 |---------------------------->| MPACK(UID=1,LargestAck=1), |
 | | STREAM("Response 2")]) ---|
 | Pkt(DCID=A,PN=6,frames=[| ---------| |
 | MPACK(UID=2,LargestAck=2), | ----------| |
 | MPACK(UID=1,LargestAck=1)])|<------| |
 |<----------------------------| |
 | Pkt(DCID=E,PN=3,frames=[| Pkt(DCID=D,PN=2,frames=[|
 | STREAM("Response 3")]) | STREAM("Response 4")]) |
 |---------------------------->| ----|
 | | ------| |
 | ... | ... <---------| |

 Figure 2: Data flow with Multipath QUIC

 The remaining of this section presents a high-level overview of the
 multipath operations in QUIC.

3.3. Establishment of a Multipath QUIC Connection

 A Multipath QUIC connection starts as a regular QUIC connection
 [I-D.ietf-quic-transport] [I-D.ietf-quic-tls]. The multipath
 extensions defined in this document are negotiated using the
 "max_sending_uniflow_id" transport parameter. Any value for this
 transport parameter advertises the support of the multipath
 extensions.

 When negotiating the multipath extensions, the host puts a upper
 bound on the number of sending uniflows that it will use over the
 connection. For instance, if a host wants to spread connection's
 packets on at most two network paths, it advertises a
 "max_sending_uniflow_id" of 1. Note that the creation of a second
 sending uniflow will depend on the peer, as described later.

De Coninck & Bonaventure Expires 4 November 2021 [Page 8]

Internet-Draft MP-QUIC May 2021

 Notice that a host advertising a value of 0 for the
 "max_sending_uniflow_id" transport parameter indicates that it does
 not want additional uniflows to send packets, but it still supports
 the multipath extensions. Such situation might be useful when the
 host does not require multiple uniflows for packet sending but still
 wants to let the peer use multiple uniflows to reach it.

3.4. Architecture of Multipath QUIC

 To illustrate the architecture of a Multipath QUIC connection,
 consider Figure 3.

 +--------+ CID A - Uniflow ID 1 +--------+
	=====================================>	
	CID B - Uniflow ID 0	
	=====================================>	
Client	CID C - Uniflow ID 0	Server
	<=====================================	
	CID D - Uniflow ID 1	
	<=====================================	
	CID E - Uniflow ID 2	
	<=====================================	
 +--------+ +--------+

 Figure 3: An Example of Uniflow Distribution over a Multipath
 QUIC Connection

 Once established, a Multipath QUIC connection consists in one or more
 uniflows from the client to the server and one or more uniflows from
 the server to the client. The number of uniflows in one direction
 can be different from the one in the other direction. The example in
 Figure 3 shows two uniflows from the client to the server and three
 uniflows from the server to the client. From the end-hosts'
 viewpoint, they observe two kinds of uniflows:

 * Sending uniflows: uniflows over which the host can send packets

 * Receiving uniflows: uniflows over which the host can receive
 packets

 Reconsidering the example in Figure 3, the client has two sending
 uniflows and three receiving uniflows. The server has three sending
 uniflows and two receiving uniflows. There is thus a one-to-one
 mapping between the sending uniflows of a host and the receiving
 uniflows of its peer. A uniflow is seen as a sending uniflow from
 the sender's perspective and as a receiving uniflow from the
 receiver's viewpoint.

De Coninck & Bonaventure Expires 4 November 2021 [Page 9]

Internet-Draft MP-QUIC May 2021

 Each uniflow is associated with a specific four-tuple and identified
 by a Uniflow ID, as shown in Figure 4.

 Client state
 +---+
 | Connection |
 | +-----------+ +-----------+ ... +-------------+ |
 | | Sending | | Sending | ... | Sending | |
 | | Uniflow 0 | | Uniflow 1 | | Uniflow N-1 | |
 | | UCID set A| | UCID set B| ... | UCID set C | |
 | | Tuple A | | Tuple B | ... | Tuple C | |
 | | PNS A | | PNS B | | PNS C | |
 | +-----------+ +-----------+ ... +-------------+ |
 | +-----------+ +-----------+ ... +-------------+ |
 | | Receiving | | Receiving | ... | Receiving | |
 | | Uniflow 0 | | Uniflow 1 | | Uniflow M-1 | |
 | | UCID set X| | UCID set Y| ... | UCID set Z | |
 | | Tuple X | | Tuple Y | ... | Tuple Z | |
 | | PNS X | | PNS Y | | PNS Z | |
 | +-----------+ +-----------+ ... +-------------+ |
 +---+

 Server state
 +---+
 | Connection |
 | +-----------+ +-----------+ ... +-------------+ |
 | | Sending | | Sending | ... | Sending | |
 | | Uniflow 0 | | Uniflow 1 | | Uniflow M-1 | |
 | | UCID set X| | UCID set Y| ... | UCID set Z | |
 | | Tuple X* | | Tuple Y* | ... | Tuple Z* | |
 | | PNS X | | PNS Y | | PNS Z | |
 | +-----------+ +-----------+ ... +-------------+ |
 | +-----------+ +-----------+ ... +-------------+ |
 | | Receiving | | Receiving | ... | Receiving | |
 | | Uniflow 0 | | Uniflow 1 | | Uniflow N-1 | |
 | | UCID set A| | UCID set B| ... | UCID set C | |
 | | Tuple A* | | Tuple B* | ... | Tuple C* | |
 | | PNS A | | PNS B | | PNS C | |
 | +-----------+ +-----------+ ... +-------------+ |
 +---+

 Figure 4: Architectural view of Multipath QUIC for a host having
 N sending uniflows and M receiving uniflows

 A Multipath QUIC connection starts using two Initial Uniflows,
 identified by Uniflow ID 0 on each peer. The packets can then be
 spread over several uniflows. Each uniflow has its (set of) Uniflow
 Connection ID(s) (UCID) packets that are used to explicitly mark

De Coninck & Bonaventure Expires 4 November 2021 [Page 10]

Internet-Draft MP-QUIC May 2021

 where they belong to. Depending on the direction of the uniflow, the
 host keeps either the Uniflow Source Connection ID (USCID, for the
 receiving uniflows) or the Uniflow Destination Connection ID (USCID,
 for the sending uniflows). Notice that the (set of) UDCID(s) of a
 sending uniflow of a host is the same as the (set of) USCID(s) of the
 corresponding receive uniflow of the remote peer.

 Preventing the linkability of different uniflows is an important
 requirement for the multipath extensions
 [I-D.huitema-quic-mpath-req]. We address it by using UCIDs as
 implicit uniflow identifiers. This makes the linkability harder than
 having explicit signaling as in earlier version of this draft.
 Furthermore, it does not require any public header change and thus
 preserves the QUIC invariants [I-D.ietf-quic-invariants].

 When a uniflow is in use, each endhost associates it with a network
 path. In practice, this consists in a particular 4-tuple over which
 packets are sent (or received) on a sending (or receiving) uniflow.
 Each endhost has a specific vision of the 4-tuple, which might differ
 between endhosts. For instance, a client located behind a NAT sends
 data from a private IP address and the server will receive packets
 coming from the NAT's public IP address. Notice that while uniflows
 may share a common network path, this is not mandatory.

 Each uniflow is an independent flow of packets over a given network
 path. Uniflows can experience very different network conditions
 (latency, bandwidth, ...). To handle this, each uniflow has its own
 packet sequence number space.

 In addition to the UCIDs, 4-tuple and packet number space, some
 additional information is maintained for each uniflow. The Uniflow
 ID identifies the uniflow at the frame level and ensures uniqueness
 of the nonce (see Section 8.1 for details) while limiting the number
 of concurrently used uniflows.

3.5. Uniflow Establishment

 The "max_sending_uniflow_id" transport parameter exchanged during the
 cryptographic handshake fixes an upper bound on the number of sending
 uniflows a host wants to support. Then, hosts provide to their peer
 Uniflow Connection IDs to use on uniflows. Both hosts dynamically
 control how many sending uniflows can currently be in use by the
 peer, i.e., the number of different Uniflow IDs proposed to the peer.
 While the sender determines the upper bound of sending paths it can
 have, it is the receiver that initializes uniflows, as the sender
 needs a UCID communicated by the receiver before using a uniflow.

De Coninck & Bonaventure Expires 4 November 2021 [Page 11]

Internet-Draft MP-QUIC May 2021

 Notice that the peers might advertise different values for the
 "max_sending_uniflow_id" transport parameters, setting different
 upper bounds to the sending and receiving uniflows of each host.

 Hosts initiate the creation of their receiving uniflows by sending
 MP_NEW_CONNECTION_ID frames (see Section 6.1) which are an extended
 version of the NEW_CONNECTION_ID frame. This frame associates a UCID
 to a uniflow. Upon reception of the MP_NEW_CONNECTION_ID frame, a
 host can start using the proposed sending uniflow having the
 referenced Uniflow ID by marking sent packets with the provided UCID.
 Therefore, once a host sends a MP_NEW_CONNECTION_ID frame, it
 announces that it is ready to receive packets from that Uniflow ID
 with the proposed UCID. As frames are encrypted, adding new uniflows
 over a QUIC connection does not leak cleartext identifiers
 [I-D.huitema-quic-mpath-req].

 A server might provide several Uniflow Connection IDs for the same
 Uniflow ID with multiple MP_NEW_CONNECTION_ID frames. This can be
 useful to cope with migration cases, as described in Section 3.9.
 Multipath QUIC is thus asymmetrical.

3.6. Exchanging Data over Multiple Uniflows

 A QUIC packet acts as a container for one or more frames. Multipath
 QUIC uses the same STREAM frames as QUIC to carry data. A byte
 offset is associated with the data payload. One of the key design of
 (Multipath) QUIC is that frames are independent of the packets
 carrying them. This implies that a frame transmitted over one
 uniflow could be retransmitted later on another uniflow without any
 change. Furthermore, all current QUIC frames are idempotent and
 could be optimistically duplicated over several uniflows.

 The uniflow on which data is sent is a packet-level information.
 This means that a frame can be sent regardless of the uniflow of the
 packet carrying it. Other flow control considerations like the
 stream receive window advertised by the MAX_STREAM_DATA frame remain
 unchanged when there are multiple sending uniflows.

De Coninck & Bonaventure Expires 4 November 2021 [Page 12]

Internet-Draft MP-QUIC May 2021

 As previously described, Multipath QUIC might face reordering at
 packet-level when using uniflows having different latencies. The
 presence of different Uniflow Connection IDs ensures that the packets
 sent over a given uniflow will contain monotonically increasing
 packet numbers. To ensure more flexibility and potentially to reduce
 the ACK block section of the (MP_)ACK frame when aggregating
 bandwidth of uniflows exhibiting different network characteristics,
 each uniflow keeps its own monotonically increasing Packet Number
 space. This potentially allows sending up to 2 * 2^64 packets on a
 QUIC connection since each uniflow has its own packet number space
 (see Section 8.1 for the detail of this limit).

 With the introduction of multiple uniflows, there is a need to
 acknowledge packets sent on different uniflows separately. The
 packets sent on Initial Uniflows (with Uniflow ID 0) are still
 acknowledged with regular ACK frames, such that no modification is
 introduced in a core frame. For the other uniflows, the multipath
 extensions introduce a MP_ACK frame which prefixes the ACK frame with
 a Uniflow ID field indicating from which receiving uniflow the host
 acknowledges packets. To better explain this, let us consider the
 situation illustrated in Figure 5.

 Sending uniflow 0 - CID A | Receiving uniflow 0 - CID A
 Sending uniflow 1 - CID B | Receiving uniflow 1 - CID B
 Receiving uniflow 0 - CID C | Sending uniflow 0 - CID C
 Receiving uniflow 1 - CID D | Sending uniflow 1 - CID D
 Receiving uniflow 2 - CID E | Sending uniflow 2 - CID E

 Client Server
 ------ ------
 | |
 | Pkt(DCID=B,PN=42,frames=[STREAM("Request")]) |
 |--------------------------- |
 | |---------------------------->|
 | |
 | Pkt(DCID=E,PN=58,frames=[|
 | STREAM("Response"), MP_ACK(UID=1,LargestAcked=42)]) |
 | ------------------------------|
 |<-------------------------| |
 | |

 Figure 5: Acknowledging Packets Sent on Uniflows

 Here five uniflows are in use, two in the client to server direction
 and three in the reverse one. The client first sends a packet on its
 sending Uniflow 1 (linked to CID B). The server receives the packet
 on its receiving Uniflow 1. Therefore, it generates a MP_ACK frame
 for Uniflow ID 1 and transmits it to the client. The server can

De Coninck & Bonaventure Expires 4 November 2021 [Page 13]

Internet-Draft MP-QUIC May 2021

 choose any of its sending uniflows to transmit this frame. In the
 provided situation, the server sends its packets on Uniflow 2. The
 client thus receives this packet on its receiving Uniflow 2.

 Similarly, packets sent over a given uniflow might be acknowledged by
 (MP_)ACK frames sent on another uniflow that does not share the same
 network path. Looking at Figure 2 again, "Response 2" packet on
 server's sending uniflow 1 with DCID D using the LTE network is
 acknowledged by a MP_ACK frame received on a uniflow using the WLAN
 network.

3.7. Exchanging Addresses

 When a multi-homed device connects to a dual-stacked server using its
 IPv4 address, it is aware of its local addresses (e.g., the WLAN and
 the cellular ones) and the IPv4 remote address used to establish the
 QUIC connection. If the client wants to create new uniflows and use
 them over the IPv6 network, it needs to learn the other addresses of
 the remote peer.

 This is possible with the ADD_ADDRESS frames that are sent by a
 Multipath QUIC host to advertise its current addresses. Each
 advertised address is identified by an Address ID. The addresses
 attached to a host can vary during the lifetime of a Multipath QUIC
 connection. A new ADD_ADDRESS frame is transmitted when a host has a
 new address. This ADD_ADDRESS frame is protected as other QUIC
 control frames, which implies that it cannot be spoofed by attackers.
 The communicated address MUST first be validated by the receiving
 host before it starts using it as described in Section 8 of
 [I-D.ietf-quic-transport]. This process ensures that the advertised
 address actually belongs to the peer and that the peer can receive
 packets sent by the host on the provided address. It also prevents
 hosts from launching amplification attacks to a victim address.

 If the client is behind a NAT, it could announce a private address in
 an ADD_ADDRESS frame. In such situations, the server would not be
 able to validate the communicated address. The client might still
 use its NATed addresses to start using its sending uniflows. To
 enable the server to make the link between the private and the public
 addresses and hence conciliate the different 4-tuple views, Multipath
 QUIC provides the UNIFLOWS frame that lists the current active
 sending Uniflow IDs along with their associated local Address ID.
 Notice that a host might also discover the public addresses of its
 peer by observing its remote IP addresses associated to the
 connection.

De Coninck & Bonaventure Expires 4 November 2021 [Page 14]

Internet-Draft MP-QUIC May 2021

 A receiving uniflow is active as soon as the host has sent the
 MP_NEW_CONNECTION_ID frames proposing the corresponding Uniflow
 Connection IDs to its peer. A sending uniflow is active when it has
 received its Uniflow Connection IDs and is bound to a validated
 4-tuple. The UNIFLOWS frame indicates the local Address IDs that the
 uniflow uses from the sender's perspective. With this information,
 the remote host can validate the public address and associate the
 advertised one with the perceived addresses.

3.8. Coping with Address Removals

 During the lifetime of a QUIC connection, a host might lose some of
 its addresses. A concrete example is a smartphone going out of reach
 of a WLAN network or shutting off one of its network interfaces.
 Such address removals are advertised using REMOVE_ADDRESS frames.
 The REMOVE_ADDRESS frame contains the Address ID of the lost address
 previously communicated through ADD_ADDRESS. Notice that because a
 given Address ID might encounter several events that need to be
 ordered (e.g., ADD_ADDRESS, REMOVE_ADDRESS and ADD_ADDRESS again),
 both ADD_ADDRESS and REMOVE_ADDRESS frames include an Address ID
 related Sequence Number.

3.9. Uniflow Migration

 At a given time, a Multipath QUIC endpoint gathers a set of active
 sending and receiving uniflows, each associated to a 4-tuple. This
 association is mutable. Hosts can change the 4-tuple used by their
 sending uniflows at any time, enabling QUIC to migrate uniflows from
 one network path to another. Yet, to address privacy issues due to
 the linkability of addresses, hosts should avoid reusing the same
 Connection ID used by a sending uniflow when the 4-tuple changes, as
 described in Section 9.5 of [I-D.ietf-quic-transport].

3.10. Handling Multiple Network Paths

 The simultaneous usage of several sending uniflows introduces new
 algorithms (packet scheduling, path management) whose specifications
 are out of scope of this document. Nevertheless, these algorithms
 are actually present in any multipath-enabled transport protocol like
 Multipath TCP, CMT-SCTP and Multipath DCCP. A companion draft
 [I-D.bonaventure-iccrg-schedulers] provides several general-purpose
 packet schedulers depending on the application goals. A similar
 document can be created to discuss path/uniflow management
 considerations.

De Coninck & Bonaventure Expires 4 November 2021 [Page 15]

Internet-Draft MP-QUIC May 2021

3.11. Congestion Control

 The QUIC congestion control scheme is defined in
 [I-D.ietf-quic-recovery]. This congestion control scheme is not
 suitable when several sending uniflows are active. Using the
 congestion control scheme defined in [I-D.ietf-quic-recovery] with
 Multipath QUIC would result in unfairness. Each sending uniflow of a
 Multipath QUIC connection MUST have its own congestion control state.
 As for Multipath TCP, the windows of the different sending uniflows
 MUST be coupled together [RFC6356].

4. Mapping Uniflow IDs to Connection IDs

 As described in the overview section, hosts need to identify on which
 uniflows packets are sent. The Uniflow ID must then be inferred from
 the public header. This is done by using the Destination Connection
 ID field of Short Header packets.

 The Initial Uniflow Connection IDs are determined during the
 cryptographic handshake and actually correspond to both Connection
 IDs in the current single-path QUIC design [I-D.ietf-quic-transport].
 Additional Uniflow Connection IDs for the Initial Uniflows can be
 provided with the regular NEW_CONNECTION_ID frames. The Uniflow
 Connection IDs of the other uniflows are determined when the
 MP_NEW_CONNECTION_ID frames are exchanged.

 Hosts MUST accept packets coming from their peer using the UCIDs they
 proposed in the (MP_)NEW_CONNECTION_ID frames they sent and associate
 them with the corresponding receiving Uniflow ID. Upon reception of
 a (MP_)NEW_CONNECTION_ID frame, hosts MUST acknowledge it and MUST
 store the advertised Uniflow Destination Connection ID and the
 Uniflow ID of the proposed sending uniflow.

 Hosts MUST ensure that all advertised Uniflow Connection IDs are
 available for the whole connection lifetime, unless they have been
 retired by their peer in the meantime by the reception of a
 (MP_)RETIRE_CONNECTION_ID.

 A host MUST NOT send MP_NEW_CONNECTION_ID frames with a Uniflow ID
 greater than the value of "max_sending_uniflow_id" advertised by its
 peer.

5. Using Multiple Uniflows

 This section describes in details the Multipath QUIC operations.

https://datatracker.ietf.org/doc/html/rfc6356

De Coninck & Bonaventure Expires 4 November 2021 [Page 16]

Internet-Draft MP-QUIC May 2021

5.1. Multipath Negotiation

 The Multipath negotiation takes place during the cryptographic
 handshake with the "max_sending_uniflow_id" transport parameter. A
 QUIC connection is initially single-path in QUIC. During this
 handshake, hosts advertise their support for multipath operations.
 When a host advertises a value for the "max_sending_uniflow_id"
 transport parameter, it indicates that it supports the multipath
 extensions, i.e., the extensions defined in this document (not to be
 mixed with the availability of local multiple network paths). If any
 host does not advertise the "max_sending_uniflow_id" transport
 parameter, multipath extensions are disabled.

 The usage of multiple uniflows relies on the ability to use several
 Connection IDs over a same QUIC connection. Therefore, zero-length
 Connection IDs MUST NOT be used if the peer advertises a value
 different from 0 for the "max_sending_uniflow_id" transport
 parameter.

5.1.1. Transport Parameter Definition

 A host MAY use the following transport parameter:

 max_sending_uniflow_id (0x40): Indicates the support of the
 multipath extension presented in this document, regardless of the
 carried value. Its integer value puts an upper bound on the
 number of sending uniflows the host advertising the value is ready
 to support. If absent, this means that the host does not agree to
 use the multipath extension over the connection.

5.2. Coping with Additional Remote Addresses

 Hosts can learn remote addresses either by receiving ADD_ADDRESS
 frames or observing the 4-tuple of incoming packets. Hosts MUST
 first validate the newly learned remote IP addresses before starting
 sending packets to those addresses. This requirement is explained in

Section 8.2. Hosts MUST initiate Address Validation Procedure as
 specified in [I-D.ietf-quic-transport].

 A host MAY cache a validated address for a limited amount of time.

De Coninck & Bonaventure Expires 4 November 2021 [Page 17]

Internet-Draft MP-QUIC May 2021

5.3. Receiving Uniflow State

 When proposing uniflows to their peer, hosts need to maintain some
 state for their receiving uniflows. This state is created upon the
 sending of a first MP_NEW_CONNECTION_ID frame proposing the
 corresponding Uniflow ID. As long as there is still one active
 Uniflow Connection ID for this receiving uniflow (i.e., one UCID
 which was not retired yet using a MP_RETIRE_CONNECTION_ID), the host
 MUST accept packets over the receiving uniflow. Once created, hosts
 MUST keep the following receiving uniflow information:

 Uniflow ID: An integer that uniquely identifies the receiving
 uniflow in the connection. This value is immutable.

 Uniflow Connection IDs: Possible values for the Connection ID field
 of packets belonging to this receiving uniflow. This value
 contains the sequence of active UCIDs that were advertised in
 previously sent MP_NEW_CONNECTION_ID frames. Notice that this
 sequence might be empty, e.g., when all advertised UCIDs have been
 retired by the peer.

 Packet Number Space: Packet number space dedicated to this receiving
 uniflow. Packet number considerations described in Section 12.3
 of [I-D.ietf-quic-transport] apply within a given receiving
 uniflow.

 Associated 4-tuple: The tuple (sIP, dIP, sport, dport) currently
 observed to receive packets over this uniflow. This value is
 mutable, because a host might receive a packet with a different
 (possibly) validated remote address and/or port than the one
 previously recorded. If a host observes a change in the 4-tuple
 of the receiving uniflow, it follows the considerations of
 Section 9.5 of [I-D.ietf-quic-transport].

 Associated local Address ID: The Address ID advertised in
 ADD_ADDRESS frames sent by the peer corresponding to the local
 address used to receive packets. This helps to generate UNIFLOWS
 frames advertising the mapping between uniflows and addresses.
 The addresses on which the connection was established have Address
 ID 0.

 Hosts can also collect network measurements on a per-uniflow basis,
 like the number of packets received.

De Coninck & Bonaventure Expires 4 November 2021 [Page 18]

Internet-Draft MP-QUIC May 2021

5.4. Sending Uniflow State

 During a Multipath QUIC connection, hosts maintain some state for
 sending uniflows. The state of the sending uniflow determines
 information that hosts are required to store. The possible sending
 uniflow states are depicted in Figure 6.

 o
 |
 | receive a first MP_NEW_CONNECTION_ID
 | with the associated Uniflow ID
 |
 v path usage over a validated 4-tuple
 +----------+ ------------------------------------> +----------+
 | UNUSED | | ACTIVE |
 +----------+ <------------------------------------ +----------+
 address change or retired UCID

 Figure 6: Finite-State Machine describing the possible states of
 a sending uniflow

 Once a sending uniflow has been proposed by the peer in a received
 MP_NEW_CONNECTION_ID frame, it is in the UNUSED state. In this
 situation, hosts MUST keep the following sending uniflow information:

 Uniflow ID: An integer that uniquely identifies the sending uniflow
 in the connection. This value is immutable.

 Uniflow Connection IDs: Possible values for the Connection ID field
 of packets belonging to this sending uniflow. This value contains
 the sequence of active UCIDs that were advertised in previously
 received MP_NEW_CONNECTION_ID frames. Notice that this sequence
 might be empty, e.g., when all advertised UCIDs have been retired.

 Sending Uniflow State: The current state of the sending uniflow,
 being one of the values presented in Figure 6.

 Packet Number Space: Packet number space dedicated to this sending
 uniflow. Packet number considerations described in Section 12.3
 of [I-D.ietf-quic-transport] apply within a given sending uniflow.

 Notice that a UNUSED sending uniflow MAY send probing packets to
 validate a given 4-tuple.

 When the host wants to start using the sending uniflow over a
 validated address, the sending uniflow goes to the ACTIVE state.
 This is the state where a sending uniflow can be used to send
 packets. Having an uniflow in ACTIVE state only guarantees that it

De Coninck & Bonaventure Expires 4 November 2021 [Page 19]

Internet-Draft MP-QUIC May 2021

 can be used, but the host is not forced to. In addition to the
 fields required in the UNUSED state, the following elements MUST be
 tracked:

 Associated 4-tuple: The tuple (sIP, dIP, sport, dport) currently
 used to packets over this uniflow. This value is mutable, as the
 host might decide to change its local (or remote) address and/or
 port. A host that changes the 4-tuple of a sending uniflow SHOULD
 migrate it.

 Associated (local Address ID, remote Address ID) tuple: Those
 identifiers come from the ADD_ADDRESS sent (local) and received
 (remote). This enables a host to temporarily stop using a sending
 uniflow when, e.g., the remote Address ID is declared as lost in a
 REMOVE_ADDRESS. The addresses on which the connection was
 established have Address ID 0. The reception of UNIFLOWS frames
 helps hosts associate the remote Address ID used by the sending
 uniflow.

 Congestion controller: A congestion window limiting the transmission
 rate of the sending uniflow.

 Performance metrics: Basic statistics such as one-way delay or the
 number of packets sent. This information can be useful when a
 host needs to perform packet scheduling decisions and flow
 control.

 It might happen that a sending path is temporarily unavailable,
 because one of the endpoint's addresses is no more available or
 because the host retired all the UCIDs of the sending uniflow. In
 such cases, the path goes back to the UNUSED state. When performing
 a transition back to the UNUSED state, hosts MUST reset the
 additional state added by the ACTIVE state. In the UNUSED state, the
 host MUST NOT send non-probing packets on it. At this state, the
 host might want to restart using the uniflow over another validated
 4-tuple, switching the uniflow state back to the ACTIVE state.
 However, its congestion controller state MUST be restarted and its
 performance metrics SHOULD be reset.

5.5. Losing Addresses

 During the lifetime of a connection, a host might lose addresses,
 e.g., a network interface that was shut down. All the ACTIVE sending
 uniflows that were using that local address MUST stop sending packets
 from that address. To advertise the loss of an address to the peer,
 the host MUST send a REMOVE_ADDRESS frame indicating which local
 Address IDs has been lost. The host MUST also send an UNIFLOWS frame
 indicating the status of the remaining ACTIVE uniflows.

De Coninck & Bonaventure Expires 4 November 2021 [Page 20]

Internet-Draft MP-QUIC May 2021

 Upon reception of the REMOVE_ADDRESS, the receiving host MUST stop
 using the ACTIVE sending uniflows affected by the address removal.

 Hosts MAY reuse one of these sending uniflows by changing the
 assigned 4-tuple. In this case, it MUST send an UNIFLOWS frame
 describing that change.

6. New Frames

 To support the multipath operations, new frames have been defined to
 coordinate hosts. The following table summarizes the added frames.

 +=============+=========================+=============+======+======+
 | Type Value | Frame Type Name | Definition | Pkts | Spec |
 +=============+=========================+=============+======+======+
 | 0x40 | MP_NEW_CONNECTION_ID | Section 6.1 | ___1 | P |
 +-------------+-------------------------+-------------+------+------+
 | 0x41 | MP_RETIRE_CONNECTION_ID | Section 6.2 | ___1 | |
 +-------------+-------------------------+-------------+------+------+
 | 0x42 - | MP_ACK | Section 6.3 | ___1 | NC |
 | 0x43 | | | | |
 +-------------+-------------------------+-------------+------+------+
 | 0x44 | ADD_ADDRESS | Section 6.4 | ___1 | |
 +-------------+-------------------------+-------------+------+------+
 | 0x45 | REMOVE_ADDRESS | Section 6.5 | ___1 | |
 +-------------+-------------------------+-------------+------+------+
 | 0x46 | UNIFLOWS | Section 6.6 | ___1 | |
 +-------------+-------------------------+-------------+------+------+

 Table 1: Multipath-related Frame Types

 Table 1 uses the same notation convention as the Table 3 of
 [I-D.ietf-quic-transport] for the Pkts and Spec columns. In
 particular, all frames defined in this document MUST be exchanged in
 1-RTT packets. A host receiving one of the multipath-related frames
 in other encryption context MUST close the connection with a
 PROTOCOL_VIOLATION error. All the frames are ack-eliciting except
 the MP_ACK frame. The MP_ACK frame does not count towards bytes in
 flight if the packet containing it only carries either ACK or MP_ACK
 frames. The MP_NEW_CONNECTION_ID frame is the only new frame that
 can be sent to probe new network paths.

 The remaining of this document uses the notation convention described
 in [I-D.ietf-quic-transport].

De Coninck & Bonaventure Expires 4 November 2021 [Page 21]

Internet-Draft MP-QUIC May 2021

6.1. MP_NEW_CONNECTION_ID Frames

 The MP_NEW_CONNECTION_ID frame (type=0x40) is an extension of the
 NEW_CONNECTION_ID frame defined by [I-D.ietf-quic-transport]. It
 provides the peer with alternative Connection IDs and associates them
 to a particular uniflow using the Uniflow ID.

 The format of the MP_NEW_CONNECTION_ID frame is as follows.

 MP_NEW_CONNECTION_ID Frame {
 Type (i) = 0x40,
 Uniflow ID (i),
 Sequence Number (i),
 Retire Prior To (i),
 Length (8),
 Connection ID (8..160),
 Stateless Reset Token (128),
 }

 Figure 7: MP_NEW_CONNECTION_ID Frame Format

 Compared to the NEW_CONNECTION_ID frame specified in
 [I-D.ietf-quic-transport], the following field is added.

 Uniflow ID: Indicates to which uniflow the provided Connection ID
 relates.

 The remaining fields keep the same semantic as for the
 NEW_CONNECTION_ID frame.

 This frame can be sent by both hosts. Upon reception of the frame
 with a specified Uniflow ID, the peer MUST update the related sending
 uniflow state and store the communicated Connection ID.

 To limit the delay of the multipath usage upon handshake completion,
 hosts SHOULD send MP_NEW_CONNECTION_ID frames for receive uniflows
 they allow using as soon the connection establishment completes.

 The generation of Connection ID MUST follow the same considerations
 as presented in Section 5.1 of [I-D.ietf-quic-transport].

6.2. MP_RETIRE_CONNECTION_ID Frame

 The MP_RETIRE_CONNECTION_ID frame (type=0x41) is an extension of the
 RETIRE_CONNECTION_ID frame defined by [I-D.ietf-quic-transport]. It
 indicates that the end-host will no longer use a Connection ID
 related to a given uniflow that was issued by its peer.

De Coninck & Bonaventure Expires 4 November 2021 [Page 22]

Internet-Draft MP-QUIC May 2021

 The format of the MP_RETIRE_CONNECTION_ID frame is shown below.

 MP_RETIRE_CONNECTION_ID Frame {
 Type (i) = 0x41,
 Uniflow ID (i),
 Sequence Number (i),
 }

 Figure 8: MP_RETIRE_CONNECTION_ID Frame Format

 Compared to the RETIRE_CONNECTION_ID frame specified in
 [I-D.ietf-quic-transport], the following field is added.

 Uniflow ID: Indicates on which uniflow the Connection ID is retired.

 The frame is handled as the RETIRE_CONNECTION_ID frame described in
 [I-D.ietf-quic-transport] on an uniflow basis.

6.3. MP_ACK Frame

 The MP_ACK frame (types 0x42 and 0x43) is an extension of the ACK
 frame defined by [I-D.ietf-quic-transport]. It allows hosts to
 acknowledge packets that were sent on non-initial uniflows. If the
 frame type is 0x43, MP_ACK frames also contain the sum of QUIC
 packets with associated ECN marks received on the connection up to
 this point.

 The format of the MP_ACK frame is shown below.

 MP_ACK Frame {
 Type (i) = 0x02..0x03,
 Uniflow ID (i),
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 [ECN Counts (..)],
 }

 Figure 9: MP_ACK Frame Format

 Compared to the ACK frame specified in [I-D.ietf-quic-transport], the
 following field is added.

 Uniflow ID: Indicates on which uniflow the acknowledged packet
 sequence numbers relate.

De Coninck & Bonaventure Expires 4 November 2021 [Page 23]

Internet-Draft MP-QUIC May 2021

6.4. ADD_ADDRESS Frame

 The ADD_ADDRESS frame (type=0x44) is used by a host to advertise its
 currently reachable addresses.

 The format of the ADD_ADDRESS frame is shown below.

 ADD_ADDRESS Frame {
 Type (i) = 0x44,
 Rsv (3) = 0,
 P (1),
 IP Version (4),
 Address ID (8),
 Sequence Number (i),
 Interface Type (8),
 IP Address (32/128),
 [Port (16)],
 }

 Figure 10: ADD_ADDRESS Frame Format

 The ADD_ADDRESS frame contains the following fields.

 Rsv: These bits are set to 0, and are reserved for future use.

 P bit: This bit indicates, if set, the presence of the Port field.

 IP Version: Written on 4 bits, contains the version of the IP
 address contained in the IP Address field.

 Address ID: An one-byte unique identifier for the advertised address
 for tracking and removal purposes. This is needed when, e.g., a
 NAT changes the IP address such that both hosts see different IP
 addresses for a same network path.

 Sequence Number: An Address ID related sequence number of the event,
 encoded as a variable-length integer. The sequence number space
 is shared with REMOVE_ADDRESS frames mentioning the same Address
 ID.

 Interface Type: A one-byte field providing an indication about the
 interface type to which this address is bound. The following
 values are defined:

 * 0: fixed. Used as default value.

 * 1: WLAN

De Coninck & Bonaventure Expires 4 November 2021 [Page 24]

Internet-Draft MP-QUIC May 2021

 * 2: cellular

 IP Address: The advertised IP address, in network order.

 Port: This optional field indicates the port number related to the
 advertised IP address. When this field is present, it indicates
 that an uniflow can use the 2-tuple (IP addr, port).

 Upon reception of an ADD_ADDRESS frame, the receiver SHOULD store the
 communicated address for future use.

 The receiver MUST NOT send packets others than validation ones to the
 communicated address without having validated it as specified in
 Section 8 of [I-D.ietf-quic-transport]. ADD_ADDRESS frames SHOULD
 contain globally reachable addresses. Link-local and possibly
 private addresses SHOULD NOT be exchanged.

6.5. REMOVE_ADDRESS Frame

 The REMOVE_ADDRESS frame (type=0x45) is used by a host to signal that
 a previously announced address was lost.

 The format of the REMOVE_ADDRESS frame is shown below.

 REMOVE_ADDRESS Frame {
 Type (i) = 0x45,
 Address ID (8),
 Sequence Number (i),
 }

 Figure 11: REMOVE_ADDRESS Frame Format

 The REMOVE_ADDRESS frame contains the following fields.

 Address ID: The one-byte identifier of the address to remove.

 Sequence Number: An Address ID related sequence number of the event,
 encoded as a variable-length integer. The sequence number space
 is shared with ADD_ADDRESS frames mentioning the same Address ID.
 This help the receiver figure out that a REMOVE_ADDRESS might have
 been sent before an ADD_ADDRESS frame implying the same Address
 ID, even if for some reason the REMOVE_ADDRESS reaches the
 receiver after the newer ADD_ADDRESS one.

 A host SHOULD stop using sending uniflows using the removed address
 and set them in the UNUSED state. If the REMOVE_ADDRESS contains an
 Address ID that was not previously announced, the receiver MUST
 silently ignore the frame.

De Coninck & Bonaventure Expires 4 November 2021 [Page 25]

Internet-Draft MP-QUIC May 2021

6.6. UNIFLOWS Frame

 The UNIFLOWS frame (type=0x46) communicates the uniflows' state of
 the sending host to the peer. It allows the sender to communicate
 its active uniflows to the peer in order to detect potential
 connectivity issue over uniflows. It also enables hosts to map
 Address IDs to seen 4-tuples when middleboxes affecting them (e.g.,
 NATs,...) are present.

 The format of the UNIFLOWS frame is shown below.

 UNIFLOWS Frame {
 Type (i) = 0x46,
 Sequence Number (i),
 Receiving Uniflows (i),
 Active Sending Uniflows (i),
 Receiving Uniflow Info Section (..) ...,
 Active Sending Uniflow Info Section (..) ...,
 }

 Figure 12: UNIFLOWS Frame Format

 The UNIFLOWS frame contains the following fields.

 Sequence Number: A variable-length integer. This value starts at 0
 and increases by 1 for each UNIFLOWS frame sent by the host. It
 allows identifying the most recent UNIFLOWS frame.

 Receiving Uniflows: The current number of receiving uniflows from
 the sender's point of view.

 Active Sending Uniflows: The current number of sending uniflows in
 the ACTIVE state from the sender's point of view.

 Receiving Uniflow Info Section: Contains information about the
 receiving uniflows (there are Receiving Uniflows entries).

 Sending Uniflow Info Section: Contains information about the sending
 uniflows in ACTIVE state (there are Active Sending Uniflows
 entries).

 Both Receiving Uniflow Info and Active Sending Uniflow Info Sections
 share the same format which is shown below.

 Uniflow Info Section {
 Uniflow ID (i),
 Local Address ID (8),
 }

De Coninck & Bonaventure Expires 4 November 2021 [Page 26]

Internet-Draft MP-QUIC May 2021

 Figure 13: Uniflow Info Section Format

 The fields in the Uniflow Info Section are the following.

 Uniflow ID: The Uniflow ID of the uniflow the sending host provides
 information about.

 LocAddrID: The local Address ID of the address currently used by the
 uniflow.

 The Uniflow Info section only contains the local Address ID so far,
 but this section can be extended later with other potentially useful
 information.

7. Extension of the Meaning of Existing QUIC Frames

 The multipath extensions do not modify the wire format of existing
 QUIC frames. However, they extend the meaning of a few of them while
 keeping this addition transparent and consistent with the single-path
 QUIC design. The concerned frames (and their extended meaning) are
 the following.

 NEW_CONNECTION_ID: Equivalent to a MP_NEW_CONNECTION_ID frame with
 Uniflow ID set to 0.

 RETIRE_CONNECTION_ID: Equivalent to a MP_RETIRE_CONNECTION_ID frame
 with Uniflow ID set to 0.

 ACK: Equivalent to a MP_ACK frame with Uniflow ID set to 0.

8. Security Considerations

8.1. Nonce Computation

 With Multipath QUIC, each uniflow has its own packet number space.
 With the current nonce computation [I-D.ietf-quic-tls], using twice
 the same packet number over two different uniflows on the same
 direction leads to the same cryptographic nonce. Using twice the
 same nonce MUST NOT happen, hence MP-QUIC has a different nonce
 computation than [I-D.ietf-quic-tls]

De Coninck & Bonaventure Expires 4 November 2021 [Page 27]

Internet-Draft MP-QUIC May 2021

 The left most bits of nonce MUST be the Uniflow ID that identifies
 the current uniflow up to max_sending_uniflow_id. The remaining bits
 of the nonce is formed by an exclusive OR of the least significant
 bits of the packet protection IV with the padded packet number (left-
 padded with 0s). The nonce MUST be left-padded with a 0 if
 max_sending_uniflow_id <= 2, and the max_sending_uniflow_id MUST NOT
 be higher than 2^61. If a uniflow has sent
 2^62-max_sending_uniflow_id packets, another uniflow MUST be used to
 avoid re-using the same nonce.

8.2. Validation of Exchanged Addresses

 To use addresses communicated by the peer through ADD_ADDRESS frames,
 hosts are required to validate them before using uniflows to these
 addresses as described in Section 8 of [I-D.ietf-quic-transport].
 Section 21.12.3 of [I-D.ietf-quic-transport] provides additional
 motivation for this process. In addition, hosts MUST send ADD
 ADDRESS frames in 1-RTT frames to prevent off-path attacks.

9. IANA Considerations

9.1. QUIC Transport Parameter Registry

 This document defines a new transport parameter for the negotiation
 of multiple paths. The following entry in Table 2 should be added to
 the "QUIC Transport Parameters" registry under the "QUIC Protocol"
 heading.

 +=======+========================+===============+
 | Value | Parameter Name | Specification |
 +=======+========================+===============+
 | 0x40 | max_sending_uniflow_id | Section 5.1.1 |
 +-------+------------------------+---------------+

 Table 2: Addition to QUIC Transport Parameters
 Entries

De Coninck & Bonaventure Expires 4 November 2021 [Page 28]

Internet-Draft MP-QUIC May 2021

10. Acknowledgments

 We would like to thank Masahiro Kozuka and Kazuho Oku for their
 numerous comments on the first version of this draft. We also thank
 Philipp Tiesel for his early comments that led to the current design,
 and Ian Swett for later feedback. We also want to thank Christian
 Huitema for his draft about multipath requirements to identify
 critical elements about the multipath feature. Mohamed Boucadair
 provided lot of useful inputs on the second version of this document.
 Maxime Piraux and Florentin Rochet helped us to improve the last
 versions of this draft. This project was partially supported by the
 MQUIC project funded by the Walloon Government.

11. References

11.1. Normative References

 [I-D.ietf-quic-invariants]
 Thomson, M., "Version-Independent Properties of QUIC",
 Work in Progress, Internet-Draft, draft-ietf-quic-

invariants-13, 14 January 2021,
 <https://www.ietf.org/archive/id/draft-ietf-quic-

invariants-13.txt>.

 [I-D.ietf-quic-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", Work in Progress, Internet-Draft,

draft-ietf-quic-recovery-34, 14 January 2021,
 <https://www.ietf.org/archive/id/draft-ietf-quic-recovery-

34.txt>.

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using TLS to Secure QUIC",
 Work in Progress, Internet-Draft, draft-ietf-quic-tls-34,
 14 January 2021, <https://www.ietf.org/archive/id/draft-

ietf-quic-tls-34.txt>.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,

draft-ietf-quic-transport-34, 14 January 2021,
 <https://www.ietf.org/archive/id/draft-ietf-quic-

transport-34.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-invariants-13
https://www.ietf.org/archive/id/draft-ietf-quic-invariants-13.txt
https://www.ietf.org/archive/id/draft-ietf-quic-invariants-13.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-34
https://www.ietf.org/archive/id/draft-ietf-quic-recovery-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-recovery-34.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-34
https://www.ietf.org/archive/id/draft-ietf-quic-tls-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-tls-34.txt
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-34
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

De Coninck & Bonaventure Expires 4 November 2021 [Page 29]

Internet-Draft MP-QUIC May 2021

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.bonaventure-iccrg-schedulers]
 Bonaventure, O., Piraux, M., Coninck, Q. D., Baerts, M.,
 Paasch, C., and M. Amend, "Multipath schedulers", Work in
 Progress, Internet-Draft, draft-bonaventure-iccrg-

schedulers-01, 9 September 2020,
 <https://www.ietf.org/archive/id/draft-bonaventure-iccrg-

schedulers-01.txt>.

 [I-D.huitema-quic-mpath-req]
 Huitema, C., "QUIC Multipath Requirements", Work in
 Progress, Internet-Draft, draft-huitema-quic-mpath-req-01,
 7 January 2018, <https://www.ietf.org/archive/id/draft-

huitema-quic-mpath-req-01.txt>.

 [IETFJ] Bonaventure, O. and S. Seo, "Multipath TCP Deployments",
 IETF Journal , November 2016.

 [MFQUIC] De Coninck, Q. and O. Bonaventure, "Multiflow QUIC: A
 Generic Multipath Transport Protocol", To appear in IEEE
 Communications Magazine. A preprint is available at

https://hdl.handle.net/2078.1/243486 , May 2021.

 [MPQUIC] De Coninck, Q. and O. Bonaventure, "Multipath QUIC: Design
 and Evaluation", 13th International Conference on emerging
 Networking EXperiments and Technologies (CoNEXT 2017).

http://multipath-quic.org , December 2017.

 [MPRTP] Singh, V., Ahsan, S., and J. Ott, "MPRTP: Multipath
 considerations for real-time media", Proceedings of the
 4th ACM Multimedia Systems Conference , 2013.

 [OLIA] Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.-
 Y. Le Boudec, "MPTCP is not pareto-optimal: performance
 issues and a possible solution", Proceedings of the 8th
 international conference on Emerging networking
 experiments and technologies, ACM , 2012.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-01
https://datatracker.ietf.org/doc/html/draft-bonaventure-iccrg-schedulers-01
https://www.ietf.org/archive/id/draft-bonaventure-iccrg-schedulers-01.txt
https://www.ietf.org/archive/id/draft-bonaventure-iccrg-schedulers-01.txt
https://datatracker.ietf.org/doc/html/draft-huitema-quic-mpath-req-01
https://www.ietf.org/archive/id/draft-huitema-quic-mpath-req-01.txt
https://www.ietf.org/archive/id/draft-huitema-quic-mpath-req-01.txt
https://hdl.handle.net/2078.1/243486
http://multipath-quic.org
https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793

De Coninck & Bonaventure Expires 4 November 2021 [Page 30]

Internet-Draft MP-QUIC May 2021

 [RFC3077] Duros, E., Dabbous, W., Izumiyama, H., Fujii, N., and Y.
 Zhang, "A Link-Layer Tunneling Mechanism for
 Unidirectional Links", RFC 3077, DOI 10.17487/RFC3077,
 March 2001, <https://www.rfc-editor.org/info/rfc3077>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",

RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <https://www.rfc-editor.org/info/rfc6356>.

 [RFC8041] Bonaventure, O., Paasch, C., and G. Detal, "Use Cases and
 Operational Experience with Multipath TCP", RFC 8041,
 DOI 10.17487/RFC8041, January 2017,
 <https://www.rfc-editor.org/info/rfc8041>.

 [RFC8684] Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
 Paasch, "TCP Extensions for Multipath Operation with
 Multiple Addresses", RFC 8684, DOI 10.17487/RFC8684, March
 2020, <https://www.rfc-editor.org/info/rfc8684>.

 [SCTPCMT] Iyengar, J., Amer, P., and R. Stewart, "Concurrent
 multipath transfer using SCTP multihoming over independent
 end-to-end paths", IEEE/ACM Transactions on networking,
 Vol. 14, no 5 , 2006.

Appendix A. Comparison with Multipath TCP

 Multipath TCP [RFC8684] is currently the most widely deployed
 multipath transport protocol on the Internet. While its design
 impacted the initial versions of the Multipath extensions for the
 QUIC protocol, there are now major differences between both protocols
 that we now highlight.

A.1. Multipath TCP Bidirectional Paths vs. QUIC Uniflows

 TCP ensures reliable data delivery by sending back acknowledgments to
 the data sender. Because data flows in one direction and
 acknowledgments in the other, the notion of bidirectional paths
 became a de facto standard with TCP. The Multipath TCP extension
 [RFC8684] combines several TCP connections to spread a single data
 stream over them. Hence, all the paths of a Multipath TCP connection
 must be bidirectional. However, networking experiences showed that
 packets following a direction do not always share the exact same road
 as the packets in the opposite direction. Furthermore, QUIC does not
 require a network path to be bidirectional in order to be used, as
 many parts of its design handle possible network asymmetries
 (unidirectional Connection IDs, PATH_RESPONSE that can flow on a
 different network path than the elliciting PATH_CHALLENGE,...).

https://datatracker.ietf.org/doc/html/rfc3077
https://www.rfc-editor.org/info/rfc3077
https://datatracker.ietf.org/doc/html/rfc6356
https://www.rfc-editor.org/info/rfc6356
https://datatracker.ietf.org/doc/html/rfc8041
https://www.rfc-editor.org/info/rfc8041
https://datatracker.ietf.org/doc/html/rfc8684
https://www.rfc-editor.org/info/rfc8684
https://datatracker.ietf.org/doc/html/rfc8684
https://datatracker.ietf.org/doc/html/rfc8684

De Coninck & Bonaventure Expires 4 November 2021 [Page 31]

Internet-Draft MP-QUIC May 2021

A.2. Negotiating the Multipath Extensions

 A Multipath TCP connection relies on the TCP option field of the TCP
 header to negotiate the multipath extensions. During the handshake,
 Multipath TCP uses the MP_CAPABLE TCP option to exchange connection's
 keys used to authenticate additional Multipath TCP subflows and
 generate tokens used to identify the connection. However, TCP
 options are sent in clear-text. Any on-path network observer may
 record the connection's keys and create Multipath TCP subflows on it.
 Multipath QUIC does not face this security issue. The multipath
 extensions are negotiated using authenticated transport parameters of
 the QUIC handshake. Then, Multipath QUIC leverages the encryption
 feature of QUIC to hide information from network observers.

A.3. Uniflow Establishment

 To create additional subflows to a Multipath TCP connection, hosts
 initiate a TCP handshake by negotitating the MP_JOIN TCP option.
 This option carries a token matching the TCP subflow to a Multipath
 TCP connection and a HMAC value computed using the exchanged
 connection's keys. In addition that connection's keys were exchanged
 in clear-text during the handshake and that the token is also in
 clear-text, the HMAC value (using SHA-256) is truncated to the
 leftmost 64 bits (in SYN/ACK) or 160 bits (in third ACK) because of
 the TCP option length limitation to 40 bytes. Multipath QUIC avoids
 all these issues. The negotiation and usage of additional uniflows
 are performed using encrypted messages and the length of frames are
 only limited by the size of the packet that carries them.

 Another difference comes in the control of the number of paths/
 uniflows in use. Multipath TCP has a new subflow when the
 corresponding TCP handshake succeeds. However, it is not possible to
 restrict in advance the number of paths that a Multipath TCP
 connection can use. Therefore, the only way for a server to control
 the number of paths is to adopt a reactive approach, i.e., to reset
 or blackhole exceeding subflows from the client. In Multipath QUIC,
 each host sets a upper limit on the number of sending uniflows that
 it wants to use, while keeping control on the number of sending
 uniflows it provides to its peer. This path management is hence
 proactive.

De Coninck & Bonaventure Expires 4 November 2021 [Page 32]

Internet-Draft MP-QUIC May 2021

A.4. Exchanging Data over Multiple Uniflows

 One of the key design decision of Multipath TCP is that all its
 subflows have to behave like regular TCP connections to handle
 network interference. Each Multipath TCP subflow has to keep in-
 sequence data delivery and dedicates its TCP sequence number to this
 end. To handle multipath reordering, an additional Data Sequence
 Number at the Multipath TCP level is needed. In Multipath QUIC, the
 uniflow on which data is sent is a packet-level information. This
 means that a frame can be sent regardless of the uniflow of the
 packet carrying it. Furthermore, because the (STREAM) data offset is
 a frame-level information, there is no need to define additional
 sequence numbers to cope with reordering across uniflows.

 In addition to this signaling overhead, Multipath TCP faces
 performance issues due to this acknoweldgment constraint. Consider
 the following scenario. Some data was first transmitted on a lossy
 path A, such that the peer never receives it. The sender can
 (successfully) retransmit the same data over a working path B (and
 gets the corresponding acknowledgment). However, the sender cannot
 send new data on the path A as long as the initial lost data was not
 delivered on that path (because of the TCP behavior constraint).
 Such transmission overhead is not present in Multipath QUIC, as there
 is no rule that a Multipath QUIC uniflow has to behave like a single-
 path QUIC one.

 Another consequence of the "Multipath TCP subflows must behave like
 regular TCP connections" is that acknowkedgments have to stay on the
 same network path as the one used by the data. This constraint on
 the acknowledgment strategy is not present (and hardly enforceable)
 in Multipath QUIC as frames are independent of packets. Multipath
 QUIC can better benefit from high-latency paths and enable the usage
 of unidirectional networks.

A.5. Advertising Host's Addresses

 Multipath TCP enables host to communicate their local IP addresses to
 its peer by using the ADD_ADDR TCP option. Similarly, REMOVE_ADDR
 TCP option is used to advertise the loss of a local address to its
 peer. Their usage is however subject to security issues, as these
 options are communicated in clear-text, possibly leaking the host's
 IP addresses to the network. This security concern does not affect
 Multipath QUIC as all this information is encrypted in frames.

 Another point is related to the reliability of the address
 advertisement. In Multipath TCP, the ADD_ADDR and REMOVE_ADDR
 options are sent unreliably, i.e., there is no acknowledgment
 mechanism for their reception. While Multipath TCP [RFC8684]

https://datatracker.ietf.org/doc/html/rfc8684

De Coninck & Bonaventure Expires 4 November 2021 [Page 33]

Internet-Draft MP-QUIC May 2021

 provides an "echo" mechanism to the ADD_ADDR, there is no such
 equivalent for REMOVE_ADDR. In Multipath QUIC, ADD_ADDRESS and
 REMOVE_ADDRESS frames are ack-elliciting, making them reliable.

A.6. Congestion Control

 Multipath TCP uses the LIA congestion control scheme specified in
 [RFC6356]. This scheme can immediately be adapted to Multipath QUIC.
 Other coupled congestion control schemes have been proposed for
 Multipath TCP such as [OLIA].

Appendix B. Change Log

B.1. Since draft-deconinck-quic-multipath-06

 * Link with recent publication

B.2. Since draft-deconinck-quic-multipath-05

 * Summarize frame types in a table

 * Update frame format to structure style

 * Update text to match draft-ietf-quic-transport-32

 * Link to scheduling companion draft

 * Remove dangling to-dos

B.3. Since draft-deconinck-quic-multipath-04

 * Mostly editorial and reference fixes

B.4. Since draft-deconinck-quic-multipath-03

 * Clarify the notion of asymmetric paths by introducing uniflows

 * Remove the PATH_UPDATE frame

 * Rename PATHS frame to UNIFLOWS frame and adapt its content

 * Add a sequence number to frames involving Address ID events (#4)

 * Disallow Zero-length connection ID (#2)

 * Correctly handle nonce computation (thanks to Florentin Rochet)

https://datatracker.ietf.org/doc/html/rfc6356
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-06
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-05
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-32
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-04
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-03

De Coninck & Bonaventure Expires 4 November 2021 [Page 34]

Internet-Draft MP-QUIC May 2021

 * Focus on the core concepts of multipath and delegate algorithms to
 companion drafts

 * Updated text to match draft-ietf-quic-transport-27

B.5. Since draft-deconinck-quic-multipath-02

 * Consider asymmetric paths

B.6. Since draft-deconinck-quic-multipath-01

 * Include path policies considerations

 * Add practical considerations thanks to Mohamed Boucadair inputs

 * Adapt the RETIRE_CONNECTION_ID frame

 * Updated text to match draft-ietf-quic-transport-18

B.7. Since draft-deconinck-quic-multipath-00

 * Comply with asymmetric Connection IDs

 * Add max_paths transport parameter to negotiate initial number of
 active paths

 * Path ID as a regular varint

 * Remove max_path_id transport parameter

 * Updated text to match draft-ietf-quic-transport-14

B.8. Since draft-deconinck-multipath-quic-00

 * Added PATH_UPDATE frame

 * Added MAX_PATHS frame

 * No more packet header change

 * Implicit Path ID notification using Connection ID and
 NEW_CONNECTION_ID frames

 * Variable-length encoding for Path ID

 * Updated text to match draft-ietf-quic-transport-10

 * Fixed various typos

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-27
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-02
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-18
https://datatracker.ietf.org/doc/html/draft-deconinck-quic-multipath-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-14
https://datatracker.ietf.org/doc/html/draft-deconinck-multipath-quic-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-10

De Coninck & Bonaventure Expires 4 November 2021 [Page 35]

Internet-Draft MP-QUIC May 2021

Authors' Addresses

 Quentin De Coninck
 UCLouvain

 Email: quentin.deconinck@uclouvain.be

 Olivier Bonaventure
 UCLouvain

 Email: olivier.bonaventure@uclouvain.be

De Coninck & Bonaventure Expires 4 November 2021 [Page 36]

