
INTERNET DRAFT Michiel B. de Jong
Document: draft-dejong-remotestorage-00 (independent)
 F. Kooman
Intended Status: Proposed Standard SURFnet
Expires: 8 June 2013 5 December 2012

remotestorage

Abstract

 This draft describes a protocol by which client-side applications,
 running inside a web browser, can communicate with a data storage
 server that is hosted on a different domain name. This way, the
 provider of a web application need not also play the role of data
 storage provider. The protocol supports storing, retrieving, and
 removing individual documents, as well as listing the contents of an
 individual directory, and access control is based on bearer tokens.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 June 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/draft-dejong-remotestorage-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

de Jong [Page 1]

Internet-Draft remotestorage December 2012

Table of Contents

1. Introduction...2
2. Terminology..2
3. Storage model..3
4. Requests...3
5. Response codes...4
6. Versioning...5
7. CORS headers...5
8. Session description..5
9. Bearer tokens and access control...............................6
10. Application-first bearer token issuance........................6
11. Storage-first bearer token issuance............................7
12. Security Considerations..8
13. IANA Considerations..9
14. Acknowledgments..9
15. References...9

15.1. Normative References......................................9
15.2. Informative References....................................9

16. Authors' addresses..10

1. Introduction

 Many services for data storage are available over the internet. This
 specification describes a vendor-independent interface for such
 services. It is based on https, CORS and bearer tokens. The
 metaphor for addressing data on the storage is that of folders
 containing documents and subfolders. The actions the interface
 exposes are:

 * GET a folder: retrieve the names and current versions of the
 documents and subfolders currently contained by the folder

 * GET a document: retrieve its content type, current version,
 and contents

 * PUT a document: store a new version, its content type, and
 contents, conditional on the current version

 * DELETE a document: remove it from the storage, conditional on
 the current version

 The exact details of these four actions are described in this
 specification.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

de Jong [Page 2]

Internet-Draft remotestorage December 2012

 document are to be interpreted as described in RFC 2119 [WORDS].

 "SHOULD" and "SHOULD NOT" are appropriate when valid exceptions to a
 general requirement are known to exist or appear to exist, and it is
 infeasible or impractical to enumerate all of them. However, they
 should not be interpreted as permitting implementors to fail to
 implement the general requirement when such failure would result in
 interoperability failure.

3. Storage model

 The server stores data in nodes that form a tree structure.
 Internal nodes are called 'folders' and leaf nodes are called
 'documents'. For a folder, the server stores references to nodes
 contained in the folder, and it should be able to produce a list of
 them, with for each contained item:

 * item name
 * item type (folder or document)
 * current version

 For a document, the server stores, and should be able to produce:

 * content type
 * content
 * current version

4. Requests

 Client-to-server requests SHOULD be made over https [HTTPS]. The
 root folder of the storage tree is represented by the URL
 <storage_root> '/'. Subsequently, if <parent_folder> is the URL of a
 folder, then the URL of an item contained in it is
 <parent_folder> <document_name> for a document, or
 <parent_folder> <folder_name> '/' for a folder. Item names MAY
 contain a-z, A-Z, 0-9, %, -, _.

 A successful GET request to a folder SHOULD be responded to with a
 JSON document (content type 'application/json'), representing a map
 in which contained documents appear as entries <item_name> to
 <current_version>, and contained folders appear as entries
 <item_name> '/' to <current_version>, for instance:

 {
 "abc": 1234567890123,
 "def/": 1234567890456
 }

 Empty folders are treated as non-existing, and therefore GET

https://datatracker.ietf.org/doc/html/rfc2119

 requests to them SHOULD be responded to with a 404 response, and an

de Jong [Page 3]

Internet-Draft remotestorage December 2012

 empty folder MUST NOT be listed as an item in its parent folder.
 Also, folders SHOULD be created silently, as necessary to contain
 newly added items. This way, PUT and DELETE requests only need to be
 made to documents, and folder management becomes an implicit result.

 A successful GET request to a document SHOULD be responded to with
 the full document contents in the body, the document's content type
 in a 'Content-Type' header, and the document's current version in an
 'ETag' header.

 A successful PUT request to a document MUST result in:

 * the request body being stored as the document's new content,
 * parent and further ancestor folders being silently created as
 necessary, with the document (name and version) being added to
 its parent folder, and each folder added to its subsequent
 parent,
 * the value of its Content-Type header being stored as the
 document's new content type,
 * the current server time, in the form of milliseconds since
 0:00 UCT, 1 January, 1970 being stored as the new version of
 the document itself, as well as of its parent folder and
 further ancestor folders.

 The response MUST contain an ETag header, with the document's new
 version (milliseconds since the beginning of 1970) as its value.

 A successful DELETE request to a document MUST result in the
 deletion of that document from the storage, and from its parent
 folder. If the parent folder is left empty by this, then it MUST
 also be removed, and so on for ancestor folders.

 A successful OPTIONS request SHOULD be responded to as described in
 the CORS section below.

5. Response codes

 The following responses SHOULD be given in the indicated cases, in
 order of preference, and SHOULD be recognized by the client:

 * 500 if an internal server error occurs,
 * 420 if the client makes too frequent requests or is suspected
 of malicious activity,
 * 400 for all malformed requests (e.g. foreign characters in the
 path or unrecognized http verb, etcetera), as well as for
 all PUT and DELETE requests to folders,
 * 401 for all requests that don't have a bearer token with
 sufficient permissions,

 * 404 for all DELETE and GET requests to nodes that do not exist

de Jong [Page 4]

Internet-Draft remotestorage December 2012

 on the storage,
 * 304 for a conditional GET request whose condition fails
 (see "Versioning" below),
 * 409 for a conditional PUT or DELETE request whose condition
 fails (see "Versioning" below),
 * 200 for all successful requests, including PUT and DELETE,

 Clients SHOULD also handle the case where a response takes too long
 to arrive, or where no response is received at all.

6. Versioning

 The current version of a document is the 13-digit decimal number
 representing the number of milliseconds between 00:00 UCT, 1 January
 1970, and the last time its content or content type were set or
 changed successfully. The current version of a folder is the highest
 version of any of the items it contains.

 All successful requests MUST return an 'ETag' header with, in the
 case of GET, the current version, in the case of PUT, the new
 version, and in case of DELETE, the version that was deleted. PUT
 and DELETE requests MAY have an 'If-Unmodified-Since' request
 header, and MUST fail with a 409 response code if that doesn't match
 the document's current version. GET requests MAY have an
 'If-Modified-Since' header, and SHOULD be responded to with a 304 if
 that matches the document or folder's current version.

7. CORS headers

 All responses MUST carry CORS headers [CORS]. The server MUST also
 reply to OPTIONS requests as per CORS. For GET requests, a wildcard
 origin MAY be returned, but for PUT and DELETE requests, the
 response MUST echo back the Origin header sent by the client.

8. Session description

 The information that a client needs to receive in order to be able
 to connect to a server SHOULD reach the client as described in the
 'bearer token issuance' sections below. It consists of:

 * <storage_root>, consisting of 'https://' followed by a server
 host, and optionally a server port and a path prefix as per
 [IRI]. Examples:
 * 'https://example.com' (host only)
 * 'https://example.com:8080' (host and port)
 * 'https://example.com/some?path/to/storage' (host, port and
 path prefix; note there is no trailing slash)
 * <access_token> as per [OAUTH]. The token SHOULD be hard to
 guess and SHOULD NOT be reused from one client to another. It

 can however be reused in subsequent interactions with the same

de Jong [Page 5]

Internet-Draft remotestorage December 2012

 client, as long as that client is still trusted. Example:
 * 'ofb24f1ac3973e70j6vts19qr9v2eei'
 * <storage_api>, always 'draft-dejong-remotestorage-00' for this
 version of the specification.

 The client can make its requests using https with CORS and bearer
 tokens, to the URL that is the concatenation of <storage_root> with
 '/' plus one or more <folder> '/' strings indicating a path in the
 folder tree, followed by zero or one <document> strings, indicating
 a document. For example, if <storage_root> is
 "https://storage.example.com/bob", then to retrieve the folder
 contents of the /public/documents/ folder, or to retrieve a
 'draft.txt' document from that folder, the client would make
 requests to, respectively:

 * https://storage.example.com/bob/public/documents/
 * https://storage.example.com/bob/public/documents/draft.txt

9. Bearer tokens and access control

 A bearer token represents one or more access scopes. These access
 scopes are represented as strings of the form <module> <level>,
 where the <module> string SHOULD be lower-case alphanumerical, other
 than the reserved word 'public', and <level> can be ':r' or ':rw'.
 The access the bearer token gives is the sum of its access scopes,
 with each access scope representing the following permissions:

 'root:rw') any request,

 'root:r') any GET request,

 <module> ':rw') any requests to paths that start with
 '/' <module> '/' or '/public/' <module> '/',

 <module> ':r') any GET requests to paths that start with
 '/' <module> '/' or '/public/' <module> '/',

 As a special exceptions, GET requests to a document (but not a
 folder) whose path starts with '/public/' are always allowed. They,
 as well as OPTIONS requests, can be made without a bearer token. All
 other requests should present a bearer token with sufficient access
 scope, using a header of the following form:

 Authorization: Bearer <access_token>

10. Application-first bearer token issuance

 To make a remotestorage server available as 'the remotestorage of
 <user> at <host>', exactly one link of the following format SHOULD

https://datatracker.ietf.org/doc/html/draft-dejong-remotestorage-00

 be added to the webfinger record [WEBFINGER] of <user> at <host>:

de Jong [Page 6]

Internet-Draft remotestorage December 2012

 {
 href: <storage_root>,
 rel: "remotestorage",
 type: <storage_api>,
 properties: {
 'auth-method': "http://tools.ietf.org/html/rfc6749#section-4.2",
 'auth-endpoint': <auth_endpoint>
 }
 }

 Here <storage_root> and <storage_api> are as per "Session
 description" above, and <auth_endpoint> SHOULD be a URL where an
 OAuth2 implicit-grant flow dialog [OAUTH] is be presented, so the
 user can supply her credentials (how, is out of scope), and allow or
 reject a request by the connecting application to obtain a bearer
 token for a certain list of access scopes.

 The server SHOULD NOT expire bearer tokens unless they are revoked,
 and MAY require the user to register applications as OAuth clients
 before first use; if no client registration is required, then the
 server MAY ignore the client_id parameter in favour of relying on
 the redirect_uri parameter for client identification.

11. Storage-first bearer token issuance

 The provider MAY also present a dashboard to the user, where she
 has some way to add open web app manifests [MANIFEST]. Adding a
 manifest to the dashboard is considered equivalent to clicking
 'accept' in the dialog of the application-first flow. Removing one
 is considered equivalent to revoking its access token.

 As an equivalent to OAuth's 'scope' parameter, a 'remotestorage'
 field SHOULD be present in the root of such an application manifest
 document, as a JSON array of strings, each string being one access
 scope of the form <module> <level>.

 When the user gestures she wants to use a certain application whose
 manifest is present on the dashboard, the dashboard SHOULD redirect
 to the application or open it in a new window. To mimic coming back
 from the OAuth dialog, it MAY add 'access_token' and 'scope'
 parameters to the URL fragment.

 Regardless of whether 'access_token' and 'scope' are specified, it
 SHOULD add a 'remotestorage' parameter to the URL fragment, with a
 value of the form <user> '@' <host>. When the application detects
 this parameter, it SHOULD resolve the webfinger record for <user> at
 <host> and extract the <storage_root> and <storage_api> information.

 If no access_token was given, then the application SHOULD also

 extract the <auth_endpoint> information from webfinger, and continue

de Jong [Page 7]

Internet-Draft remotestorage December 2012

 as per application-first bearer token issuance.

 Note that whereas a remotestorage server SHOULD offer support of the
 application-first flow with webfinger and OAuth, it MAY choose not
 to support the storage-first flow, provided that users will easily
 remember their <user> '@' <host> webfinger address at that provider.
 Applications SHOULD, however, support both flows, which means
 checking the URL for a 'remotestorage' parameter, but giving the
 user a way to specify her webfinger address if there is none.

 If a server provides an application manifest dashboard, then it
 SHOULD merge the list of applications there with the list of
 issued access tokens as specified by OAuth into one list. Also,
 the interface for revoking an access token as specified by OAuth
 SHOULD coincide with removing an application from the dashboard.

12. Security Considerations

 To prevent man-in-the-middle attacks, the use of https instead of
 http is important for both the interface itself and all end-points
 involved in webfinger, OAuth, and (if present) the storage-first
 application launch dashboard.

 A malicious party could link to an application, but specifying a
 remotestorage user address that it controls, thus tricking the user
 into using a trusted application to send sensitive data to the wrong
 remotestorage server. To mitigate this, applications SHOULD clearly
 display to which remotestorage server they are sending the user's
 data.

 Applications could request scopes that the user did not intend to
 give access to. The user SHOULD always be prompted to carefully
 review which scopes an application is requesting.

 An application may upload malicious html pages and then trick the
 user into visiting them, or upload malicious client-side scripts,
 that take advantage of being hosted on the user's domain name. The
 origin on which the remotestorage server has its interface SHOULD
 therefore NOT be used for anything else, and the user SHOULD be
 warned not to visit any web pages on that origin. In particular, the
 OAuth dialog and launch dashboard or token revokation interface
 SHOULD be on a different origin than the remotestorage interface.

 Where the use of bearer tokens is impractical, a user may choose to
 store documents on hard-to-guess URLs whose path after
 <storage_root> starts with '/public/', while sharing this URL only
 with the intended audience. That way, only parties who know the
 document's hard-to-guess URL, can access it. The server SHOULD
 therefore make an effort to detect and stop brute-force attacks that

 attempt to guess the location of such documents.

de Jong [Page 8]

Internet-Draft remotestorage December 2012

 The server SHOULD also detect and stop denial-of-service attacks
 that aim to overwhelm its interface with too much traffic.

13. IANA Considerations

 This document registers the 'remotestorage' link relation.

14. Acknowledgements

 The authors would like to thank everybody who contributed to the
 development of this protocol, including Kenny Bentley, Javier Diaz,
 Daniel Groeber, Bjarni Runar, Jan Wildeboer, Charles Schultz, Peter
 Svensson, Valer Mischenko, Michiel Leenaars, Jan-Christoph
 Borchardt, Garret Alfert, Sebastian Kippe, Max Wiehle, Melvin
 Carvalho, Martin Stadler, Geoffroy Couprie, Niklas Cathor, Marco
 Stahl, James Coglan, Ken Eucker, Daniel Brolund, elf Pavlik, Nick
 Jennings, and Markus Sabadello, among many others.

15. References

15.1. Normative References

 [WORDS]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [IRI]
 Duerst, M., "Internationalized Resource Identifiers (IRIs)",

RFC 3987, January 2005.

 [WEBFINGER]
 Jones, Paul E., Salguerio, Gonzalo, and Smarr, Joseph,
 "WebFinger", draft-ietf-appsawg-webfinger-07, Work in Progress

 [OAUTH]
 "Section 4.2: Implicit Grant", in: Hardt, D. (ed), "The OAuth
 2.0 Authorization Framework", RFC6749, October 2012.

15.2. Informative References

 [HTTPS]
 Rescorla, E., "HTTP Over TLS", RFC2818, May 2000.

 [CORS]
 van Kesteren, Anne (ed), "Cross-Origin Resource Sharing -- W3C
 Working Draft 3 April 2012",

http://www.w3.org/TR/2012/WD-cors-20120403/CORS, April 2012.

 [MANIFEST]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-webfinger-07
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc2818
http://www.w3.org/TR/2012/WD-cors-20120403/CORS

 Mozilla Developer Network (ed), "App manifest -- Revision

de Jong [Page 9]

Internet-Draft remotestorage December 2012

 330541", https://developer.mozilla.org/en-
 US/docs/Apps/Manifest$revision/330541, November 2012.

16. Authors' addresses

 Michiel B. de Jong
 (independent)

 Email: michiel@michielbdejong.com

 F. Kooman
 SURFnet bv
 Postbus 19035
 3501 DA Utrecht
 The Netherlands

 Email: Francois.Kooman@surfnet.nl

https://developer.mozilla.org/en-

de Jong [Page 10]

