
INTERNET DRAFT Michiel B. de Jong
Document: draft-dejong-remotestorage-08 (independent)
 F. Kooman
Intended Status: Proposed Standard (independent)
Expires: 2 June 2017 29 November 2016

remoteStorage

Abstract

 This draft describes a protocol by which client-side applications,
 running inside a web browser, can communicate with a data storage
 server that is hosted on a different domain name. This way, the
 provider of a web application need not also play the role of data
 storage provider. The protocol supports storing, retrieving, and
 removing individual documents, as well as listing the contents of an
 individual folder, and access control is based on bearer tokens.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 June 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/draft-dejong-remotestorage-08
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

de Jong [Page 1]

Internet-Draft remoteStorage November 2016

Table of Contents

1. Introduction...2
2. Terminology..3
3. Storage model..3
4. Requests...4
5. Response codes...7
6. Versioning...8
7. CORS headers...8
8. Session description..9
9. Bearer tokens and access control...............................9
10. Application-first bearer token issuance.......................10
11. Storage-first bearer token issuance...........................12
12. Example wire transcripts......................................12

12.1. WebFinger..12
12.2. OAuth dialog form..13
12.3. OAuth dialog form submission.............................14
12.4. OPTIONS preflight..14
12.5. Initial PUT..15
12.6. Subsequent PUT...15
12.7. GET..16
12.8. DELETE...17

13. Distributed versioning..18
14. Security Considerations.......................................19
15. IANA Considerations...20
16. Acknowledgments...20
17. References..20

17.1. Normative References.....................................20
17.2. Informative References...................................21

18. Authors' addresses..22

1. Introduction

 Many services for data storage are available over the Internet. This
 specification describes a vendor-independent interface for such
 services. It is based on HTTPS, CORS and bearer tokens. The
 metaphor for addressing data on the storage is that of folders
 containing documents and subfolders. The actions the interface
 exposes are:

 * GET a folder: retrieve the names and current versions of the
 documents and subfolders currently contained by the folder

de Jong [Page 2]

Internet-Draft remoteStorage November 2016

 * GET a document: retrieve its content type, current version,
 and contents

 * PUT a document: store a new version, its content type, and
 contents, conditional on the current version

 * DELETE a document: remove it from the storage, conditional on
 the current version

 * HEAD a folder or document: like GET, but omitting the response
 body

 The exact details of these five actions are described in this
 specification.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [WORDS].

 "SHOULD" and "SHOULD NOT" are appropriate when valid exceptions to a
 general requirement are known to exist or appear to exist, and it is
 infeasible or impractical to enumerate all of them. However, they
 should not be interpreted as permitting implementors to fail to
 implement the general requirement when such failure would result in
 interoperability failure.

3. Storage model

 The server stores data in nodes that form a tree structure.
 Internal nodes are called 'folders' and leaf nodes are called
 'documents'. For a folder, the server stores references to nodes
 contained in the folder, and it should be able to produce a list of
 them, with for each contained item:

 * item name
 * item type (folder or document)
 * current version
 * content type
 * content length

 For a document, the server stores, and should be able to produce:

de Jong [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft remoteStorage November 2016

 * current version
 * content type
 * content length
 * content

4. Requests

 Client-to-server requests SHOULD be made over HTTPS [HTTPS], and
 servers MUST comply with HTTP/1.1 [HTTP]. Specifically, they
 MUST support chunked transfer coding on PUT requests. Servers MAY
 also offer an optional switch to HTTP/2 [HTTP/2].

 A request is considered successful if the HTTP response code is in
 the 2xx range (e.g. 200 OK, 201 Created), and unsuccessful if an
 error occurred or a condition was not met, e.g. response code 404
 Not Found, 304 Not Modified.

 The root folder of the storage tree is represented by the following
 URL:

 URI_ENCODE(<storage_root> '/')

 Subsequently, let <parent_folder> be the URL of a folder, i.e. ends
 with a '/', then the URL of an item contained in it is:

 URI_ENCODE(<parent_folder> <document_name>)

 for a document, or:

 URI_ENCODE(<parent_folder> <folder_name> '/')

 for a folder.

 Item names MAY contain all characters, before URI_ENCODE, except '/'
 and the null character '\0' and MUST NOT have zero length. Item
 names MUST NOT be equal to '.' or to '..', as those have a special
 semantic in URIs (Section 5.2.4 of [URI]).

 A document description is a map containing one string-valued 'ETag'
 field, one string-valued 'Content-Type' and one integer-valued
 'Content-Length' field. They represent the document's current
 version, its content type, and its content length respectively. Note

de Jong [Page 4]

Internet-Draft remoteStorage November 2016

 that content length is measured in octets (bytes), not in
 characters.

 A folder description is a map containing a string-valued 'ETag'
 field, representing the folder's current version.

 A successful GET request to a folder MUST be responded to with a
 JSON-LD [JSON-LD] document (content type 'application/ld+json'),
 containing as its 'items' field a map in which contained documents
 appear as entries <item_name> to a document description, and
 contained non-empty folders appear as entries <item_name> '/' to a
 folder description. It MUST also contain an '@context' field with
 the value 'http://remotestorage.io/spec/folder-description'. For
 instance:

 {
 "@context": "http://remotestorage.io/spec/folder-description",
 "items": {
 "abc": {
 "ETag": "DEADBEEFDEADBEEFDEADBEEF",
 "Content-Type": "image/jpeg",
 "Content-Length": 82352
 },
 "def/": {
 "ETag": "1337ABCD1337ABCD1337ABCD"
 }
 }
 }

 GET requests to empty folders SHOULD be responded to with a folder
 description with no items (the items field set to '{}'). However, an
 empty folder MUST NOT be listed as an item in its parent folder.

 PUT and DELETE requests only need to be made to documents, and never
 to folders. A document PUT will make all ancestor folders along its
 path become non-empty; deleting the last document from a subtree
 will make that whole subtree become empty. Folders will therefore
 show up in their parent folder descriptions if and only if their
 subtree contains at least one document.

 In contexts outside of this document, non-empty folders may be
 called 'existent', while empty folders may be called 'non-existent'.

de Jong [Page 5]

Internet-Draft remoteStorage November 2016

 A successful GET request to a document SHOULD be responded to with
 the full document contents in the body, the document's content type
 in a 'Content-Type' header, its content length in octets (not in
 characters) in a 'Content-Length' header, and the document's current
 version as a strong ETag in an 'ETag' header.

 Note that the use of strong ETags prohibits changing the response
 body based on request headers; in particular, the server will not be
 able to serve the same document uncompressed to some clients and
 compressed to other clients when requested, since the two bodies
 would not be identical byte-for-byte.

 Servers MAY support Content-Range headers [RANGE] on GET requests,
 but whether or not they do SHOULD be announced both through the
 "http://tools.ietf.org/html/rfc7233" option mentioned below in

section 10 and through the HTTP 'Accept-Ranges' response header.

 A successful PUT request to a document MUST result in:

 * the request body being stored as the document's new content,
 * parent and further ancestor folders being silently created as
 necessary, with the document (name and version) being added to
 its parent folder, and each folder added to its subsequent
 parent,
 * the value of its Content-Type header being stored as the
 document's new content type,
 * its version being updated, as well as that of its parent folder
 and further ancestor folders, using a strong validator [HTTP,

section 7.2].

 If not exactly one Content-Type header was received as part of a
 PUT request, the Content-Type header value contains non-ASCII
 characters, or it is unreasonably long, the server MAY refuse to
 process the request, and instead respond with a descriptive error
 message in the body, and a http response code from the 4xx range.

 The response MUST contain a strong ETag header, with the document's
 new version (for instance a hash of its contents) as its value.

 A successful DELETE request to a document MUST result in:

 * the deletion of that document from the storage, and from its

de Jong [Page 6]

Internet-Draft remoteStorage November 2016

 parent folder,
 * silent deletion of the parent folder if it is left empty by
 this, and so on for further ancestor folders,
 * the version of its parent folder being updated, as well as that
 of further ancestor folders.

 A successful HEAD request SHOULD be responded to like to the
 equivalent GET request, but omitting the response body.

 A successful OPTIONS request SHOULD be responded to as described in
 the CORS section below.

5. Response codes

 Response codes SHOULD be given as defined by [HTTP, section 6] and
 [BEARER, section 3.1]. The following is a non-normative list of
 status codes that are likely to occur in practice:

 * 500 if an internal server error occurred,
 * 429 if the client makes too frequent requests or is suspected
 of malicious activity,
 * 414 if the request URI is too long,
 * 416 if Range requests are supported by the server and the Range
 request can not be satisfied,
 * 401 for all requests that require a valid bearer token and
 where no valid one was sent (see also [BEARER, section

3.1]),
 * 403 for all requests that have insufficient scope, e.g.
 accessing a <module> for which no scope was obtained, or
 accessing data outside the user's <storage_root>,
 * 404 for all DELETE, GET and HEAD requests to documents that do
 not exist on the storage,
 * 304 for a conditional GET request whose precondition
 fails (see "Versioning" below),
 * 409 for a PUT request where any folder name in the path
 clashes with an existing document's name at the same
 level, or where the document name coincides with an
 existing folder's name at the same level.
 * 412 for a conditional PUT or DELETE request whose precondition
 fails (see "Versioning" below),
 * 507 in case the account is over its storage quota,
 * 4xx for all malformed requests, e.g. reserved characters in the
 path [URI, section 2.2], as well as for all PUT and DELETE

de Jong [Page 7]

Internet-Draft remoteStorage November 2016

 requests to folders,
 * 2xx for all successful requests.

 Clients SHOULD also handle the case where a response takes too long
 to arrive, or where no response is received at all.

6. Versioning

 All successful GET, HEAD, PUT and DELETE requests MUST return an
 'ETag' header [HTTP] with, in the case of GET and HEAD the current
 version, in the case of PUT, the new version, and in case of DELETE,
 the version that was deleted. All successful GET requests MUST
 return a 'Cache-Control: no-cache' header. PUT and DELETE requests
 MAY have an 'If-Match' request header [COND], and MUST fail with a
 412 response code if that does not match the document's current
 version.

 All successful requests MUST return an 'ETag' header [HTTP] with, in
 the case of GET, the current version, in the case of PUT, the new
 version, and in case of DELETE, the version that was deleted. All
 successful GET requests MUST return an 'Cache-Control: no-cache'
 header. PUT and DELETE requests MAY have an 'If-Match' request
 header [COND], and MUST fail with a 412 response code if that
 does not match the document's current version.

 GET requests MAY have a comma-separated list of revisions in an
 'If-None-Match' header [COND], and SHOULD be responded to with a 304
 response if that list includes the document or folder's current
 version. A PUT request MAY have an 'If-None-Match: *' header [COND],
 in which case it MUST fail with a 412 response code if the document
 already exists.

 A provider MAY offer version rollback functionality to its users,
 but this specification does not define the interface for that.

7. CORS headers

 All responses MUST carry CORS headers [CORS]. The server MUST also
 reply to preflight OPTIONS requests as per CORS.

de Jong [Page 8]

Internet-Draft remoteStorage November 2016

8. Session description

 The information that a client needs to receive in order to be able
 to connect to a server SHOULD reach the client as described in the
 'bearer token issuance' sections below. It consists of:

 * <storage_root>, consisting of 'https://' followed by a server
 host, and optionally a server port and a path prefix as per
 [IRI]. Examples:
 * 'https://example.com' (host only)
 * 'https://example.com:8080' (host and port)
 * 'https://example.com/path/to/storage' (host, port and
 path prefix; note there is no trailing slash)
 * <access_token> as per [OAUTH]. The token SHOULD be hard to
 guess and SHOULD NOT be reused from one client to another. It
 can however be reused in subsequent interactions with the same
 client, as long as that client is still trusted. Example:
 'ofb24f1ac3973e70j6vts19qr9v2eei'
 * <storage_api>, always 'draft-dejong-remotestorage-08' for this
 alternative version of the specification.

 The client can make its requests using HTTPS with CORS and bearer
 tokens, to the URL that is the concatenation of <storage_root> with
 '/' plus one or more <folder> '/' strings indicating a path in the
 folder tree, followed by zero or one <document> strings, indicating
 a document. For example, if <storage_root> is
 "https://storage.example.com/bob", then to retrieve the folder
 contents of the /public/documents/ folder, or to retrieve a
 'draft.txt' document from that folder, the client would make
 requests to, respectively:

 * https://storage.example.com/bob/public/documents/
 * https://storage.example.com/bob/public/documents/draft.txt

9. Bearer tokens and access control

 A bearer token represents one or more access scopes. These access
 scopes are represented as strings of the form <module> <level>,
 where the <module> string SHOULD be lower-case alphanumerical, other
 than the reserved word 'public', and <level> can be ':r' or ':rw'.
 The access the bearer token gives is the sum of its access scopes,
 with each access scope representing the following permissions:

de Jong [Page 9]

https://datatracker.ietf.org/doc/html/draft-dejong-remotestorage-08

Internet-Draft remoteStorage November 2016

 '*:rw') any request,

 '*:r') any GET or HEAD request,

 <module> ':rw') any requests to paths relative to <storage_root>
 that start with '/' <module> '/' or
 '/public/' <module> '/',

 <module> ':r') any GET or HEAD requests to paths relative to
 <storage_root> that start with
 '/' <module> '/' or '/public/' <module> '/',

 As a special exceptions, GET and HEAD requests to a document (but
 not a folder) whose path starts with '/public/' are always allowed.
 They, as well as OPTIONS requests, can be made without a bearer
 token. Unless [KERBEROS] is used (see section 10 below), all other
 requests SHOULD present a bearer token with sufficient access scope,
 using a header of the following form (no double quotes here):

 Authorization: Bearer <access_token>

 In addition, providing the access token via a HTTP query parameter
 for GET requests MAY be supported by the server, although its use
 is not recommended, due to its security deficiencies; see [BEARER,

section 2.3]. If supported, this SHOULD be announce through the
 "http://tools.ietf.org/html/rfc6750#section-2.3" WebFinger property
 as per section 10 below.

10. Application-first bearer token issuance

 To make a remoteStorage server available as 'the remoteStorage of
 the person identified by <uri>', exactly one link of the following
 format SHOULD be added to the WebFinger record [WEBFINGER] for
 <uri>:

 {
 "href": <storage_root>,
 "rel": "http://tools.ietf.org/id/draft-dejong-remotestorage",
 "properties": {
 "http://remotestorage.io/spec/version": <storage_api>,
 "http://tools.ietf.org/html/rfc6749#section-4.2": <auth-dialog>,
 "...": "...",
 }

de Jong [Page 10]

Internet-Draft remoteStorage November 2016

 }

 A common way of identifying persons as <user> at <host> is through a
 URI of the format "acct:<user>@<host>". Persons who use a personal
 domain name, not shared with any other users, can be identified by
 a URI of the format "http://<host>/" (see [WEBFINGER, section 4.1]).

 Here <storage_root> and <storage_api> are as per "Session
 description" above, and <auth-dialog> SHOULD be either null or a
 URL where an OAuth 2.0 implicit-grant flow dialog [OAUTH] is
 presented.

 If <auth-dialog> is a URL, the user can supply their credentials
 for accessing the account (how, is out of scope), and allow or
 reject a request by the connecting application to obtain a bearer
 token for a certain list of access scopes. Note that an account
 will often belong to just one human user, but may also belong to a
 group of multiple users (the remoteStorage of <group> at <host>).

 If <auth-dialog> is null, the client will not have a way to obtain
 an access token, and SHOULD send all requests without Authorization
 header, and rely on Kerberos [KERBEROS] instead for requests that
 would normally be sent with a bearer token, but servers SHOULD NOT
 impose any such access barriers for resources that would normally
 not require an access token.

 The '...' ellipses indicate that more properties may be present.
 Non-breaking examples that have been proposed so far, include a
 "http://tools.ietf.org/html/rfc6750#section-2.3" property, set to
 the string value "true" if the server supports passing the bearer
 token in the URI query parameter as per section 2.3 of [BEARER],
 instead of in the request header.

 Another example is "http://tools.ietf.org/html/rfc7233" with a
 string value of "GET" if Content-Range headers are supported for
 GET requests as per [RANGE].

 Both these proposals are non-breaking extensions, since the client
 will have a way to work around it if these features are not present
 (e.g. retrieve the protected resource asynchronously in the first
 case, or request the entire resource in the second case).

 A "http://remotestorage.io/spec/web-authoring" property has been

de Jong [Page 11]

Internet-Draft remoteStorage November 2016

 proposed with a string value of the fully qualified domain name to
 which web authoring content is published if the server supports web
 authoring as per [AUTHORING]. Note that this extension is a breaking
 extension in the sense that it divides users into "haves", whose
 remoteStorage accounts allow them to author web content, and
 "have-nots", whose remoteStorage account does not support this
 functionality.

 The server MAY expire bearer tokens, and MAY require the user to
 register applications as OAuth clients before first use; if no
 client registration is required, the server MUST ignore the value of
 the client_id parameter in favor of relying on the origin of the
 redirect_uri parameter for unique client identification. See section

4 of [ORIGIN] for computing the origin.

11. Storage-first bearer token issuance

 To request that the application connects to the user account
 <account> ' ' <host>, providers MAY redirect to applications with a
 'remotestorage' field in the URL fragment, with the user account as
 value.

 The appplication MUST make sure this request is intended by the
 user. It SHOULD ask for confirmation from the user whether they want
 to connect to the given provider account. After confirmation, it
 SHOULD connect to the given provider account, as defined in Section

10.

 If the 'remotestorage' field exists in the URL fragment, the
 application SHOULD ignore any other parameters such as
 'access_token' or 'state', to ensure compatibility with servers
 that implement older versions of this specification.

12. Example wire transcripts

 The following examples are not normative ("\" indicates a line was
 wrapped).

12.1. WebFinger

 In application-first, an in-browser application might issue the
 following request, using XMLHttpRequest and CORS:

de Jong [Page 12]

Internet-Draft remoteStorage November 2016

 GET /.well-known/webfinger?resource=acct:michiel@michielbdejon\
g.com HTTP/1.1
 Host: michielbdejong.com

 and the server's response might look like this:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: *
 Content-Type: application/jrd+json

 {
 "links":[{
 "href": "https://michielbdejong.com:7678/inbox",
 "rel": "post-me-anything"
 }, {
 "href": "https://michielbdejong.com/me.jpg",
 "rel": "avatar"
 }, {
 "href": "https://3pp.io:4439/storage/michiel",
 "rel": "http://tools.ietf.org/id/draft-dejong-remotestorag\
e",
 "properties": {
 "http://remotestorage.io/spec/version": "draft-dejong-re\
motestorage-08",
 "http://tools.ietf.org/html/rfc6749#section-4.2": "https\
://3pp.io:4439/oauth/michiel",
 "http://tools.ietf.org/html/rfc6750#section-2.3": null,
 "http://tools.ietf.org/html/rfc7233": null,
 "http://remotestorage.io/spec/web-authoring": null
 }
 }]
 }

12.2. OAuth dialog form

 Once the in-browser application has discovered the server's OAuth
 end-point, it will typically redirect the user to this URL, in
 order to obtain a bearer token. Say the application is hosted on

https://drinks-unhosted.5apps.com/ and wants read-write access to
 the account's "myfavoritedrinks" scope:

 GET /oauth/michiel?redirect_uri=https%3A%2F%2Fdrinks-unhosted.5\
apps.com%2F&scope=myfavoritedrinks%3Arw&client_id=https%3A%2F%2Fdrinks-\

de Jong [Page 13]

https://datatracker.ietf.org/doc/html/draft-dejong-re
https://drinks-unhosted.5apps.com/

Internet-Draft remoteStorage November 2016

unhosted.5apps.com&response_type=token HTTP/1.1
 Host: 3pp.io

 The server's response might look like this (truncated for brevity):

 HTTP/1.1 200 OK

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>Allow access?</title>
 ...

12.3. OAuth dialog form submission

 When the user submits the form, the request would look something
 like this:

 POST /oauth HTTP/1.1
 Host: 3pp.io:4439
 Origin: https://3pp.io:4439
 Content-Type: application/x-www-form-urlencoded
 Referer: https://3pp.io:4439/oauth/michiel?redirect_uri=https%3\
A%2F%2Fdrinks-unhosted.5apps.com%2F&scope=myfavoritedrinks%3Arw&client_\
id=https%3A%2F%2Fdrinks-unhosted.5apps.com&response_type=token

 client_id=https%3A%2F%2Fdrinks-unhosted.5apps.com&redirect_uri=\
https%3A%2F%2Fdrinks-unhosted.5apps.com%2F&response_type=token&scope=my\
favoritedrinks%3Arw&username=michiel&password=something&allow=Al\
low

 To which the server could respond with a 302 redirect, back to the
 origin of the requesting application:

 HTTP/1.1 302 Found
 Location: https://drinks-unhosted.5apps.com/#access_token=j2YnG\
 tXjzzzHNjkd1CJxoQubA1o%3D&token_type=bearer

12.4. OPTIONS preflight

 When an in-browser application makes a cross-origin request which
 may affect the server-state, the browser will make a preflight
 request first, with the OPTIONS verb, for instance:

de Jong [Page 14]

https://3pp.io:4439
https://3pp
https://drinks-unhosted.5apps

Internet-Draft remoteStorage November 2016

 OPTIONS /storage/michiel/myfavoritedrinks/ HTTP/1.1
 Host: 3pp.io:4439
 Access-Control-Request-Method: GET
 Origin: https://drinks-unhosted.5apps.com
 Access-Control-Request-Headers: Authorization
 Referer: https://drinks-unhosted.5apps.com/

 To which the server can for instance respond:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 Access-Control-Allow-Methods: GET, PUT, DELETE
 Access-Control-Allow-Headers: Authorization, Content-Length, Co\
ntent-Type, Origin, X-Requested-With, If-Match, If-None-Match

12.5. Initial PUT

 An initial PUT may contain an 'If-None-Match: *' header, like this:

 PUT /storage/michiel/myfavoritedrinks/test HTTP/1.1
 Host: 3pp.io:4439
 Content-Length: 91
 Origin: https://drinks-unhosted.5apps.com
 Authorization: Bearer j2YnGtXjzzzHNjkd1CJxoQubA1o=
 Content-Type: application/json; charset=UTF-8
 Referer: https://drinks-unhosted.5apps.com/?
 If-None-Match: *

 {"name":"test","@context":"http://remotestorage.io/spec/modules\
/myfavoritedrinks/drink"}

 And the server may respond with either a 201 Created or a 200 OK
 status:

 HTTP/1.1 201 Created
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 ETag: "1382694045000"

12.6. Subsequent PUT

 A subsequent PUT may contain an 'If-Match' header referring to the
 ETag previously returned, like this:

de Jong [Page 15]

https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com/
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com/?
https://drinks-unhosted.5apps.com

Internet-Draft remoteStorage November 2016

 PUT /storage/michiel/myfavoritedrinks/test HTTP/1.1
 Host: 3pp.io:4439
 Content-Length: 91
 Origin: https://drinks-unhosted.5apps.com
 Authorization: Bearer j2YnGtXjzzzHNjkd1CJxoQubA1o=
 Content-Type: application/json; charset=UTF-8
 Referer: https://drinks-unhosted.5apps.com/
 If-Match: "1382694045000"

 {"name":"test", "updated":true, "@context":"http://remotestorag\
e.io/spec/modules/myfavoritedrinks/drink"}

 And the server may respond with a 412 Conflict or a 200 OK status:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 ETag: "1382694048000"

12.7. GET

 A GET request would also include the bearer token, and optionally
 an If-None-Match header:

 GET /storage/michiel/myfavoritedrinks/test HTTP/1.1
 Host: 3pp.io:4439
 Origin: https://drinks-unhosted.5apps.com
 Authorization: Bearer j2YnGtXjzzzHNjkd1CJxoQubA1o=
 Referer: https://drinks-unhosted.5apps.com/
 If-None-Match: "1382694045000", "1382694048000"

 And the server may respond with a 304 Not Modified status:

 HTTP/1.1 304 Not Modified
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 ETag: "1382694048000"

 Or a 200 OK status, plus a response body:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 Content-Type: application/json; charset=UTF-8
 Content-Length: 106

de Jong [Page 16]

https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com/
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com/
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com

Internet-Draft remoteStorage November 2016

 ETag: "1382694048000"
 Cache-Control: no-cache

 {"name":"test", "updated":true, "@context":"http://remotestora\
ge.io/spec/modules/myfavoritedrinks/drink"}

 If the GET URL would have been "/storage/michiel/myfavoritedrinks/",
 a 200 OK response would have a folder description as the response
 body:

 HTTP/1.1 200 OK
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 Content-Type: application/ld+json
 Content-Length: 171
 ETag: "1382694048000"
 Cache-Control: no-cache

 {"@context":"http://remotestorage.io/spec/folder-version","ite\
ms":{"test":{"ETag":"1382694048000","Content-Type":"application/json; \
charset=UTF-8","Content-Length":106}}}

 If the GET URL would have been a non-existing document like
 "/storage/michiel/myfavoritedrinks/x", the response would have a 404
 Not Found status, and no ETag header:

 HTTP/1.1 404 Not Found
 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com

12.8. DELETE

 A DELETE request may look like this:

 DELETE /storage/michiel/myfavoritedrinks/test HTTP/1.1
 Host: 3pp.io:4439
 Origin: https://drinks-unhosted.5apps.com
 Authorization: Bearer j2YnGtXjzzzHNjkd1CJxoQubA1o=
 Content-Type: application/json; charset=UTF-8
 Referer: https://drinks-unhosted.5apps.com/
 If-Match: "1382694045000"

 And the server may respond with a 412 Conflict or a 200 OK status:

 HTTP/1.1 412 Conflict

de Jong [Page 17]

https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com
https://drinks-unhosted.5apps.com/

Internet-Draft remoteStorage November 2016

 Access-Control-Allow-Origin: https://drinks-unhosted.5apps.com
 ETag: "1382694048000"

13. Distributed versioning

 This section is non-normative, and is intended to explain some of
 the design choices concerning ETags and folder listings. At the
 same time it will hopefully help readers who intend to develop an
 application that uses remoteStorage as its per-user data storage.
 When multiple clients have read/write access to the same document,
 versioning conflicts may occur. For instance, client A may make
 a PUT request that changes the document from version 1 to version
 2, after which client B may make a PUT request attempting to change
 the same document from version 1 to version 3.

 In this case, client B can add an 'If-Match: "1"' header, which
 would trigger a 412 Conflict response code, since the current
 version ("2") does not match the version required as a condition by
 the header If-Match header ("1").

 Client B is now aware of the conflict, and may consult the user,
 saying the update to version 3 failed. The user may then choose,
 through the user interface of client B, whether version 2 or
 version 3 should be kept, or maybe the document should be reverted
 on the server to version 1, or a merged version 4 is needed. Client
 B may then make a request that puts the document to the version the
 user wishes; this time setting an 'If-Match: "2"' header instead.

 Both client A and client B would periodically poll the root
 folder of each scope they have access to, to see if the version
 of the root folder changed. If it did, then one of the versions
 listed in there will necessarily have changed, and the client can
 make a GET request to that child folder or document, to obtain
 its latest version.

 Because an update in a document will result in a version change of
 its containing folder, and that change will propagate all the way
 to the root folder, it is not necessary to poll each document for
 changes individually.

 As an example, the root folder may contain 10 directories,

de Jong [Page 18]

https://drinks-unhosted.5apps.com

Internet-Draft remoteStorage November 2016

 each of which contain 10 directories, which each contain 10
 documents, so their paths would be for instance '/0/0/1', '/0/0/2',
 etcetera. Then one GET request to the root folder '/' will be
 enough to know if any of these 1000 documents has changed.

 Say document '/7/9/2' has changed; then the GET request to '/' will
 come back with a different ETag, and entry '7/' will have a
 different value in its JSON content. The client could then request
 '/7/', '/7/9/', and '/7/9/2' to narrow down the one document that
 caused the root folder's ETag to change.

 Note that the remoteStorage server does not get involved in the
 conflict resolution. It keeps the canonical current version at all
 times, and allows clients to make conditional GET and PUT requests,
 but it is up to whichever client discovers a given version
 conflict, to resolve it.

14. Security Considerations

 To prevent man-in-the-middle attacks, the use of HTTPS instead of
 http is important for both the interface itself and all end-points
 involved in WebFinger, OAuth, and (if present) the storage-first
 application launch dashboard.

 A malicious party could link to an application, but specifying a
 remoteStorage account address that it controls, thus tricking the
 user into using a trusted application to send sensitive data to the
 wrong remoteStorage server. To mitigate this, applications SHOULD
 clearly display to which remoteStorage server they are sending the
 user's data.

 Applications could request scopes that the user did not intend to
 give access to. The user SHOULD always be prompted to carefully
 review which scopes an application is requesting.

 An application may upload malicious HTML pages and then trick the
 user into visiting them, or upload malicious client-side scripts,
 that take advantage of being hosted on the user's domain name. The
 origin on which the remoteStorage server has its interface SHOULD
 therefore NOT be used for anything else, and the user SHOULD be
 warned not to visit any web pages on that origin. In particular, the
 OAuth dialog and launch dashboard or token revocation interface
 SHOULD be on a different origin than the remoteStorage interface.

de Jong [Page 19]

Internet-Draft remoteStorage November 2016

 Where the use of bearer tokens is impractical, a user may choose to
 store documents on hard-to-guess URLs [CAPABILITIES] whose path
 after <storage_root> starts with '/public/', while sharing this URL
 only with the intended audience. That way, only parties who know the
 document's hard-to-guess URL, can access it. The server SHOULD
 therefore make an effort to detect and stop brute-force attacks that
 attempt to guess the location of such documents.

 The server SHOULD also detect and stop denial-of-service attacks
 that aim to overwhelm its interface with too much traffic.

15. IANA Considerations

 This document registers the following WebFinger properties:
 * "http://remotestorage.io/spec/version"
 * "http://tools.ietf.org/html/rfc6749#section-4.2"
 * "http://tools.ietf.org/html/rfc6750#section-2.3"
 * "http://tools.ietf.org/html/rfc7233"
 * "http://remotestorage.io/spec/web-authoring"

16. Acknowledgements

 The authors would like to thank everybody who contributed to the
 development of this protocol, including Kenny Bentley, Javier Diaz,
 Daniel Groeber, Bjarni Runar, Jan Wildeboer, Charles Schultz, Peter
 Svensson, Valer Mischenko, Michiel Leenaars, Jan-Christoph
 Borchardt, Garret Alfert, Sebastian Kippe, Max Wiehle, Melvin
 Carvalho, Martin Stadler, Geoffroy Couprie, Niklas Cathor, Marco
 Stahl, James Coglan, Ken Eucker, Daniel Brolund, elf Pavlik, Nick
 Jennings, Markus Sabadello, Steven te Brinke, Matthias Treydte,
 Rick van Rein, Mark Nottingham, Julian Reschke, Markus Lanthaler,
 and Markus Unterwaditzer, among many others.

17. References

17.1. Normative References

 [WORDS]
 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [IRI]

de Jong [Page 20]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft remoteStorage November 2016

 Duerst, M., "Internationalized Resource Identifiers (IRIs)",
RFC 3987, January 2005.

 [URI]
 Fielding, R., "Uniform Resource Identifier (URI): Generic
 Syntax", RFC 3986, January 2005.

 [WEBFINGER]
 Jones, P., Salguerio, G., Jones, M, and Smarr, J.,
 "WebFinger", RFC7033, September 2013.

 [OAUTH]
 "Section 4.2: Implicit Grant", in: Hardt, D. (ed), "The OAuth
 2.0 Authorization Framework", RFC6749, October 2012.

 [ORIGIN]
 "Section 4: Origin of a URI", in: Barth, A., "The Web Origin
 Concept", RFC6454, December 2011.

17.2. Informative References

 [HTTPS]
 Rescorla, E., "HTTP Over TLS", RFC2818, May 2000.

 [HTTP]
 Fielding et al., "Hypertext Transfer Protocol (HTTP/1.1):
 Semantics and Content", RFC7231, June 2014.

 [COND]
 Fielding et al., "Hypertext Transfer Protocol (HTTP/1.1):
 Conditional Requests", RFC7232, June 2014.

 [RANGE]
 Fielding et al., "Hypertext Transfer Protocol (HTTP/1.1):
 Conditional Requests", RFC7233, June 2014.

 [HTTP/2]
 M. Belshe, R. Peon, M. Thomson, Ed. "Hypertext Transfer Protocol
 Version 2 (HTTP/2)", RFC7540, May 2015.

 [JSON-LD]
 M. Sporny, G. Kellogg, M. Lanthaler, "JSON-LD 1.0", W3C
 Proposed Recommendation,

de Jong [Page 21]

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7033
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7540

Internet-Draft remoteStorage November 2016

http://www.w3.org/TR/2014/REC-json-ld-20140116/, January 2014.

 [CORS]
 van Kesteren, Anne (ed), "Cross-Origin Resource Sharing --
 W3C Candidate Recommendation 29 January 2013",

http://www.w3.org/TR/cors/, January 2013.

 [KERBEROS]
 C. Neuman et al., "The Kerberos Network Authentication Service
 (V5)", RFC4120, July 2005.

 [BEARER]
 M. Jones, D. Hardt, "The OAuth 2.0 Authorization Framework:
 Bearer Token Usage", RFC6750, October 2012.

 [AUTHORING]
 "Using remoteStorage for web authoring", reSite wiki, retrieved
 September 2014. https://github.com/michielbdejong/resite/wiki
 /Using-remoteStorage-for-web-authoring

 [CAPABILITIES]
 J. Tennison (ed.), "Good Practices for Capability URLs",

http://www.w3.org/TR/capability-urls/, February 2014.

18. Authors' addresses

 Michiel B. de Jong
 (independent)

 Email: michiel@unhosted.org

 F. Kooman
 (independent)

 Email: fkooman@tuxed.net

de Jong [Page 22]

http://www.w3.org/TR/2014/REC-json-ld-20140116/
http://www.w3.org/TR/cors/
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc6750
https://github.com/michielbdejong/resite/wiki
http://www.w3.org/TR/capability-urls/

