
Workgroup: RADEXT Working Group

Internet-Draft:

draft-dekok-radext-deprecating-radius-01

Published: 3 March 2023

Intended Status: Standards Track

Expires: 4 September 2023

Authors: A. DeKok

FreeRADIUS

Deprecating RADIUS/UDP and RADIUS/TCP

Abstract

RADIUS crypto-agility was first mandated as future work by RFC 6421.

The outcome of that work was the publication of RADIUS over TLS (RFC

6614) and RADIUS over DTLS (RFC 7360) as experimental documents.

Those transport protocols have been in wide-spread use for many

years in a wide range of networks. They have proven their utility as

replacements for the previous UDP (RFC 2865) and TCP (RFC 6613)

transports. With that knowledge, the continued use of insecure

transports for RADIUS has serious and negative implications for

privacy and security.

This document formally deprecates the use of the User Datagram

Protocol (UDP) and of the Transport Congestion Protocol (TCP) as

transport protocols for RADIUS. These transports are permitted

inside of secure networks, but their use even in that environment is

strongly discouraged. For all other environments, the use of secure

transports such as IPsec or TLS is mandated.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-dekok-radext-deprecating-radius/.

Discussion of this document takes place on the RADEXT Working Group

mailing list (mailto:radext@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/radext/.

Source for this draft and an issue tracker can be found at https://

github.com/freeradius/deprecating-radius.git.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-dekok-radext-deprecating-radius/
https://datatracker.ietf.org/doc/draft-dekok-radext-deprecating-radius/
mailto:radext@ietf.org
https://mailarchive.ietf.org/arch/browse/radext/
https://mailarchive.ietf.org/arch/browse/radext/
https://github.com/freeradius/deprecating-radius.git
https://github.com/freeradius/deprecating-radius.git

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Overview

2. Terminology

3. Overview of issues with RADIUS

3.1. Information is sent in Clear Text

3.2. MD5 has been broken

3.3. Complexity of cracking RADIUS shared secrets

3.4. Tunnel-Password and CoA-Request packets

4. All short Shared Secrets have been compromised

5. Deprecating Insecure transports

5.1. Deprecating UDP and TCP as transports

5.2. Mandating Secure transports

5.3. Crypto-Agility

6. Migration Path and Recommendations

6.1. Shared Secrets

7. Privacy Considerations

8. Security Considerations

9. IANA Considerations

10. Acknowledgements

11. Changelog

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

12. References

12.1. Normative References

12.2. Informative References

Author's Address

1. Introduction

The RADIUS protocol [RFC2865] was first standardized in 1997, though

its roots go back much earlier to 1993. The protocol uses MD5

[RFC1321] to sign some packets types, and to obfsucate certain

attributes such as User-Password. As originally designed, Access-

Request packets were entirely unauthenticated, and could be

trivially spoofed as discussed in [RFC3579] Section 4.3.2. In order

to prevent such spoofing, that specification defined the Message-

Authenticator attribute ([RFC3579] Section 3.2) which allowed for

packets to carry a signature based on HMAC-MD5.

The state of MD5 security was discussed in [RFC6151], which led to

the state of RADIUS security being reviewed in [RFC6421] Section 3.

The outcome of that review was the remainder of [RFC6421], which

created crypto-agility requirements for RADIUS.

RADIUS was traditionally secured with IPSec, as described in

[RFC3579] Section 4.2:

To address the security vulnerabilities of RADIUS/EAP,

implementations of this specification SHOULD support IPsec

(RFC2401) along with IKE (RFC2409) for key management. IPsec ESP

(RFC2406) with non-null transform SHOULD be supported, and IPsec

ESP with a non-null encryption transform and authentication

support SHOULD be used to provide per-packet confidentiality,

authentication, integrity and replay protection. IKE SHOULD be

used for key management.

The use of IPSec allowed RADIUS to be sent privately, and securely,

across the Internet. However, experience showed that TLS was in many

ways simpler (implementation and deployment) than IPSec.

RADIUS/TLS [RFC6614] and RADIUS/DTLS [RFC7360] were then defined in

order to meet the crypto-agility requirements of [RFC6421]. RADIUS/

TLS has been in wide-spread use for about a decade, including

eduroam, and more recently OpenRoaming. RADIUS/DTLS has seen less

use across the public Internet, but it nonetheless has multiple

implementations.

As of the writing of this specification, RADIUS/UDP is still widely

used, even though it depends on MD5 and "ad hoc" constructions for

security. While MD5 has been broken, it is a testament to the design

of RADIUS that there have been (as yet) no attacks on RADIUS

Authenticator signatures which are stronger than brute-force.

¶

¶

¶

¶

¶

¶

¶

However, the problens with MD5 means that if a someone can view

unencrypted RADIUS traffic, even a hobbyist attacker can crack all

possible RADIUS shared secrets of eight characters or less. Such

attacks can also result in compromise of all passwords carried in

the User-Password attribute.

Even if a stronger packet signature method was used as in [RFC6218],

it would not fully address the issues with RADIUS. Most information

in RADIUS is sent in cleartext, and only a few attributes are hidden

via obfuscation methods which rely on more "ad hoc" MD5

constructions. The privacy implications of this openness are severe.

Any observer of non-TLS RADIUS traffic is able to tell who is

logging in to the network, what devices they are using, where they

are logging in from, and their approximate location (usually city).

With location-based attributes as defined in [RFC5580], a users

location may be determined to within 15 or so meters. An observer

can use RADIUS accounting packets to determine how long a user is

online, and to track a summary of their total traffic (upload and

download totals).

When RADIUS/UDP is used across the public Internet, the location of

corporate executives can potentially be tracked in real-time

(usually 10 minute intervals), to within 15 meters. Their devices

can be identified, and tracked. Any passwords they send via the

User-Password attribute can be be compromised. The negative

implications for security and individual safety are obvious.

These issues are only partly mitigated when the attributes RADIUS is

carrying define their own increased security and privacy. For

example, some authentication methods such EAP-TLS, EAP-TTLS, etc.

allow for User-Name privacy and for more secure transport of

passwords. The use of MAC address randomization can limit device

informationidentification to a particular manufacterer, instead of

to a unique device.

However, these authentication methods are not always used or are not

always available. Even if these methods were used ubiquitously, they

do not protect all of the information which is publicly available

when RADIUS/UDP or RADIUS/TCP is used.

It is no longer acceptable for RADIUS to rely on MD5 for security.

It is no longer acceptable to send device or location information in

clear text. This document therefore deprecates insecure uses of

RADIUS, and mandates the use of secure TLS-based transport layers.

The use of a secure transport such as IPSec or TLS ensures complete

privacy and security for all RADIUS traffic. An observer is limited

to knowing rough activity levels of a client or server. That is, an

¶

¶

¶

¶

¶

¶

¶

observer can tell if there are a few users on a NAS, or many users

on a NAS. All other information is hidden from all observers.

1.1. Overview

The rest of this document begins a summary of issues with RADIUS,

and shows just how trivial it is to crack RADIUS/UDP security. We

then mandate the use of secure transport, and describe what that

means. We give recommendations on how current systems can be

migrated to using TLS. We conclude with privacy and security

considerations.

As IPSec has been discussed previously in the context of RADIUS, we

devote little time to it here, other than to say it is an acceptable

solution. As the bulk of the current efforts are focussed on TLS,

this document likewise focusses on TLS.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

RADIUS

The Remote Authentication Dial-In User Service protocol, as

defined in [RFC2865], [RFC2865], and [RFC5176] among others.

RADIUS/UDP

RADIUS over the User Datagram Protocol as define above.

RADIUS/TCP

RADIUS over the Transport Congestion Protocol [RFC6613]

RADIUS/TLS

RADIUS over the Transport Layer Security protocol [RFC6614]

RADIUS/DTLS

RADIUS over the Datagram Transport Layer Security protocol

[RFC7360]

TLS

the Transport Layer Security protocol. Generally when we refer to

TLS in this document, we are referring to RADIUS/TLS and/or

RADIUS/DTLS.

NAS

Network Access Server, which is a RADIUS client.

3. Overview of issues with RADIUS

There are a number of issues with RADIUS. For one, RADIUS sends most

information "in the clear", with obvious privacy implications.

Further, MD5 has been broken for over a decade, as summarized in

[RFC6151]. No protocol should be using MD5 for anything. Even if MD5

was not broken, computers have gotten substantially faster in the

past thirty years. This speed increase makes it possible for the

average hobbyist to perform brute-force attacks to crack even

seemingly complex shared secrets.

We address each of these issues in detail below.

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

¶

¶

3.1. Information is sent in Clear Text

Other than a few attributes such as User-Password, all RADIUS

traffic is sent "in the clear". The resulting traffic has a large

number of privacy issues. We refer to [RFC6973], and specifically to

Section 5 of that document for detailed discussion. RADIUS is

vulnerable to all of the issues raised by [RFC6973].

There are clear privacy and security information with sending user

identifiers, and user locations [RFC5580] in clear-text across the

Internet. As such, the use of clear-text protocols across insecure

networks is no longer acceptable.

3.2. MD5 has been broken

Attacks on MD5 are summarized in part in [RFC6151]. While there have

not been many new attacks in the decade since [RFC6151] was

published, that does not mean that further attacks do not exist. It

is more likely that no one is looking for new attacks.

It is reasonable to expect that new research can further break MD5,

but also that such research may not be publicly available.

3.3. Complexity of cracking RADIUS shared secrets

The cost of cracking a a shared secret can only go down over time as

computation becomes cheaper. The issue is made worse because of the

way MD5 is used in RADIUS. The attacker does not have to calculate

the hash over the entire packet, as that can be precalculated, and

cached. The attacker can simply begin with that precalculated

portion, and brute-force only the shared secret portion.

At the time of writing this document, an "off the shelf" commodity

computer can calculate at least 100M MD5 hashes per second. If we

limit shared secrets to upper/lowercase letters, numbers, and a few

"special" characters, we have 64 possible characters for shared

secrets. Which means that for 8-character passwords, there are 2^48

possible password combinations.

The result is that using one readily available machine, it takes

approximately 32 days to brute-force the entire 8 octet / 64

character password space. The problem is even worse when graphical

processing units (GPUs) are used. A high-end GPU is capable of

performing more than 64 billion hashes per second. At that rate, the

entire 8 character space described above can be searched in

approximately 90 minutes.

This is an attack which is feasible today for a hobbyist. Increasing

the size of the character set raises the cost of cracking, but not

enough to be secure. Increasing the character set to 93 characters

¶

¶

¶

¶

¶

¶

¶

means that the hobbyist using a GPU could search the entire 8

character space in about a day.

Increasing the length of the shared secret a bit helps. For secrets

ten characters long, a GPU can search a 64-character space in about

six months, and a 93 character space would take approximately 24

years.

The brute-force attack is also trivially parallelizable. Nation-

states have sufficient resources to deploy hundreds to thousands of

systems dedicated to these attacks. That realization means that a

"time to crack" of 24 years is simply expensive, but is not

particularly difficult.

Whether the above numbers exactly correct, or only approximate is

immaterial. These attacks will only get better over time. The cost

to crack shared secrets will only go down.

Even worse, administrators do not always derive shared secrets from

secure sources of random numbers. The "time to crack" numbers given

above are the absolute best case, assuming administrators follow

best practices for creating secure shared secrets. For shared

secrets created manually by a person, the search space is orders of

magnitude smaller than the best case outlined above.

It should be assumed that an average attacker with modest resource

can crack most human-derived shared secrets in minutes, if not

seconds.

Despite the ease of attacking MD5, it is still a common practice for

some "cloud" and other RADIUS providers to send RADIUS/UDP packets

over the Internet "in the clear". It is also common practice for

administrators to use "short" shared secrets, and to use shared

secrets created by a person, or derived from a limited character

set. Theses practice are followed for ease of use of administrators,

but they are also highly insecure.

3.4. Tunnel-Password and CoA-Request packets

There are similar security issues for the Tunnel-Password attribute,

at least in CoA-Request and Disconnect-Request packets.

[RFC5176] Section 2.3 says:

¶

¶

¶

¶

¶

¶

¶

¶

¶

Request Authenticator

 In Request packets, the Authenticator value is a 16-octet MD5

 [RFC1321] checksum, called the Request Authenticator. The

 Request Authenticator is calculated the same way as for an

 Accounting-Request, specified in [RFC2866].

¶

Where [RFC2866] Section 3 says:

Taken together, these defintions means that for CoA-Request packets,

all attribute obfuscation is calculated with the Reply Authenticator

being all zeroes.

[RFC5176] Section 3.6 allows for Tunnel-Password in CoA-Request

packets:

However, [RFC2868] Section 3.5 says that Tunnel-Password is

encrypted with the Request Authenticator:

The assumption that the Request Authenticator is random data is true

for Access-Request packets. It is not true for CoA-Request packets

That is, when the Tunnel-Password attribute is used in CoA-Request

packets, the only source of randomness in the obfuscation is the

salt, as defined in [RFC2868] Section 3.5;

¶

 The NAS and RADIUS accounting server share a secret. The Request

 Authenticator field in Accounting-Request packets contains a one-

 way MD5 hash calculated over a stream of octets consisting of the

 Code + Identifier + Length + 16 zero octets + request attributes +

 shared secret (where + indicates concatenation). The 16 octet MD5

 hash value is stored in the Authenticator field of the

 Accounting-Request packet.

¶

¶

¶

 ...

 Change-of-Authorization Messages

 Request ACK NAK # Attribute

 ...

 0+ 0 0 69 Tunnel-Password (Note 5)

 ...

 (Note 5) When included within a CoA-Request, these attributes

 represent an authorization change request. Where tunnel attributes

 are included within a successful CoA-Request, all existing tunnel

 attributes are removed and replaced by the new attribute(s).

¶

¶

 Call the shared secret S, the pseudo-random 128-bit Request

 Authenticator (from the corresponding Access-Request packet) R,

¶

¶

¶

Salt

 The Salt field is two octets in length and is used to ensure the

 uniqueness of the encryption key used to encrypt each instance of

 the Tunnel-Password attribute occurring in a given Access-Accept

 packet. The most significant bit (leftmost) of the Salt field

 MUST be set (1). The contents of each Salt field in a given

 Access-Accept packet MUST be unique.

¶

Which means that there is only 15 bits of entropy in the Tunnel-

Password obfuscation (plus the secret). It is not known if this

limitation makes it easier to determine the contents of the Tunnel-

Password. However, it cannot be a good thing, and it is one more

reason to deprecate RADIUS/UDP.

4. All short Shared Secrets have been compromised

Unless RADIUS packets are sent over a secure network (IPsec, TLS,

etc.), administrators should assume that any shared secret of 8

characters or less has been immediately compromised. Administrators

should assume that any shared secret of 10 characters or less has

been compromised by an attacker with significant resources.

Administrators should also assume that any private information (such

as User-Password) which depends on such shared secrets has also been

compromised.

Further, if a User-Password has been sent over the Internet via

RADIUS/UDP or RADIUS/TCP in the last decade, you should assume that

password has been compromised by an attacker with sufficient

resources.

5. Deprecating Insecure transports

The solution to an insecure protocol using thirty year-old

cryptography is to deprecate the insecure cryptography, and to

mandate modern cryptographic transport.

5.1. Deprecating UDP and TCP as transports

RADIUS/UDP and RADIUS/TCP MUST NOT be used outside of secure

networks. A secure network is one which is known to be safe from

eavesdroppers, attackers, etc.

For example, if IPsec is used between two systems, then those

systems may use RADIUS/UDP or RADIUS/TCP over the IPsec connection.

Similarly, RADIUS/UDP and RADIUS/TCP may be used in secure

management networks. However, administrators should not assume that

such uses are secure.

Using RADIUS/UDP and RADIUS/TCP in any environment is still NOT

RECOMMENDED. A network misconfiguration could result in the RADIUS

traffic being sent over an insecure network. Neither the RADIUS

client nor the RADIUS server would be aware of this

misconfiguration.

In contrast, when TLS is used, the RADIUS endpoints are aware of all

security issues, and can enforce security for themselves.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.2. Mandating Secure transports

All systems sending RADIUS packets outside of secure networks MUST

use either IPSec, or RADIUS/TLS, or RADIUS/DTLS.

5.3. Crypto-Agility

The crypto-agility requirements of [RFC6421] are addressed in

[RFC6614] Appendix C, and in Section 10.1 of [RFC7360]. For clarity,

we repeat the text of [RFC7360] here, with some minor modifications

to update references, but not content.

Section 4.2 of [RFC6421] makes a number of recommendations about

security properties of new RADIUS proposals. All of those

recommendations are satisfied by using TLS or DTLS as the transport

layer.

Section 4.3 of [RFC6421] makes a number of recommendations about

backwards compatibility with RADIUS. [RFC7360] Section 3 addresses

these concerns in detail.

Section 4.4 of [RFC6421] recommends that change control be ceded to

the IETF, and that interoperability is possible. Both requirements

are satisfied.

Section 4.5 of [RFC6421] requires that the new security methods

apply to all packet types. This requirement is satisfied by allowing

TLS and DTLS to be used for all RADIUS traffic. In addition,

[RFC7360] Section 3, addresses concerns about documenting the

transition from legacy RADIUS to crypto-agile RADIUS.

Section 4.6 of [RFC6421] requires automated key management. This

requirement is satisfied by using TLS or DTLS key management.

We can now finalize the work began in [RFC6421]. We now state that

new RADIUS specifications MUST NOT create any new cryptographic

primitives to sign individual packets, or to obfuscate the contents

of any attributes. All security and privacy MUST instead be provided

by a secure transport layer such as TLS. Simply using IPsec is not

enough, as the use (or not) of IPsec is unknown to the RADIUS

application. For example, when the IPsec connection is down, the

RADIUS application sees 100% packet loss for no reason which can be

determined. In constrast, a failed TLS connection may return a

"connection refused" error to the application, or any one of many

TLS errors indicating which exact part of the TLS conversion failed

during negotiation.

It is NOT RECOMMENDED to define new attributes which use the content

obfuscation methods defined for User-Password or Tunnel-Password. We

would like to forbid such constructs entirely. We recognize that

¶

¶

¶

¶

¶

¶

¶

¶

RADIUS/UDP will still be in use for many years, and that new

standards may require some modicrum of privacy. As a result, it is

difficult to forbid the use of these constructs.

That being said, there has been no need since [RFC2868] in 2000 for

new attribute which use these obfuscation methods. We believe

therefore that there will be no demand for this kind of new

attribute.

6. Migration Path and Recommendations

We recognize that it is difficult to upgrade legacy devices with new

cryptographic protocols and user interfaces. The problem is made

worse because the volume of RADIUS devices which are in use. The

exact number is unknown, and can only be approximated. Our best

guesses would be in the order of hundreds of thousands, if not

millions of RADIUS/UDP devices are in daily use.

We therefore need to define a migration path to using secure

transports. We give a few migration steps by making stronger

recommendations for shared secrets. Where [RFC6614] Section 2.3

makes support for TLS-PSK optional, we suggest that RADIUS/TLS and

RADIUS/DTLS implementations SHOULD support TLS-PSK. Implementation

and operational considerations for TLS-PSK are given in

[I-D.dekok-radext-tls-psk], and we do not repeat them here.

6.1. Shared Secrets

[RFC2865] Section 3 says:

It is preferred that the secret be at least 16 octets. This is to

ensure a sufficiently large range for the secret to provide

protection against exhaustive search attacks. The secret MUST NOT

be empty (length 0) since this would allow packets to be

trivially forged.

This recommendation is no longer adequate, so we strengthen it here.

RADIUS implementations MUST support shared secrets of at least 32

octets, and SHOULD support shared secrets of 64 octets.

Implementations MUST warn administrators that the shared secret is

insecure if it is 10 octets or less in length.

Administrators SHOULD use shared secrets of at least 24 octets,

generated using a source of secure random numbers. Any other

practice is likely to lead to compromise of the shared secret, user

information, and possibly of the entire network.

Creating secure shared secrets is not difficult. One solution is to

use a simple script given below. While the script is not portable to

¶

¶

¶

¶

¶

¶

¶

¶

¶

all possible systems, the intent here is to document a concise and

simple method for creating secrets which are secure, and humanly

manageable.

#!/usr/bin/env perl use MIME::Base32; use Crypt::URandom(); print

join('-', unpack("(A4)*", lc

encode_base32(Crypt::URandom::urandom(12)))), "\n";

This script reads 96 bits of random data from a secure source,

encodes it in Base32, and then makes it easier for people to work

with. The generated secrets are of the form "2nw2-4cfi-

nicw-3g2i-5vxq". This form of secret will be accepted by any known

implementation which supports at least 24 octets for shared secrets.

Given the simplicity of creating strong secrets, there is no excuse

for using weak shared secrets with RADIUS. The management overhead

of dealing with complex secrets is less than the management overhead

of dealing with compromised networks.

RADIUS implementors SHOULD provide tools for administrators which

can create and manage secure shared secrets.

Given the insecurity of RADIUS, the absolute minimum acceptable

security is to use strong shared secrets. However, administrator

overhead for TLS-PSK is not substantially higher than simple shared

secrets, and TLS-PSK offers significantly increased security and

privacy.

7. Privacy Considerations

The primary focus of this document is addressing privacy

considerations for RADIUS.

Deprecating insecure transport for RADIUS, and requiring secure

transport means that personally identifying information is no longer

sent "in the clear". As noted earlier in this document, such

information can include MAC addresses, user identifiers, and user

locations.

8. Security Considerations

The primary focus of this document is addressing security

considerations for RADIUS.

Deprecating insecure transport for RADIUS, and requiring secure

transport means that historical and/or future security issues with

the RADIUS protocol no longer apply.

Experience has shown that it can be difficult to configure and

update certificates in a RADIUS environment. Public Certification

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[BCP14]

[RFC2119]

[RFC2865]

[RFC6421]

[RFC8174]

Authorities (CAs) will not issue certificates specifically for use

by RADIUS servers. As for updates, certificates may be valid for

many years. By the time a certificate is up for renewal, the people

and processes responsible for it may have changed. Which means that

updating certificates can be a complex and error-prone task.

9. IANA Considerations

There are no IANA considerations in this document.

RFC Editor: This section may be removed before final publication.

10. Acknowledgements

TBD.

11. Changelog

01 - added more discussion of IPSec, and move TLS-PSK to its own

document,

12. References

12.1. Normative References

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rigney, C., Willens, S., Rubens, A., and W. Simpson,

"Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, DOI 10.17487/RFC2865, June 2000, <https://

www.rfc-editor.org/info/rfc2865>.

Nelson, D., Ed., "Crypto-Agility Requirements for Remote

Authentication Dial-In User Service (RADIUS)", RFC 6421,

DOI 10.17487/RFC6421, November 2011, <https://www.rfc-

editor.org/info/rfc6421>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

¶

¶

¶

¶

*

¶

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc6421
https://www.rfc-editor.org/info/rfc6421
https://www.rfc-editor.org/info/rfc8174

[I-D.dekok-radext-tls-psk]

[RFC1321]

[RFC2866]

[RFC2868]

[RFC3579]

[RFC5176]

[RFC5580]

[RFC6151]

[RFC6218]

[RFC6613]

DeKok, A., "RADIUS and TLS-PSK", Work in Progress,

Internet-Draft, draft-dekok-radext-tls-psk-00, 3 March

2023, <https://datatracker.ietf.org/doc/html/draft-dekok-

radext-tls-psk-00>.

Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

DOI 10.17487/RFC1321, April 1992, <https://www.rfc-

editor.org/info/rfc1321>.

Rigney, C., "RADIUS Accounting", RFC 2866, DOI 10.17487/

RFC2866, June 2000, <https://www.rfc-editor.org/info/

rfc2866>.

Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,

M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol

Support", RFC 2868, DOI 10.17487/RFC2868, June 2000,

<https://www.rfc-editor.org/info/rfc2868>.

Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication

Dial In User Service) Support For Extensible

Authentication Protocol (EAP)", RFC 3579, DOI 10.17487/

RFC3579, September 2003, <https://www.rfc-editor.org/

info/rfc3579>.

Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.

Aboba, "Dynamic Authorization Extensions to Remote

Authentication Dial In User Service (RADIUS)", RFC 5176,

DOI 10.17487/RFC5176, January 2008, <https://www.rfc-

editor.org/info/rfc5176>.

Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A.,

and B. Aboba, "Carrying Location Objects in RADIUS and

Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,

<https://www.rfc-editor.org/info/rfc5580>.

Turner, S. and L. Chen, "Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, DOI 10.17487/RFC6151, March 2011, <https://

www.rfc-editor.org/info/rfc6151>.

Zorn, G., Zhang, T., Walker, J., and J. Salowey, "Cisco

Vendor-Specific RADIUS Attributes for the Delivery of

Keying Material", RFC 6218, DOI 10.17487/RFC6218, April

2011, <https://www.rfc-editor.org/info/rfc6218>.

DeKok, A., "RADIUS over TCP", RFC 6613, DOI 10.17487/

RFC6613, May 2012, <https://www.rfc-editor.org/info/

rfc6613>.

https://datatracker.ietf.org/doc/html/draft-dekok-radext-tls-psk-00
https://datatracker.ietf.org/doc/html/draft-dekok-radext-tls-psk-00
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc2866
https://www.rfc-editor.org/info/rfc2866
https://www.rfc-editor.org/info/rfc2868
https://www.rfc-editor.org/info/rfc3579
https://www.rfc-editor.org/info/rfc3579
https://www.rfc-editor.org/info/rfc5176
https://www.rfc-editor.org/info/rfc5176
https://www.rfc-editor.org/info/rfc5580
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6218
https://www.rfc-editor.org/info/rfc6613
https://www.rfc-editor.org/info/rfc6613

[RFC6614]

[RFC6973]

[RFC7360]

Winter, S., McCauley, M., Venaas, S., and K. Wierenga,

"Transport Layer Security (TLS) Encryption for RADIUS",

RFC 6614, DOI 10.17487/RFC6614, May 2012, <https://

www.rfc-editor.org/info/rfc6614>.

Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

Morris, J., Hansen, M., and R. Smith, "Privacy

Considerations for Internet Protocols", RFC 6973, DOI

10.17487/RFC6973, July 2013, <https://www.rfc-editor.org/

info/rfc6973>.

DeKok, A., "Datagram Transport Layer Security (DTLS) as a

Transport Layer for RADIUS", RFC 7360, DOI 10.17487/

RFC7360, September 2014, <https://www.rfc-editor.org/

info/rfc7360>.

Author's Address

Alan DeKok

FreeRADIUS

Email: aland@freeradius.org

https://www.rfc-editor.org/info/rfc6614
https://www.rfc-editor.org/info/rfc6614
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7360
https://www.rfc-editor.org/info/rfc7360
mailto:aland@freeradius.org

	Deprecating RADIUS/UDP and RADIUS/TCP
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Overview

	2. Terminology
	3. Overview of issues with RADIUS
	3.1. Information is sent in Clear Text
	3.2. MD5 has been broken
	3.3. Complexity of cracking RADIUS shared secrets
	3.4. Tunnel-Password and CoA-Request packets

	4. All short Shared Secrets have been compromised
	5. Deprecating Insecure transports
	5.1. Deprecating UDP and TCP as transports
	5.2. Mandating Secure transports
	5.3. Crypto-Agility

	6. Migration Path and Recommendations
	6.1. Shared Secrets

	7. Privacy Considerations
	8. Security Considerations
	9. IANA Considerations
	10. Acknowledgements
	11. Changelog
	12. References
	12.1. Normative References
	12.2. Informative References

	Author's Address

