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This Internet-Draft will expire on 4 April 2023.
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1. Introduction

The Remote Authentication Dial In User Service (RADIUS) protocol

contains an Identifier field, defined in [RFC2865] Section 5 as:

The Identifier field is one octet, and aids in matching requests

and replies. The RADIUS server can detect a duplicate request if

it has the same client source IP address and source UDP port and

Identifier within a short span of time.

The small size of the field allows for only 256 outstanding requests

without responses. If a client requires more than 256 packets to be

outstanding to the RADIUS server, it must open a new connection,

with a new source port.

This limitation does not severely impact low-load RADIUS systems.

However, it is an issue for high-load systems. Opening new sockets

is more expensive than tracking requests inside of an application,

and is generally unnecessary in other UDP protocols.

For very high load systems, this "new socket" requirement can result

in a client opening hundreds or thousands of connections. There are

a number of problems with this approach:

RADIUS is connection oriented, and each connection operates

independently of all other connections.

each connection created by the client must independently discover

server availability. i.e. the connections can have different

views of the status of the server, leading to packet loss and

network instability.

The small size of RADIUS packets means that UDP traffic can reach

Ethernet rate limits long before bandwidth limits are reached for

the same network. This limitation prevents high-load systems from

fully using available network bandwidth.

The limit of 256 outstanding requests means that RADIUS over TCP 

[RFC6613] is also limited to a small amount of traffic per

connection, and thus will rarely achieve the full benefit of TCP

transport.
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the existence of hundreds of simultaneous connections can impose

significant management overhead on clients and servers.

network stacks will generally operate more efficiently with a

larger amount of data over one connection, instead of small

amounts of data split over.in -0.2i

For these reasons, it is beneficial to extend RADIUS to allow more

than 256 outstanding requests per connection.

1.1. Compatability with Existing RADIUS

It is difficult in practice to extend RADIUS. Any proposal must not

only explain why it cannot use Diameter, but it also must fit within

the technical limitations of RADIUS.

We believe that this specification is appropriate for RADIUS, due to

the following reasons:

this specification makes no change to the RADIUS packet format;

this specification makes no change to RADIUS security;

this specification adds no new RADIUS data types;

this specification uses standard RADIUS attribute formats;

this specification uses standard RADIUS data types;

this specification adds a single attribute to the RADIUS

Attribute Type registry;

all existing RADIUS clients and servers will accept packets

following this specification as valid RADIUS packets;

due to negotiation of capabilities, implementations of this

specification are fully compatible with all existing RADIUS

implementations;

clients implementing this specification act as traditional RADIUS

clients until they see a matching response from a server, so

errors due to client misconfiguration is impossible.

clients implementing this specification can fall back to standard

RADIUS in the event of misbehavior by a server;

servers implementing this specification use standard RADIUS

unless this functionality has been explicitly negotiated;
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low-load RADIUS systems do not need to implement this

specification;

high-load systems can use this specification to remove all

RADIUS-specific limits on filling available network bandwidth;

this specification allows for effectively unlimited numbers of

RADIUS packets over one connection, removing almost all issues

related to connection management from client and server;

as a negative, implementations of this specification must have

code paths this specification, as well as for standard RADIUS.

In short, this specification is largely limited to changing the way

that clients and server implementations internally match requests

and responses.

We believe that the benefits of this specification outweigh the

costs

1.2. Outline of the document

The document gives a high level overview of proposal. It then

describes how the functionality is signaled in a Status-Server 

[RFC5997] It then defines the Original-Request-Authenticator

attribute. It then describes how this change to RADIUS affects each

type of packet (ordered by Code). Finally, it describes how the

change affects transports such as UDP, TCP, and TLS.

1.3. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the following terms:

ID tracking

The traditional RADIUS method of tracking request / response

packets by use of the Identifier field. Many implementations also

use a socket descriptor, and/or src/dst IP/port as part of the

tuple used to track packets.

ORA tracking

The method defined here which allows request / response packets

extends ID tracking, in order to add Request Authenticator or
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Original-Request-Authenticator as part of the tuple used to track

packets.

Network Access Server (NAS)

The device providing access to the network. Also known as the

Authenticator (in IEEE 802.1X terminology) or RADIUS client.

RADIUS Proxy

In order to provide for the routing of RADIUS authentication and

accounting requests, a RADIUS proxy can be employed. To the NAS,

the RADIUS proxy appears to act as a RADIUS server, and to the

RADIUS server, the proxy appears to act as a RADIUS client.

'request packet' or 'request'

One of the allowed packets sent by a client to a server. e.g.

Access-Request, Accounting-Request, etc.

'response packet' or 'response'

One of the allowed packets sent by a server to a client, in

response to a request packet. e.g. Access-Accept, Accounting-

Response, etc.

2. Review of Current Behavior

In this section, we give a short review of how clients and servers

currently operate. This review is necessary to help contextualize

the subsequent discussion.

2.1. Client Behavior

When a client sends a request to a server, it allocates a unique

Identifier for that packet, signs the packet, and sends it to the

server over a particular network connection. When a client receives

a response from a server over that same network connection, the

client uses the Identifier to find the original request. The client

then uses the original Request Authenticator to verify the Response

Authenticator of the response.

We call this behavior "ID tracking". It is the traditional method

used in RADIUS to track requests and responses. The term "ID

tracking" is used in preference to "traditional RADIUS".
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This tracking behavior is similar across all packet types. However,

the management of the ID field is largely unspecified. For example. 

[RFC2865] Section 5 says

The Identifier field is one octet, and aids in matching requests

and replies. The RADIUS server can detect a duplicate request if

it has the same client source IP address and source UDP port and

Identifier within a short span of time.

Similar text is contained in [RFC2866] Section 3, while [RFC5176]

Section 2.3 has a more extensive discussion of the use of the

Identifier field. However, all three documents are silent on the

topic of how Identifiers are managed.

This silence means that there are no guidelines in the

specifications for how a client can re-use an Identifier value. For

example, can a client re-use an Identifier after a response is

received? Can a client re-use an Identifier after a timeout, when no

response has been received? If the client sends multiple requests

and finally receives a response, can the Identifier be re-used

immediately, or should the client wait until it receives all

duplicate responses to its duplicate requests?

There are no clear answers to any of these questions.

The specifications are not much clearer on the subject of response

packets. For example, [RFC2865] Section 4.2 has the following text

for Access-Accept responses:

On reception of an Access-Accept, the Identifier field is matched

with a pending Access-Request. The Response Authenticator field

MUST contain the correct response for the pending Access-Request.

Invalid packets are silently discarded.

[RFC2866] Section 4.2 has similar text, while [RFC5176] has no such

text, and assumes that the reader knows that Identifiers are used to

match a CoA-ACK packet to a CoA-Request packet.

While these issues are undefined, they nevertheless have to be

addressed in practice. Client implementations have therefore chosen

some custom behavior for Identifier management. This behavior has

proven to be inter-operable, despite being poorly defined.

We bring this issue up solely to note that much of the RADIUS

protocol is undefined or implementation-defined. As a result, it

should be possible to define behavior which was previously left open

to implementation interpretation. Even better, this new behavior can

be defined in such a way as to obtain new and useful features in

RADIUS.
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2.2. Server Behavior

Server implementations have similar issues related to managing

Identifiers for request packets. For example, while clients are

permitted to send duplicate requests, [RFC2865] is not clear on how

servers should handle those duplicates.

That issue was addressed in [RFC5080] Section 2.2.2, which defines

how servers should perform duplicate detection. This duplicate

detection aids in lowering the load on servers by allowing them to

send cached responses to duplicates, instead of re-processing the

request.

However, the issue of duplicate packets and retransmissions by the

clients can result in another situation which is not discussed in

any RADIUS specification. This topic deserves more discussion,

because as we will see below, this topic motivates this

specification.

The specifications do not describe what a server should do if it

receives a new packet which is on the same connection as a previous

one, and shares the Code and Identifier fields, but for which the

Request Authenticator is different. That is, a client may send a

request using an Identifier, not get a response, then time out that

request. The client is then implicitly allowed by the specifications

to re-use that Identifier when sending a new request.

That new request will be sent on the same connection as a previous

request, using the same Code and Identifiers as a previous request,

but will have a different Request Authenticator.

When the server receives this new packet, it has no knowledge that

the client has timed out the original request. The server may still

be processing the original request. If the server responds to the

original request, the response will likely get ignored by the

client, as it has timed out that original request. If the server

responds to the new request, the client will probably accept the

response, but the server must then not respond to the original

request.

The server now has two "live" requests from a client, but it can

respond only to one. These request are "conflicting packets", and

the process used to detect them is conflict detection and conflict

management.

While the concept of "conflicting packets" is not defined in the

RADIUS specifications, it nevertheless has had to be addressed in

practice. Server implementations have each chosen some behavior for

conflict detection and management. This implementation-defined
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behavior has proven to be inter-operable in practice, which allows

RADIUS to operate in the face of conflicts.

The concept conflict detection is the key concept driving this

specification. If servers were instead allowed to process and reply

to both requests, then the limitations of the Identifier field would

be entirely bypassed.

The rest of this specification describes the impact of allowing

these otherwise "conflicting packets" to be processed. We discuss a

framework required to negotiate this functionality in an inter-

operable manner. We define a new method of tracking packets, called

"ORA tracking", which is discussed further below.

3. Alternative Approaches

There are other ways that the per-connection Identifier limitation

could have been addressed. As extending RADIUS is a controversial

topic, we believe it is useful to discuss some alternative

approaches, and to explain their costs and benefits. This discussion

ensures that readers of this specification are fully informed as to

why this design is the preferred approach.

We finish this section by explaining why this solution was chosen.

3.1. Multiple Source Ports

One approach is to follow the suggestion of [RFC2865] Section 5,

which says:

... If a NAS needs more than 256 IDs for outstanding requests, it

MAY use additional source ports to send requests from, and keep

track of IDs for each source port. This allows up to 16 million

or so outstanding requests at one time to a single server

This suggestion has been widely implemented. However, practice shows

that the number of open ports has a practical limitation much lower

than 65535. This limitation is due both to ports being used by other

applications on the same system, and application and OS-specific

complexities related to opening thousands of ports.

The "multiple source port" approach is workable for low-load

systems. However, implementors of high-load systems have requested

an alternative to that approach. The justification is that this

approach has proven to be problematic in practice for them.

3.2. Diameter

Another common approach is to suggest that implementors switch to

using Diameter instead of RADIUS. We believe that the Diameter
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protocol does not satisfy the requirements of the implementors who

are requesting extensions to RADIUS.

The short summary is that implementors have significant investment

in a RADIUS infrastructure. Switching to Diameter would involve

either deprecating or throwing away all of that infrastructure. This

approach is simply not technically or economically feasible.

Ad hoc surveys indicate that the majority of the implementations

that will use this specification do not have pre-existing Diameter

code bases. We suggest that it is simpler for implementors to make

minor changes to their RADIUS systems than it is to implement a full

Diameter stack. This reality is a major consideration when creating

new specifications.

For these reasons, switching to Diameter is not a useful approach.

3.3. Multiple RADIUS packets in UDP

Another approach would be to allow multiple RADIUS packets in one

UDP packet. This method would allow an increased amount of RADIUS

traffic to be sent in the same number of UDP packets.

However, this approach still has the limit of 256 outstanding

requests, which means that implementations have extra work of

juggling RADIUS packets, UDP packets, and UDP connections. In

addition, this approach does not address the issues discussed above

for RADIUS over TCP.

As a result, this approach is not suitable as a solution to the ID

limit problem.

3.4. An Extended ID field

Another approach it to use an attribute which contained an

"extended" ID, typically one which is 32 bits in size. That approach

has been used in at least one commercial RADIUS server for years,

via a Vendor-Specific Attribute.

The benefits of this approach is that it makes no change to the

RADIUS protocol format, attribute encoding, data types, security,

etc. It just adds one "integer" attribute, as an "extended ID"

field. Client implementations add the "extended ID" attribute to

requests, and server implementations echo it back in responses. The

"extended ID" field is also used in doing duplicate detection,

finding conflicting packets, etc.

Implementations using this approach have generally chosen to not

perform negotiation of this functionality. Instead, they require
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both client and server to be statically configured to enable the

"extended ID".

Clients implementing the "extended ID" must, of course, manage this

new identifier. As the identfier is still local to a connection, it

is possible to simply take the "extended ID" from a counter which is

incremented for every request packet. There is no need to mark these

identifiers as unused, as the 32-bit counter space is enough to

ensure that re-use happens rarely. i.e. at 1 million packets per

second, the counter is enough to last for over an hour, which is a

time frame much larger than the lifetime of any individual packet.

This approach is compatible with all RADIUS transports, which is a

major point in its favor.

An implementation of this "extended ID" approach is less than 200

lines of C code [PATCH]. That patch includes capability negotiation

via Status-Server, and full client / server / proxy support.

This approach has therefore been proven to be workable in practice,

and simple to implement.

3.5. This Specification

The approach discussed here was chosen after looking at the handling

of packet conflicts, as discussed above in Section X. The conclusion

was that since the behavior around "conflicting packets" was

entirely implementation-defined, then changing the behavior would

involve minor changes to the RADIUS specifications.

This specification suggests that clients and servers can choose to

use the Request Authenticator as a an additional field to uniquely

identify request packets. This choice is entirely local to the

client or server implementation, and involves no changes to the wire

format or wire protocol. There are additional considerations which

are outlined below.

The approach outlined in this specification is largely similar to

the "extended ID" approach, except that it leverages a pre-existing

field as an identifier, instead of creating a new one. This re-use

means that the client does not need to track or allocate new

identifiers.

The use of the Request Authenticator as an identifier means that

there are 128 bits of space available for identifiers. This large

space means that the "conflicting packet" problem is avoided almost

entirely, as the Request Authenticator is either random data

(Access-Request), or an MD5 signature (other packets).

The subject of MD5 collisions is addressed below, in Section X.
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As with the "extended ID" approach. this approach is compatible with

all transports.

We believe that this approach is slightly simpler than the next best

approach ("extended ID"), while at the same time providing more

benefits. As a result, it is the recommended approach for allowing

more than 256 outstanding packets on one connection.

4. Protocol Overview

We extend RADIUS to allow the use of the Request Authenticator field

as an additional identifier. Subject to certain caveats outlined

below, the Request Authenticator can be treated as being temporally

and globally unique. This uniqueness is what makes it a useful

identifier field.

The capability is first negotiated via Status-Server, as outlined

below. Once both client and server agree on the use of this

capability, the client can start sending normal request packets.

The client creates a request packet as usual. When the client needs

to store the request packet, it adds the Request Authenticator as

part of the unique key which tracks the request. The packet is then

sent to the server.

The server receives the request, and uses the Request Authenticator

to track the request, in addition to any previously used

information. When the server sends a reply, it copies the Request

Authenticator to the response packet, and places the 16 octet value

into the Original-Request-Authenticator attribute. The response is

then sent as before.

When the client receives the response, it uses the Original-Request-

Authenticator attribute to create the lookup key, in order to find

the original request. Once the original request is found, packet

verification and processing continues as before.

We note again that the Identifier field is still used to correlate

requests and responses, along with any other information that the

implementation deems necessary. (e.g. Code, socket descriptor, src/

dst IP/port, etc.) The only change is that the Request Authenticator

is added to that tuple.

In short, the "ID tracking" method of tracking requests and

responses is extended to allow the use of the Request Authenticator

as part of the tuple used to track requests and responses. This new

tracking method is called "ORA tracking".

Further details and implementation considerations are provided

below.
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for clients: If ORA has not been negotiated, assign IDs based on

old-style tree. IF ORA has been negotiated, assign IDs based on ORA

tree, generally just a sequential counter.

IF the response does not contain ORA, lookup packets based on old-

style tree. IF the response does contain ORA, lookup packets based

on new-style tree. If it's not found there, look it up in the old-

stlye tree. This behavior ensures that clients can send both kinds

of packets simultaneously with no conflict.

There is no need for any additional tracking / timer on the

client... if the old-style tree is empty, there is essentially no

cost to lookup packets up in it. The alterntive would be to track

which packets were sent before / after negotiation, and do all kinds

of additional magic.

The server has then to figure out WTF is going on... since packets

aren't ordered, there's no way to tell which ones were sent before

negotiation, and which ones after. In contrast, the extended-ID is

easier, as the request contains the attribute. The solution is for

the server to always send back ORA after negotiation has succeeded,

even if the packet was received prior to negotiation happening.

Since the Request Authenticator field is sixteen octets in size,

this process allows an essentially unlimited number of requests to

be outstanding on any one connection. This capability allows clients

to open only one connection to a server, and to send all data over

that connection. As noted above, using fewer connections will

increase the clients ability to perform dead server detection, do

fail-over, and will result in increased network stability.

4.1. Why this works

In this section, we explain why the Request Authenticator makes a

good packet identifier.

For Access-Request packets, [RFC2865] Section 3 defines the Request

Authenticator to contain random values. Further, it is suggested

that these values "SHOULD exhibit global and temporal uniqueness".

The same definition is used in [RFC5997] Section 3, for Status-

Server packets. Experience shows that implementations follow this

suggestion. As a result, the Request Authenticator is a good

identifier which uniquely identifies packets.

Other request packets create the Request Authenticator as an MD5

calculation over the packet and shared secret. i.e. MD5(packet +

secret). The MD5 digest algorithm was designed to be strongly

dependent on input data, and to have half of the output bits change

if one bit changed in the input. As a result, the Request
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Authenticator is a good hash which can distinguish different

packets.

The question is whether or not the Request Authenticator is a good

identifier. The following discussion make this case.

One argument is that MD5 has low collision rates. In the absence of

an explicit attack, there should be one collision every 2e64

packets. Since the packet lifetime is small (typically 30 seconds

maximum), we can expect a collision only if more than 2e59 packets

are sent during that time frame. For more typical use-cases, the

packet rate is low enough (i.e. even 2e20 packets per second), that

there is a one in 2e39 chance of a collision every 30 seconds.

We believe that such collision rates are acceptibly low. Explicit

attacks are discussed in the Security Considerations section, below.

The one case where collisions will occur naturally is when the

packet contents are identical. For example, a transmission of a

second Access-Request after the first one times out. In this

situation, though, there is in fact no collision, as the input data

is identical. Both requests are entirely identical, and any response

to one is a response to both.

For non-identical requests, the packet typically contains the

Identifier and Length fields, along with counters, timestamps, etc.

These values change on a per-packet basis, making the Request

Authenticator also change.

As a result, the MD5 signature of a request is appropriate to use as

a packet identifier. In all cases (barring attacks), it will contain

a globally and temporally unique identifier for the request.

5. Signaling via Status-Server

When a client supports this functionality, it sends a Status-Server

packet to the server, containing an Original-Request-Authenticator

attribute. See Section X, below, for the definition of the Original-

Request-Authenticator attribute.

The contents of the Original-Request-Authenticator attribute in the

Status-Server packet MUST be zero. The Original-Request-

Authenticator attribute MUST NOT appear in any request packet other

than Status-Server. If a server does see this attribute in a request

packet, the attribute MUST be treated as an "invalid attribute", and

ignored as per [RFC6929] Section 2.8.

A server which supports this functionality SHOULD signal that

capability to the client by sending a response packet which contains

an Original-Request-Authenticator attribute. That attribute MUST
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contain an identical copy of the Request Authenticator from the

original Status-Server packet.

When a client sends an Original-Request-Authenticator attribute in a

Status-Server and does not receive that attribute in the response,

the client MUST NOT use "ORA tracking" for requests and responses.

The client MUST then behave as a normal RADIUS client, and use "ID

tracking" for requests and response.

If a server does not support this functionality, it MUST NOT place

an Original-Request-Authenticator attribute in the response packet.

As the default behavior of existing RADIUS servers is to not place

this attribute in the response to a Status-Server, negotiation will

continue to use traditional RADIUS, and "ID tracking".

As the response to a Status-Server can use one of many RADIUS Codes,

we use a generic "response" name above. See following sections for

how to handle specific types of responses.

We note that "ORA tracking" negotation SHOULD be done per

connection. i.e. per combination of (transport, src/dst ip/port).

Section X, below, discusses additional issues related to client/

server connections. In this section, when we refer to a client and

server performing negotiation, we mean that negotiation to be

specific to a particular connection.

Once the "ORA tracking" has been negotiated on a connect, then all

packets for that connection MUST use it, no matter what values they

allow for the Code field. For example, [RFC6613] permits multiple

Codes on one connection.

Even if a client and server negotiate "ORA tracking", the client can

still fall back to "ID tracking". There is no need for the client to

signal the server that this change has happened. The client can use

"ID tracking" while the server uses "ORA tracking", as the two

systems are entirely compatible from the client side.

The situation is a bit different for a server. Once "ORA tracking"

has been negotiated, a server MUST use that method, and MUST include

the Original-Request-Authenticator attribute in all response

packets. If a client negotiates "ORA tracking" on a connection and

later sees response packets which do not contain an Original-

Request-Authenticator attribute, the client SHOULD discard those

non-compliant packets. For connection-oriented protocols, the client

SHOULD close the connection.

There is a time frame during this failure process during which

outstanding requests on that connection may not receive responses.

This situation will result in packet loss, which will be corrected

once the new connection is used. The possibility of such problems
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should be used instead by implementors as incentive to ensure that

they do not create invalid Original-Request-Authenticator

attributes. Implementing the specification correctly will prevent

this packet loss from occuring.

The negotiation outlined here ensures that RADIUS clients and

servers supporting this functionality are entirely backwards

compatible with existing RADIUS clients and servers.

5.1. Static Configuration

As an alternative to using Status-Server, clients and servers MAY be

administratively configured with a flag which indicates that the

other party supports this functionality. Such a flag can be used

where the parties are known to each other. Such a flag is not

appropriate for dynamic peer discovery [RFC7585], as there are no

provisions for encoding the flag in the DNS queries or responses.

When a client is administratively configured to know that a server

supports this functionality, it SHOULD NOT do negotiation via

Status-Server.

The client MUST behave as a normal RADIUS client (i.e. send only 256

requests on any one connection) until such time as it receives an

Original-Request-Authenticator attribute in a response. Only then

can the client send more packets on one connection. See Section X

("Connection Issues") below, for a larger discussion of this topic.

If a client is administratively configured to believe that a server

supports the Original-Request-Authenticator attribute, but the

response packets do not contain an Original-Request-Authenticator

attribute, the client MUST update its configuration to mark the

server as not supporting this functionality.

This process allows for relatively simple downgrade negotiation in

the event of misconfiguration on either the client or the server.

6. Original-Request-Authenticator Attribute

We define a new attribute, called Original-Request-Authenticator. It

is intended to be used in response packets, where it contains an

exact copy of the Request Authenticator field from the original

request that elicited the response.

As per the suggestions of [RFC8044], we describe the attribute using

a data type defined therein, and without the use of ASCII art.

Type

TBD - IANA allocation from the "extended" type space
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Length

19 - TBD double-check this after IANA allocation

Data Type

octets

Value

MUST be 16 octets in length. For Status-Server packets, the

contents of the Value field MUST be zero. For response packets,

the contents of the Value field MUST be a copy of the Request

Authenticator from the original packet that elicited the

response.

The Original-Request-Authenticator attribute can be used in a

Status-Server packet.

The Original-Request-Authenticator attribute can be used in a

response packet. For example, it can be used in an Access-Accept,

Accounting-Response, CoA-ACK, CoA-NAK, etc.

Note that this document updates multiple previous specifications, in

order to allow this attribute in responses.

[RFC2865] Section 5.44 is updated to allow Original-Request-

Authenticator in Access-Accept, Access-Reject, and Access-

Challenge responses

[RFC2866] Section 5.13 is updated to allow Original-Request-

Authenticator in Accounting-Response responses.

[RFC5176] Section 3.6 is updated to allow Original-Request-

Authenticator in CoA-ACK, CoA-NAK, Disconnect-Ack, and

Disconnect-NAK responses.

The Original-Request-Authenticator attribute MUST NOT be used in any

request packet. That is, it MUST NOT be used in an Access-Request,

Accounting-Request, CoA-Request, or Disconnect-Request packets.

When it is permitted in a packet, the Original-Request-Authenticator

attribute MUST exist either zero or one times in that packet. There

MUST NOT be multiple occurances of the attribute in a packet.

The contents of the Original-Request-Authenticator attribute MUST be

an exact copy of the Request Authenticator field of a request packet

sent by a client. As with "ID tracking", the Identifier field in the

response MUST match the Identifier field in a request.
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Where the format and/or contents of the Original-Request-

Authenticator attribute does not meet these criteria, the received

attribute MUST be treated as an "invalid attribute" as per 

[RFC6929], Section 2.8. That is, when an invalid Original-Request-

Authenticator attribute is seen by either a client or server, their

behavior is to behave as if the attribute did not exist.

7. Transport Considerations

This section describes transport considerations for this

specification.

The considerations for DTLS are largely the same as for UDP. The

considerations for TLS are largely the same as for TCP. We therefore

do not have different sections herein for the TLS-enabled portion of

the protocols.

7.1. UDP

RADIUS over UDP is defined in [RFC2866]. RADIUS over DTLS is defined

in [RFC7360].

When negotiated by both peers, this proposal changes the number of

requests which can be outstanding over a UDP connection.

Where clients are sending RADIUS packets over UDP, they SHOULD

include the Original-Request-Authenticator attribute in all Status-

Server messages to a server, even if the functionality has been

previously negotiatied. While the client can generally assume that a

continual flow of packets means that the server has not been

changed, this assumption is not true when the server is

unresponsive, and the client decides it needs to send Status-Server

packets.

Similarly, the server cannot assume that it is respond to the same

client on every packet. However, once Original-Request-Authenticator

has been negotiasted, the server can safely include that attribute

in all response packets to that client. If the client changes to not

supporting the attribute, the attribute will be ignored by the

client, and the behavior falls back to standard RADIUS.

Where clients are sending RADIUS packets over DTLS, there is an

underlying TLS session context. The client can therefore assume that

all packets for one TLS session are for the same server, with the

same capabilities. The server can make the same assumption.

7.2. TCP

RADIUS over TCP is defined in [RFC6614]. RADIUS over TLS is defined

in [RFC6614].
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When negotiated by both peers, this proposal changes the number of

requests which can be outstanding over a TCP connection.

Status-Server packets are also used by the application-layer

watchdog, described in [RFC6614] Section 2.6. Where clients have

previously negotiated Original-Request-Authenticator for a

connection, they MUST continue to send that attribute in all Status-

Server packets over that connection.

There are other consideratiosn with the use of Status-Server. Due to

the limitations of the ID field, [RFC6613] Section 2.6.5 suggests:

.in +0.3i Implementations SHOULD reserve ID zero (0) on each TCP

connection for Status-Server packets. This value was picked

arbitrarily, as there is no reason to choose any one value over

another for this use. .in -0.3i

This restriction can now be relaxed when both client and server have

negotiated the use of the Original-Request-Authenticator attribute.

Or, with no loss of generality, implementations can continue to use

a fixed ID field for Status-Server application watchdog messages.

We also note that the next paragraph of [RFC6614] Section 2.6.5.

says:

Implementors may be tempted to extend RADIUS to permit more than

256 outstanding packets on one connection. However, doing so is a

violation of a fundamental part of the protocol and MUST NOT be

done. Making that extension here is outside of the scope of this

specification.

This specification extends RADIUS in a standard way, making that

recommendation no longer applicable.

[RFC6613] Section 2.5 describes congestion control issues which

affect inter-transport proxies. If both inbound and outbound

transports support this specification, those congestion issues no

longer apply.

If however, a proxy supports this specification on inbound

connections but does not support it on outbound connections, then

congestion may occur. The only solution here is to ensure that the

proxy is capable of opening multiple source ports, as per [RFC2865]

Section 5.

7.3. Dynamic Discovery

The dynamic discovery of RADIUS servers is defined in [RFC7585].
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This specification is compatible with [RFC7585], with the exception

of the statically configured flag described in Section X, above. As

the server is dynamically discovered, it is impossible to have a

static flag describing the server capabilities.

The other considerations for dynamic discovery are the same as for

RADIUS over TLS.

7.4. Connection Issues

Where clients start a new connection to a server (no matter what the

transport), they SHOULD negotiate this functionality for the new

connection, unless the ability has been statically configured. There

is no guarantee that the new connection goes to the same server.

When a client has zero connections to a server, it MUST perform this

negotiation for the new connection, prior to using this

functionality, unless the ability has been statically configured.

There is every reason to believe that server has remained the same

over extended periods of time.

If a client has one or more connections open to a server, and wishes

to open a new one, it may skip the renegotiation.

Each client and server MUST negotiate and track this capability on a

per-connection basis. Implementations MUST be able to send packets

to the same peer at the same time, using both this method, and the

traditional RADIUS ID allocation.

A client may have a backlog of packets to send while negotiating

this functionality. In the interests of efficiency, it SHOULD send

packets from that backlog while negotiation is taking place. As

negotiation has not finished, these packets and their responses MUST

be managed as per standard RADIUS.

After this functionality has been negotiated, new packets from that

connection MUST follow this specification. Reponses to earlier

packets sent on that connection during the negotiation phase MUST be

accepted and processed.

In short, the client MUST behave as a normal RADIUS client, until

such time as it receives a response packet which contains a

compliant Original-Request-Authenticator attribute. This requirement

ensures complete compatibility with existing RADIUS, even in the

event of client misconfiguration.

We recognize that this tracking may be complex, which is why this

behavior is not mandatory. Clients may choose instead to wait until

negotiation is complete before sending packets; or to assume that
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the functionality of the server is the same across all connections

to it, and therefore only do negotiations once.

8. System Considerations

This section describes implementation considerations for clients and

servers.

8.1. Client Considerations

Clients SHOULD have an configuration flag which lets administators

statically configure this behavior for a server. Clients MUST

otherwise negotiate this functionality before using it.

If this functionality has been negotiated, clients MUST use the

Request Authenticator as an part of the Key used to uniquely

identify request packets. Clients MUST use the Original-Request-

Authenticator attribute from response packets as part of the Key to

find the original request packet.

The Original-Request-Authenticator attribute has been (or is likely

to be) allocated from the "extended" attribute space. We note that

despite this allocation, clients are not required to implement the

full [RFC6929] specification. That is, clients may be able to

originate and receive Original-Request-Authenticator attributes,

while still being unable to originate or receive any other attribute

in the "extended" attribute space.

The traditional behavior of clients is to track one or more

connections, each of which has 256 IDs available for use. As

requests are sent, IDs are marked "used". As responses are received,

IDs are marked "free". IDs may also marked "free" when a request

times out, and the client gives up on receiving a response.

If all of the IDs for a particular connection are marked "free", the

client opens a new connection, as per the suggestion of [RFC2865]

Section 5. This connection and any associated IDs are then made

available for use by new requests.

Similarly, when a client notices that all of the IDs for a

connection are marked "free", it may close that connection, and

remove the IDs from the ones available for use by new requests. The

connections may have associated idle timeouts, maximum lifetimes,

etc. to avoid "connection flapping".

All of this management is complex, and can be expensive for client

implementations. While this management is still necessary for

backwards compatibility, this specification allows for a

significantly simpler process for ID allocation. There is no need
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for the client to open multiple connections. Instead, all traffic

can be sent over one connection.

In addition, there is no need to track "used" or "free" status for

individual IDs. Instead, the client can re-use IDs at will, and can

rely on the uniqueness of the Request Authenticator to disambiguate

packets.

As there is no need to track ID status, the client may simply

allocate IDs by incrementing a local counter.

With this specification, the client still needs to track all

outgoing requests, but that work was already required in traditional

RADIUS.

Client implementors may be tempted to require that the Original-

Request-Authenticator be the first attribute after the RADIUS

header. We state instead that clients implementing this

specification MUST accept the Original-Request-Authenticator

attribute, no matter where it is in the response. We remind

implementors that this specification adds a new attribute, it does

not change the RADIUS header.

Finally, we note that clients MUST NOT set the ID field to a fixed

value for all packets. While it is beneficial to use the Request

Authenticator as an identifier, removing the utility of an existing

identifier is unwarranted.

8.2. Server Considerations

Servers SHOULD have an configuration flag which lets administators

statically configure this behavior for a client. Servers MUST

otherwise negotiate this functionality before using it.

If this functionality has been negotiated, servers MUST use the

Request Authenticator as an part of the key used to uniquely

identify request packets. Servers MUST use the Original-Request-

Authenticator attribute from response packets as part of the Key to

find the original request packet.

The Original-Request-Authenticator attribute has been (or is likely

to be) allocated from the "extended" attribute space. We note that

despite this allocation, servers are not required to implement the

full [RFC6929] specification. That is, servers may be able to

originate and receive Original-Request-Authenticator attributes,

while still being unable to originate or receive any other attribute

in the "extended" attribute space.
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8.3. Proxy Considerations

There are additional considerations specific to proxies. [RFC6929]

Section 5.2 says in part;

Proxy servers SHOULD forward attributes, even attributes that

they do not understand or that are not in a local dictionary.

When forwarded, these attributes SHOULD be sent verbatim, with no

modifications or changes. This requirement includes "invalid

attributes", as there may be some other system in the network

that understands them.

On its face, this recommendation applies to the Original-Request-

Authenticator attribute. The caveast is that Section X, above,

requires that servers do not send the Original-Request-Authenticator

to clients unless the clients have first negotiated the use of that

attribute. This requirement should ensure that proxies which are

unaware of the Original-Request-Authenticator attribute will never

receive it.

However, if a server has been administratively configured to send

Original-Request-Authenticator to a client, that configuration may

be in error. In which case a proxy or originating client may

erroneously receive that attribute. If the proxy or server is

unaware of Original-Request-Authenticator, then no harm is done.

It is possible for a proxy or client to be aware of Original-

Request-Authenticator, and not negotiate it with a server, but that

server (due to isses outlined above) still forwards the attribute to

the proxy or client. In that case, the requirements of Section X,

above, are that the client treat the received Original-Request-

Authenticator attribure as an "invalid attribute", and ignore it.

The net effect of these requirements and cross-checks is that there

are no interoperability issues between existing RADIUS

implementations, and implementations of this specification.

9. Security Considerations

This proposal does not change the underlying RADIUS security model,

which is poor.

The contents of the Original-Request-Authenticator attribute are the

Request Authenticator, which is already public information for UDP

or TCP transports.

The use of Original-Request-Authenticator is defined in such a way

that all systems fall back gracefully to using standard RADIUS. As

such, there are no interoperability issues between this

specification and existing RADIUS implementations.
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There are few, if any, security considerations related to

implementations. Clients already must track the Request

Authenticator, so matching it in a response packet is minimal extra

work. Servers must also track and cache duplicate packets, as per 

[RFC5080] Section 2.2.2, so using the Request Authenticator as an

additional identifier is minimal extra work.

The use (or not) of Original-Request-Authenticator has no other

security considerations, as it is used solely as an identifier to

match requests and responses. It has no other meaning or use.

9.1. Access-Request Forging

The Request Authenticator in Access-Request packets is defined to be

a 16 octet random number [RFC2865] Section 3. As such, these packets

can be trivially forged.

The Message-Authenticator attribute was defined in [RFC2869] Section

5.14 in order to address this issue. Further, [RFC5080] Section

2.2.2 suggests that client implementations SHOULD include a Message-

Authenticator attribute in every Access-Request to further help

mitigate this issue.

The Status-Server packets also have a Request Authenticator which is

a 16-octet random number [RFC5997] Section 3. However, [RFC5997]

Section Section 2 says that a Message-Authenticator attribute MUST

be included in every Status-Server packet, which provides per-packet

authentication and integrity protection.

We extend that suggestion for this specification. Where the

transport does not provide for authentication or integrity

protection (e.g. RADIUS over UDP or RADIUS over TCP), each Access-

Request packet using this specification MUST include a Message-

Authenticator attribute. This inclusion ensures that packets are

accepted only from clients who know the RADIUS shared secret.

This protection is, of course, insufficient. Malicious or

misbehaving clients can create Access-Request packets which re-use

Request Authenticators. These clients can also create Request

Authenticators which exploit implementation issues in servers, such

as turning a simply binary lookup into a linked list lookup.

As a result, server implementations MUST NOT assume that the Request

Authenticator is random. Server implementations MUST be able to

detect re-use of Request Authenticators.

When a server detects that a Request Authenticator is re-used, it

MUST replace the older request with the newer request. It MUST NOT

respond to the older request. It SHOULD issue a warning message to

the administrator that the client is malicious or misbehaving.
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Server implementations SHOULD use data structures such as Red-Black

trees, which are immune to maliciously crafted Request

Authenticators.

9.2. MD5 Collisions

For other packet types (Accounting-Request, etc.), the Request

Authenticator is the MD5 signature of the packet and the shared

secret. Since this data is used directly as an identifier, we need

to examine the security issues related to this practice.

We must note that MD5 has been broken, in that there is a published

set of work which describes how to create two sets of input data

which have the same MD5 hash. These attacks have been extended to

create sets of data of arbitrary length, which differ only in 128

bytes, and have the same MD5 hash.

This attack is possible in RADIUS, as the protocol has the

capability to transport opaque binary data in (for example) Vendor-

Specific attributes. There is no need for the client or server to

understand the data, it simply has to exist in the packet for the

attack to succeed.

Another attack allows two sets of data to have the same MD5 hash, by

appending thousands of bytes of carefully crafted data to the end of

the file. This attack is also possible in RADIUS, as the maximum

packet size for UDP is 4096 octets, and [RFC7930] permits packets up

to 65535 octets in length.

However, as the packets are authenticated with the shared secret,

these attacks can only be performed by clients who are in possession

of the shared secret. That is, only trusted clients can create MD5

collisions.

We note that this specification requires server implementations to

detect duplicates, and to process only one of the packets. This

requirement could be exploited by a client to force a server to do

large amounts of work, partially processing a packet which is then

made obselete by a subsequent packet. This attack can be done in

RADIUS today, so this specification adds no new security issues to

the protocol.

In fact, this specification describes the problem of "conflicting

packets" for the first time, and defines how they should be

processed by servers. This addition to the RADIUS protocol in fact

increases it's security, by specifying how this corner case should

be handled. The fact that RADIUS has been widely implemented for

almost 25 years without this issue being described shows that the

protocol and implementations are robust.
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[BCP14]

[RFC2119]

[RFC2865]

[RFC2869]

[RFC5080]

We do not offer a technical solution to the problem of trusted

parties misbehaving. Instead, the problem should be noted by the

server which is being attacked, and administrative (i.e. human)

intervention should take place.

10. IANA Considerations

This specification allocates one attribute in the RADIUS Attribute

Type registry, as follows.

Name > Original-Request-Authenticator

Type > TBD - allocate from the "extended" space

Data Type > octets
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