
Network Working Group N. Demizu
Internet-Draft NICT
Expires: September 3, 2006 March 3, 2006

TS2 --- A Modified TCP Timestamps Mechanism
<draft-demizu-tcp-ts2-01.txt>

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than a "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (C) The Internet Society (2006). All Rights Reserved.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Demizu Expires September 2006 [Page 1]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Abstract

 This memo proposes a modified TCP Timestamps mechanism called "TS2".
 It uses the existing "TCP Timestamps option" specified in RFC1323 and
 a new TCP option called "the TCP Old Timestamps option", which is
 specified in this memo. As a fallback, an RFC1323-compatible mode
 called "TS1" is also available.

 The base mechanism of TS2 includes the definitions of those two TCP
 Timestamps options, mode negotiation to enable TS1 or TS2, and a rule
 for updating internal states. The applied mechanisms of TS2 include
 an accurate RTT measurement mechanism that is correct even for
 duplicate ACK segments (RTTM/TS2), a reordering-robust mechanism to
 detect wrapped sequence numbers (PAWS/TS2), a lightweight mechanism
 to detect spoofed segments (PASA/TS2), a loss inference mechanism
 applicable to both original and retransmitted data segments
 (DLI/TS2), and a spurious loss inference detection mechanism that
 operates without waiting for one RTT by sending arbitrary in-window
 data (SLID/TS2).

Table of Contents

1. Introduction ... 3
2. Terminology .. 3
3. Two TCP Timestamps Options 5
4. Base Mechanism ... 7
5. RTTM (Round Trip Time Measurement) 12
6. PAWS (Protection Against Wrapped Sequence numbers) 14
7. PASA (Protection Against Spoofing Attacks) 17
8. DLI (Data Loss Inference) 24
9. SLID (Spurious Loss Inference Detection) 30
10. Security Considerations 39
11. IANA Considerations .. 39
12. Acknowledgements ... 39
13. References ... 39

 Author's Address ... 42
Appendix A: TS2 Reference .. 43
Appendix B: Granularity of Timestamps 69
Appendix C: Loss Inference With SACK and DLI/TS2 70
Appendix D: Summary of TCP Timestamps Option in RFC1323 75
Appendix E: Issues with TCP Timestamps Option in RFC1323 79
Appendix F: Problem of PAWS in RFC1323 and Reordering 82
Appendix G: Alternative Ideas 87
Appendix H: Changes from -00 version. 90

 Copyright Statement and Intellectual Property 91

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 2]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

1. Introduction

 This memo proposes a modified TCP Timestamps mechanism called "TS2".
 It uses the existing "TCP Timestamps option" [RFC1323] and a new TCP
 option called "the TCP Old Timestamps option", which is specified in
 this memo. The significant differences between TS2 and the TCP
 Timestamps option specified in [RFC1323] are the rule to determine
 which timestamp is echoed and the timestamp unit. In addition, TS2
 solves the issues with the existing TCP Timestamps option specified
 in [RFC1323], as described in appendix E.

 As a fallback, RFC1323-compatible mode called "TS1" is also
 available. The use of TS1 or TS2 is negotiated using the two options
 on SYN and SYN+ACK segments in the TCP three-way handshake phase.

 TS2 enables several applied mechanisms, as follows. When TS2 is
 enabled on a TCP connection, a local node MAY enable one or more of
 these mechanisms on the TCP connection without additional negotiation
 with a remote node.

 - RTTM/TS2 (Round Trip Time Measurement with TS2) enables correct
 RTT measurements even when a duplicate ACK segment is received.

 - PAWS/TS2 (Protection Against Wrapped Sequence numbers with TS2)
 is a reordering-robust protection mechanism for wrapped sequence
 numbers.

 - PASA/TS2 (Protection Against Spoofing Attacks with TS2) is a
 lightweight protection mechanism against spoofing attacks that
 inject faked SYN, data, FIN, and RST segments.

 - DLI/TS2 (Data Loss Inference with TS2) infers losses of both
 original and retransmitted data segments.

 - SLID/TS2 (Spurious Loss Inference Detection with TS2) detects
 spurious loss inference without waiting for one RTT by sending
 arbitrary in-window data.

 Note:The procedures described in this memo have not been demonstrated
 by simulation nor by implementation.

2. Terminology

2.1 General

 This memo uses the same variable names and TCP state names defined in
section 3.2 of [RFC793]. In addition, it introduces the following

 variables and notations: SND.MAX holds the maximum value of SND.NXT;

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc793#section-3.2

Demizu Expires September 2006 [Page 3]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 SSEG.XXX means the XXX field on the segment being sent; and RSEG.XXX
 means the XXX field on the segment just received.

 The memo uses a variable "SND.FACK" [MM96][MSM99], which holds the
 highest sequence number known to have reached the receiver, plus one.
 An octet is "SACKed" if the octet has been reported in a TCP SACK
 option [RFC2018].

 The memo uses the following abbreviations defined in [RFC2581]: SMSS
 (Sender Maximum Segment Size), and RMSS (Receiver Maximum Segment
 Size).

 The memo uses the following abbreviations defined in [RFC2988]: RTO
 (Retransmission TimeOut), RTT (Round-Trip Time), SRTT (Smoothed RTT),
 and RTTVAR (RTT VARiation).

 According to [RFC793], SEG.LEN includes the SYN and FIN bits. Thus,
 segments satisfying (RSEG.LEN > 0) include data, SYN, and FIN
 segments. If a RST segment has data, this memo does not consider
 that it satisfies (RSEG.LEN > 0). For simplicity, the term "data
 segments" often means "data, SYN, and/or FIN segments" in this memo.

 The memo refers to the initial transmission of an octet as the
 "original transmission", and to a subsequent transmission of the same
 octet as a "retransmission" [RFC3522][RFC4015]. In addition, a data
 segment for which part or all of its octets are sent by original
 transmission is referred to as an "original data segment". Other
 data segments are referred to as "retransmitted data segments".

 All arithmetic dealing with TCP sequence numbers must be performed
 modulo 2^32. A sequence is called "monotonically nondecreasing" if
 each number is greater than or equal to its predecessor.

2.2 Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in [RFC2119].

 This memo makes use of conceptual variables to describe behavior.
 The specific variable names, and how their values are referred to and
 changed, are provided here to demonstrate behavior. Implementations
 are not required to follow the memo exactly, as long as its external
 behavior is consistent with that described here.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc2119

Demizu Expires September 2006 [Page 4]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

3. Two TCP Timestamps Options

 TS2 uses two TCP options: "the TCP Timestamps option" specified in
 [RFC1323], and a new TCP option called "the TCP Old Timestamps
 option", as specified in this section.

3.1 TCP Timestamps Option

 Figure 3-1 shows the format of the TCP Timestamps option.
 For simplicity, it is hereafter called "the TS option".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind = 8 | Length = 10 |
 +-+
 | TSval (TS Value) |
 +-+
 | TSecr (TS Echo Reply) |
 +-+

 Figure 3-1: The TS option

3.2 TCP Old Timestamps Option

 The format of the TCP Old Timestamps option has two forms as given
 below. The option-kind value is <<TBD>>.

 On SYN and SYN+ACK segments, the TCP Old Timestamps option consists
 of only two octets (option-kind and option-length), as shown in
 Figure 3-2. The purpose of this form is to negotiate the use of TS2.
 For simplicity, this form is hereafter called "the OTS_OK option".

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind = <TBD> | Length = 2 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 3-2: The OTS_OK option

 On other segments, the format of the TCP Old Timestamps option is the
 same as that of the TS option, except for the option-kind value, as
 shown in Figure 3-3. The purpose of this form is to inform a remote
 node that the TSecr value is not fresh (In contrast, the TSecr value
 in the TS option is fresh). For simplicity, this form is hereafter
 called "the OTS option".

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 5]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Kind = <TBD> | Length = 10 |
 +-+
 | TSval (TS Value) |
 +-+
 | TSecr (TS Echo Reply) |
 +-+

 Figure 3-3: The OTS option

3.3 TSval and TSecr Fields

 In both the TS option and the OTS option, the TSval field contains
 the current external timestamp, while the TSecr field contains the
 TS.Recent value, which is updated by the received TSval values, as
 specified in the base mechanism section.

 When TS1 is enabled, the timestamp unit can be chosen between 1
 second and 1 ms (10^-3), in order to be interoperable with [RFC1323].
 When TS2 is enabled, the timestamp unit is fixed at 1 usec (10^-6).
 All arithmetic dealing with timestamps must be performed modulo 2^32.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 6]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

4. Base Mechanism

 This section describes how the timestamp mode (i.e., none, TS1, or
 TS2) is negotiated, how the timestamps option kind is chosen (i.e.,
 the TS option or the OTS option), and how the values of SSEG.TSval
 and SSEG.TSecr on outgoing segments are computed.

4.1 Variables

 The base mechanism uses the following variables: TS.Req (integer),
 TS.Mode (integer), TS.SndOff (32bit-timestamp), TS.SndAdj
 (32bit-timestamp), TS.Recent (32bit-timestamp), TS.RecentIsOld
 (boolean), and Last.Ack.Sent (32bit-sequence-number). Among these
 variables, only TS.Req, TS.Mode, and TS.SndOff are referred to by the
 applied mechanisms.

 TS.Req contains the requested mode (0 = none, 1 = TS1, or 2 = TS2) of
 a TCP connection to be established. TS.Mode records the result of
 the mode negotiation. Its initial value is negative, which means
 "negotiation has not been completed".

 TS.SndOff and TS.SndAdj help mode negotiation. See section 4.3 for
 more details.

 TS.Recent holds the value to be echoed in the TSecr fields of both
 the TS option and the OTS option. Its initial value is zero.
 TS.RecentIsOld is accessed only when TS2 is enabled. It is true if
 any segment that satisfies (RSEG.LEN > 0) and carries the TS option
 or the OTS option has not been received after the TS.Recent value has
 last been echoed.

 Last.Ack.Sent holds the last SSEG.ACK value sent, which is equal to
 the maximum SSEG.ACK value sent.

 Note: TS.Recent and Last.Ack.Sent are inherited from [RFC1323].

4.2 Mode Negotiation

 This subsection describes the procedure of mode negotiation using the
 two TCP Timestamps options on SYN and SYN+ACK segments in the TCP
 three-way handshake phase.

 When a SYN segment is sent to establish a TCP connection, if TS2 is
 requested, the SYN segment SHOULD carry both the TS option and the
 OTS_OK option. If TS1 is requested, the SYN segment SHOULD carry the
 TS option, and it MUST NOT carry the OTS_OK option. If neither TS1
 nor TS2 is requested, the SYN segment MUST NOT carry the TS option
 nor the OTS_OK option.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 7]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 If a SYN (without ACK) segment is received in the LISTEN or SYN-SENT
 state, and if the received segment does not carry one or both of the
 TS option and the OTS_OK option, the SYN+ACK segment sent in reply
 MUST NOT carry the OTS_OK option. Similarly, if the received segment
 does not carry the TS option, the SYN+ACK segment sent in reply MUST
 NOT carry the TS option nor the OTS_OK option.

 When a SYN segment is received in the LISTEN or SYN-SENT state, if
 TS2 is requested, the SYN+ACK segment sent in reply SHOULD carry both
 the TS option and the OTS_OK option as long as the above rule allows.
 If TS1 is requested, the SYN+ACK segment sent in reply SHOULD carry
 the TS option as long as the above rule allows, and it MUST NOT carry
 the OTS_OK option. If neither TS1 nor TS2 is requested, the SYN
 segment MUST NOT carry the TS option and the OTS_OK option.

 On SYN and SYN+ACK segments in the TCP three-way handshake phase, if
 both the TS option and the OTS_OK option are exchanged, TS2 is
 enabled. If the TS option is exchanged but the OTS_OK option is not
 exchanged, TS1 is enabled. If the TS option is not exchanged,
 neither TS1 nor TS2 is enabled. The result is recorded in TS.Mode.
 When TS2 is enabled, TS.RecentIsOld is set to false.

4.3 Internal Timestamp and External Timestamp

 In this memo, "internal timestamp" means a timestamp generated
 directly from a timestamp source such as an internal tick count or a
 real time clock. "External timestamp" means a timestamp exchanged in
 the TSval and TSecr fields. An external timestamp is calculated as
 an internal timestamp plus TS.SndOff.

 TS.SndOff supports mode negotiation in conjunction with TS.SndAdj,
 which is used only during mode negotiation. Since the timestamp unit
 is different between TS1 and TS2, the timestamp values of TS1 and TS2
 are almost always different. To save the TCP option space on SYN and
 SYN+ACK segments, however, only the TS option carries the TSval and
 TSecr fields. To be interoperable with [RFC1323], these two fields
 contain the timestamps of TS1. The purpose of TS.SndAdj is to adjust
 TS.SndOff to generate correct external timestamps for TS2 when TS2 is
 enabled. That is, when the first SYN segment is sent, TS.SndAdj
 records the difference between the timestamps of TS1 and TS2. Then,
 if TS2 is enabled when a SYN+ACK segment is received, TS.SndAdj is
 added to TS.SndOff.

 The following formula shows the reason why TS.SndAdj holds the
 difference between the timestamps of TS1 and TS2.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 8]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 CurTS(in TS2) = InitTS(in TS1) + ElapsedTS(in TS2)
 = InitTS(in TS1) + (CurTS(in TS2) - InitTS(in TS2))
 = CurTS(in TS2) + (InitTS(in TS1) - InitTS(in TS2))
 = CurTS(in TS2) + TS.SndAdj

 TS.SndOff is also used to avoid reusing the same range of TSval
 values when a TCP Control Block is reused. When a TCP Control Block
 is created, TS.SndOff is simply set to zero. On the other hand, when
 a TCP Control Block is reused, if TS2 is requested, the difference
 between the timestamps of TS2 and TS1 is added to TS.SndOff before
 the TCP three-way handshake phase begins to avoid reusing the same
 range of external timestamps when TS2 is enabled. If TS2 is not
 requested, TS.SndOff is unchanged.

 In addition, TS.SndOff is used by PASA-DF/TS2 to randomize the
 initial timestamp values of TCP connections. See section 7.1.1 for
 more details.

4.4 Input Processing

 This subsection describes the procedure for processing received
 segments.

 If TS1 or TS2 is enabled, and if a received segment carrying the TS
 option or the OTS option satisfies at least one of inequalities (1)
 and (2) below, it SHOULD be processed by the base mechanism and the
 applied mechanisms to update their variables. Otherwise, those
 variables MUST NOT be updated, while the RSEG.TSval and RSEG.TSecr
 values on such a segment MAY be checked to test the received segment.

 (RSEG.LEN > 0 &&
 Last.Ack.Sent - max(RCV.WND) < RSEG.SEQ + RSEG.LEN &&
 RSEG.SEQ < RCV.NXT + RCV.WND) (1)

 or

 (RSEG.LEN == 0 &&
 Last.Ack.Sent - max(RCV.WND) <= RSEG.SEQ &&
 RSEG.SEQ < RCV.NXT + RCV.WND) (2)

 When TS1 is enabled, if a received segment other than a RST segment
 carries the TS option and satisfies all of inequality (1),
 (RSEG.SEQ <= Last.ACK.sent), and (RSEG.TSval > TS.Recent), then
 RSEG.TSval is recorded in TS.Recent. In other words, TS.Recent holds
 the maximum RSEG.TSval value on in-sequence and duplicate data
 segments. Note that TS.Recent is not updated by out-of-order data
 segments, while it is updated by in-sequence and duplicate data
 segments. Also note that TS.Recent is monotonically nondecreasing.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 9]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 When TS2 is enabled, if a received segment other than a SYN or RST
 segment does not carry the TS option nor the OTS option, it MUST be
 dropped, and an ACK segment SHOULD be sent in reply. If a received
 segment carries both the TS option and the OTS option, it MUST be
 dropped, and an ACK segment SHOULD be sent in reply. Otherwise, if a
 received segment other than a RST segment carries the TS option or
 the OTS option and satisfies inequality (1), and if TS.RecentIsOld is
 true or (RSEG.TSval < TS.Recent) is satisfied, then RSEG.TSval is
 recorded in TS.Recent, and TS.RecentIsOld is set to false. In other
 words, TS.Recent holds the minimum RSEG.TSval value on data segments
 received after a segment has last been sent. In contrast with TS1,
 note that TS.Recent is updated by out-of-order data segments, as well
 as in-sequence and duplicate data segments. Also note that TS.Recent
 is not monotonically nondecreasing.

 Note: The reason why SYN and RST segments are handled specially is to
 disconnect half-open TCP connections.

4.5 Output Processing

 This subsection describes the procedure for processing segments being
 sent.

 When a segment carries the TS option or the OTS option, SSEG.TSval
 contains the current external timestamp value, and SSEG.TSecr
 contains the TS.Recent value unless otherwise specified below
 (i.e., <SSEG.TSval=CurrentExternalTS><SSEG.TSecr=TS.Recent>).

 If TS1 is enabled, the rules below are followed.

 - When a segment other than a RST segment is sent, it SHOULD carry
 the TS option.

 - When a RST segment is sent, it SHOULD NOT carry the TS option.

 Note: The reason why RST segments SHOULD NOT carry the TS option
 is to be interoperable with [RFC1323], which states in section 4.2
 that "It is recommended that RST segments NOT carry timestamps,
 and that RST segments be acceptable regardless of their
 timestamp".

 If TS2 is enabled, the rules below are followed.

 - When a segment other than a RST segment is sent, if
 TS.RecentIsOld is false, the segment MUST carry the TS option,
 and TS.RecentIsOld is set to true. In contrast, if
 TS.RecentIsOld is true, the segment MUST carry the OTS option.

 - When a RST segment is sent, it MUST carry the OTS option unless

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 10]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 otherwise specified below.

 - When a RST segment is sent in reply to a received segment
 because of [RFC793], the rule below is followed.

 If the received segment carries the TS option or the OTS option,
 TS2 may be enabled on the remote node. Thus, to make the RST
 segment sent in reply acceptable to PAWS/TS2 and PASA/TS2 at the
 remote node, the RST segment MUST carry the OTS option, where
 SSEG.TSval is the RSEG.TSecr value and SSEG.TSecr is the
 RSEG.TSval value.
 (i.e., <SSEG.TSval=RSEG.TSecr><SSEG.TSecr=RSEG.TSval>)

 On the other hand, if the received segment does not carry the TS
 option nor the OTS option, TS1 may be enabled at the remote
 node, or neither of TS1 nor TS2 is enabled at the remote node.
 Thus, to make the RST segment sent in reply acceptable at the
 remote node in either case, the RST segment SHOULD NOT carry the
 TS option nor the OTS option.

 Note: The reason why RST segments are handled specially is to
 disconnect half-open TCP connections.

 For ACK segments sent in reply to invalid segments because of this
 memo, an ACK throttling mechanism SHOULD be implemented.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793

Demizu Expires September 2006 [Page 11]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

5. RTTM (Round Trip Time Measurement)

 RTTM is an RTT measurement mechanism making use of the RSEG.TSecr
 field in the TS option on received segments. It can be enabled when
 either TS1 or TS2 is enabled. If a received segment does not satisfy
 inequality (1) nor (2), RTTM MUST NOT be performed on the segment.

 The most significant difference between RTTM/TS1 (RTTM with TS1) and
 RTTM/TS2 (RTTM with TS2) is that RTTM/TS1 takes RTT measurements only
 when SND.UNA is advanced, while RTTM/TS2 takes RTT measurements
 whenever the TS option is received. Since both RTTM/TS1 and RTTM/TS2
 take RTT measurements even if a received ACK segment was sent in
 reply to a retransmitted data segment, they replace Karn's algorithm
 [KP87].

 Note: If a smoothed RTT is computed from many RTT measurements per
 RTT, the resulting SRTT, RTTVAR, and RTO values [RFC2988] would
 become short-sighted. Implementations should take care of this
 issue. The question of how to compute an RTO value from many
 measured RTTs is outside the scope of this memo.

5.1 RTTM/TS1

 If TS1 is enabled, when SND.UNA is advanced, the RTT can be
 calculated as follows:

 CurrentExternalTS(T1) - RSEG.TSecr + TS1_GRANULARITY

 where TS1_GRANULARITY is the timestamp granularity of TS1.

 Note: "TS1_GRANULARITY" in the above expression SHOULD NOT be
 replaced with "TS1_GRANULARITY/2" unless TS1_GRANULARITY is much
 lower than any possible RTT.

 Since there is a possibility that the RSEG.TSecr value is very old
 with TS1, the measured RTT may be longer than the real RTT in some
 corner cases. See appendix E.1 for more details.

 Implementation Note: When the RSEG.TSecr value is zero, RTT SHOULD
 NOT be calculated. The reason is that some implementations of the
 TCP Timestamps option [RFC1323] send zero in the TSecr field in some
 scenarios where zero is obviously a bogus timestamp value.

5.2 RTTM/TS2

 If TS2 is enabled, then whenever the TS option is received, the RTT
 can be calculated as follows:

 CurrentExternalTS(T2) - RSEG.TSecr + TS2_GRANULARITY

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 12]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 where TS2_GRANULARITY is the timestamp granularity of TS2.

 Note: "TS2_GRANULARITY" in the above expression SHOULD NOT be
 replaced with "TS2_GRANULARITY/2" unless TS2_GRANULARITY is much
 lower than any possible RTT.

 When the OTS option is received, RTT SHOULD NOT be calculated,
 because the RSEG.TSecr value in the OTS option may be very old by
 definition.

Demizu Expires September 2006 [Page 13]

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

6. PAWS (Protection Against Wrapped Sequence numbers)

 PAWS is a mechanism for detecting old duplicate segments by making
 use of the RSEG.TSval field in the TS option and the OTS option on
 the received segment. It can be enabled when either TS1 or TS2 is
 enabled.

 As described in appendix F, there is a possibility that a legitimate
 data segment could be discarded by PAWS in RFC1323 when it is delayed
 because of reordering. In contrast, as described in appendix E.2,
 PAWS/TS1 (PAWS with TS1) is slightly robust against reordering. And,
 PAWS/TS2 (PAWS with TS2) is robust against reordering, so that
 legitimate segments are unlikely to be discarded even when delayed
 because of reordering.

 PAWS/TS1 and PAWS/TS2 use two variables: TS.RcvMin (32bit-timestamp)
 and TS.RcvMin_time (internal-time). TS.RcvMin holds the maximum
 value of the received RSEG.TSval values in both the TS option and the
 OTS option. TS.RcvMin_time holds the last time when a segment
 satisfying (RSEG.TSval >= TS.RcvMin) was received. The value of
 TS.RcvMin is valid for a limited amount of time depending on TS.Mode.
 If a received segment does not satisfy inequality (1) nor (2), these
 variables MUST NOT be updated.

 Note: TS.RcvMin is updated by any segment, while TS.Recent is
 updated only by segments satisfying (RSEG.LEN > 0). In addition,
 TS.RcvMin is always monotonically nondecreasing, in contrast to
 TS.Recent with TS2.

 When the value of TS.RcvMin is valid, all received segments SHOULD be
 tested using TS.RcvMin, as described in the following subsections,
 before the acceptability test of [RFC793]. This test is called the
 PAWS test in this memo. To avoid discarding legitimate delayed
 segments due to reordering, the lower bound of acceptable RSEG.TSval
 values is chosen as slightly lower than TS.RcvMin, as suggested in
 the appendix F.5.

 Note: PAWS/TS1 and PAWS/TS2 use the dedicated variable TS.RcvMin
 for the PAWS test, while PAWS in [RFC1323] uses a shared variable
 TS.Recent.

6.1 PAWS/TS1

 When TS1 is enabled, the minimum acceptable RSEG.TSval value is
 (TS.RcvMin - TS1_PAWS_MARGIN), where TS1_PAWS_MARGIN is a margin.
 Its appropriate value, such as RTO value, cannot be computed,
 however, because the unit of the received timestamp is unknown.
 Hence, this memo recommends TS1_PAWS_MARGIN = 1 simply because it is
 better than zero.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 14]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 Thus, when the value of TS.RcvMin is valid, if a received segment
 other than a SYN or RST segment carries the TS option, it MUST
 satisfy (RSEG.TSval >= TS.RcvMin - TS1_PAWS_MARGIN). If it does not
 satisfy this inequality, it MUST be dropped, and an ACK segment with
 the TS option SHOULD be sent in reply.

 Note: The reason why SYN and RST segments are not tested is to
 disconnect half-open TCP connections. Another reason why RST
 segments are not tested is to be interoperable with [RFC1323],
 which states in section 4.2 that "It is recommended that RST
 segments NOT carry timestamps, and that RST segments be acceptable
 regardless of their timestamp".

 The value of TS.RcvMin is valid until the internal clock reaches
 (TS.RcvMin_time + TS1_PAWS_IDLE). TS1_PAWS_IDLE should be longer
 than the longest timeout, and it should be reasonably less than 2^31.
 The default value of TS1_PAWS_IDLE is 24 days, which is the same
 value specified in [RFC1323].

6.2 PAWS/TS2

6.2.1 Minimum Acceptable TSval Value

 When TS2 is enabled, the minimum acceptable RSEG.TSval value is
 (TS.RcvMin - CurRTO), where CurRTO means the current RTO value.
 Thus, when the value of TS.RcvMin is valid, all received legitimate
 segments must satisfy (RSEG.TSval >= TS.RcvMin - CurRTO). If a
 received segment other than a SYN or RST segment does not satisfy
 this inequality, it MUST be dropped, and an ACK segment SHOULD be
 sent in reply. In addition, if a received RST segment with the OTS
 option does not satisfy this inequality, it MUST be dropped silently.

 Note: The reason why RST segments without the OTS option and SYN
 segments are not tested here is to disconnect half-open TCP
 connections.

 The value of TS.RcvMin is valid until the internal clock reaches
 (TS.RcvMin_time + TS2_PAWS_IDLE). TS2_PAWS_IDLE should be longer
 than the longest timeout, and it should be reasonably less than 2^31.
 The default value of TS2_PAWS_IDLE is 20 minutes (= 1200 seconds).
 (Note: 2^31 / 1000000 = 2147 seconds.)

 Note 1: PAWS/TS2 assumes that RTTs measured at a local node and
 RTTs measured at a remote node are almost the same. Since the
 timestamp unit is fixed, the RTO value in the inequality of
 PAWS/TS2 can be evaluated under this assumption. This assumption
 might be wrong in some asymmetric networks. In addition, in a
 unidirectional data flow, a data receiver can take only one RTT
 measurement only when a SYN segment is exchanged. In such cases,

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 15]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 the robustness against reordering may be poor. Nevertheless, it
 would not be worse than that of PAWS in [RFC1323].

 Note 2: An RTT may suddenly increase due to congestion, route
 changes, link-bandwidth changes, etc. Hence, the computation of
 RTO values should be done in a conservative manner.

6.2.2 Maximum Acceptable TSval Value

 If the value of TS.RcvMin is valid, because the timestamp unit is
 fixed, the maximum acceptable value of RSEG.TSval can be calculated
 using TS.RcvMin and TS.RcvMin_time as follows.

 TS.RcvMin + time2ts(CurrentTime - TS.RcvMin_time) + TS2_PAWS_DEV

 where TS2_PAWS_DEV is the maximum acceptable deviation.

 When a segment other than a RST segment without the OTS option or a
 SYN segment is received, if its RSEG.TSval value is greater than this
 maximum bound, the segment MAY be dropped. But if PASA-DF/TS2 is
 enabled, it SHOULD be dropped. If it is dropped, and if it is not a
 RST segment, an ACK segment SHOULD be sent in reply.

 Note: The same expression with the replacement of "+ TS2_PAWS_DEV"
 with "- TS2_PAWS_DEV" cannot be applied to the minimum bound, because
 the RSEG.TSval values may be tweaked to lower values by PASA-DF/TS2
 at the remote node.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 16]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

7. PASA (Protection Against Spoofing Attacks)

 PASA is a lightweight mechanism for protecting TCP connections
 against spoofing attacks injecting faked SYN, data, FIN, and RST
 segments. PASA can be enabled when TS2 is enabled. PASA does not
 work with TS1.

 PASA/TS2 (PASA with TS2) consists of two parts. One is called
 PASA-DF/TS2 (PASA for Data and FIN segments with TS2). It detects
 spoofed data and FIN segments with the TS option or the OTS option by
 making use of received RSEG.TSecr values. It also detects spoofed
 RST segments with the OTS option by applying the same test. The
 other part is called PASA-SR/TS2 (PASA for SYN and RST segments with
 TS2). It enables both genuine RST segments without the OTS option
 and genuine SYN segments to trigger disconnection of their TCP
 connections, while spoofed segments are not allowed to trigger such
 disconnection. Since PASA-DF/TS2 and PASA-SR/TS2 are independent of
 each other, an implementation MAY support one or both of them.

 Along with PASA, if the timestamp granularity is longer than 1 usec
 but methods described in appendix B are not implemented, lower bits
 of timestamps can be used as nonce bits to obfuscate timestamps.

7.1 PASA-DF/TS2 (PASA for Data and FIN Segments with TS2)

 This subsection describes a mechanism called PASA-DF/TS2 that detects
 spoofed data and FIN segments with the TS option or the OTS option by
 making use of received RSEG.TSecr values. It also detects spoofed
 RST segments with the OTS option by applying the same test.

 If a received segment does not satisfy inequality (1) nor (2), it
 MUST NOT update the variables of PASA-DF/TS2. In contrast, if
 PASA-DF/TS2 is enabled, any received segment SHOULD be tested by
 PASA-DF/TS2 before the acceptability test of [RFC793].

 PASA-DF/TS2 uses four variables: TS.SndMin (32bit-timestamp),
 TS.SndMax (32bit-timestamp), TS.SndMax_time (internal-time), and
 TS.PASADF_On (boolean).

 TS.SndMin holds the maximum value of the RSEG.TSecr field in the TS
 option and the OTS option on received segments satisfying inequality
 (1) or (2), while TS.SndMax holds the maximum value of the SSEG.TSval
 field on sent segments satisfying (SSEG.LEN > 0). For the first SYN
 or SYN+ACK segment sent, SSEG.TSval is copied to both TS.SndMin and
 TS.SndMax. Consequently, the received RSEG.TSecr values of the
 established TCP connection should be in the range from around
 TS.SndMin to TS.SndMax. The test of whether the received segments
 fit in this range is called the PASA-DF test in this memo.
 TS.SndMax_time holds the latest time when a segment satisfying

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793

Demizu Expires September 2006 [Page 17]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 (SSEG.LEN > 0) is sent or when TS.SndOff is updated. TS.PASADF_On
 indicates whether the PASA-DF test can be performed. The initial
 value of TS.PASADF_On is true.

 Note: The reason why PASA-DF/TS2 does not test RST segments without
 the OTS option and SYN segments is to disconnect half-open TCP
 connections. They are tested by PASA-SR/TS2, as described later.

 When PASA-DF/TS2 is enabled, the maximum acceptable value of
 RSEG.TSval SHOULD be tested by PAWS/TS2. (See section 6.2.2)

7.1.1 External Timestamp Values

 When PASA-DF/TS2 is enabled, TS.SndOff is utilized to randomize the
 initial SSEG.TSval value in order to obfuscate external timestamp
 values. If a TCP control block is reused by a new TCP connection,
 TS.SndOff MUST be increased by a random number in the range from 0 to
 TS2_PASADF_RNDMAX_REUSE, whose default value is 2^29 - 1 usec (about
 9 minutes). In other cases, a newly generated 32-bit random number
 MUST be copied to TS.SndOff.

 TS.SndOff is also utilized to minimize the difference between
 TS.SndMin and TS.SndMax after a long idle period. Since the
 possibility of accepting spoofed segments is the difference in 2^32,
 it is important to keep the difference small. Therefore, the
 advancement of TS.SndMax must have an upper bound. In addition,
 SSEG.TSval MUST be monotonically nondecreasing in order to make PAWS
 operable at a remote node. To satisfy these requirements, this memo
 proposes that the advancement of SSEG.TSval be no greater than
 TS2_PASADF_MAXADV, whose default value is 64 seconds. TS.SndOff MUST
 be tweaked as follows:

 over_time = (CurrentTime - TS.SndMax_time) - TS2_PASADF_MAXADV;
 if (over_time > 0) {
 TS.SndOff -= time2ts(over_time)
 TS.SndOff += RandomNumber(TS2_PASADF_RNDMAX_IDLE);
 TS.SndMax_time = CurrentTime;
 }

 Note 1: This memo assumes that CurrentTime is not wrapped in the
 lifetime of any TCP connections.

 Note 2: RandomNumber(TS2_PASADF_RNDMAX_IDLE) above means a random
 number in the range from 0 to TS2_PASADF_RNDMAX_IDLE, whose
 default value is 2^26 - 1 usec (about 67 seconds).

7.1.2 Temporarily Suspension of Tests

 There is a possibility that (TS.SndMax - TS.SndMin) becomes negative

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 18]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 when a data segment is sent after a series of sporadic transmissions
 that do not elicit any segments from a remote node. For example,
 consider a case where a TCP stack has received huge data, while its
 application reads the data very slowly. In this case, the TCP stack
 would send small window updates once in a while. During such a
 period, TS.SndMin and TS.SndMax are unchanged, while the SSEG.TSval
 values in those window updates are increasing. After a while, the
 difference between SSEG.TSval and TS.SndMin could be larger than
 2^31. That is, (SSEG.TSval - TS.SndMin) could be negative. If a
 data segment was sent in that case, (TS.SndMax - TS.SndMin) also
 would be negative. To avoid confusion, the PASA-DF test MUST NOT be
 performed in such cases. Thus, this memo proposes the following
 procedure:

 - When TS.PASADF_On is true, the PASA-DF test SHOULD be performed.

 - When TS.PASADF_On is true, if (TS.SndMax - TS.SndMin) becomes
 negative after a segment is sent, TS.PASADF_On is set to false.

 - When TS.PASADF_On is false, the PASA-DF test MUST NOT be
 performed.

 - When TS.PASADF_On is false, if a received segment satisfies the
 requirement that (TS.SndMax - RSEG.TSecr) be non-negative,
 RSEG.TSecr is copied to TS.SndMin, and TS.PASADF_On is set to
 true.

 This procedure is incorporated in the following two subsections.

7.1.3 Input Processing

 This subsection describes the procedure when a segment is received.

 When TS.PASADF_On is true, the procedure below is followed.

 - In the CLOSED, LISTEN, and SYN-SENT states, RSEG.TSecr MUST NOT
 be tested.

 - In other states, all segments other than SYN and RST segments
 must satisfy (TS.SndMin - CurRTO <= RSEG.TSecr <= TS.SndMax),
 where CurRTO means the current RTO value. When a segment other
 than a SYN or RST segment is received, if it does not satisfy
 this inequality, it MUST be dropped, and an ACK segment SHOULD
 be sent in reply. In addition, when a RST segment with the OTS
 option is received, if it does not satisfy the inequality, it
 MUST be dropped silently. Otherwise, when a segment other than
 a SYN or RST segment is received, or when a RST segment with the
 OTS option is received, if the received segment satisfies
 (RSEG.TSecr > TS.SndMin), then RSEG.TSecr is copied to

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 19]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS.SndMin.

 Note: The reason why RST segments without the OTS option and SYN
 segments are not tested here is to disconnect half-open TCP
 connections.

 When TS.PASADF_On is false, if a received segment satisfies the
 requirement that (TS.SndMax - RSEG.TSecr) be non-negative, RSEG.TSecr
 is copied to TS.SndMin, and TS.PASADF_On is set to true.

7.1.4 Output Processing

 This subsection describes the procedure when a segment is sent.

 When a segment satisfying (SSEG.LEN > 0) is sent, SSEG.TSval is
 copied to TS.SndMax, and the current time is recorded in
 TS.SndMax_time. If the segment is the first sent segment (e.g., the
 first SYN segment or the first SYN+ACK segment), SSEG.TSval is also
 copied to TS.SndMin.

 When TS.PASADF_On is false, if (TS.SndMax - TS.SndMin) becomes
 negative after the above copying, TS.PASADF_On is set to false.

7.2 PASA-SR/TS2 (PASA for SYN and RST Segments with TS2)

 This subsection describes a mechanism called PASA-SR/TS2, which
 enables both genuine RST segments without the OTS option and genuine
 SYN segments to trigger disconnection of their TCP connections, while
 spoofed ones are not allowed to trigger such disconnection.

 If a received segment does not satisfy inequality (1) nor (2), it
 MUST NOT update the variables of PASA-SR/TS2. In contrast, if
 PASA-SR/TS2 is enabled, any received segment SHOULD be tested by
 PASA-SR/TS2 before the acceptability test of [RFC793].

 Note: RST segments without the OTS option and SYN segments are not
 dropped by the base mechanism of TS2, PAWS/TS2, and PASA-DF/TS2 in
 order to disconnect half-open TCP connections.

7.2.1 Procedure

 PASA-SR/TS2 uses the following variables: TS.PASASR_On (boolean) and
 TS.PASASR_time (internal-time). The initial value of TS.PASASR_On is
 false. TS.PASASR_time is valid only when TS.PASASR_On is true.

 The procedure is as follows:

 - When a SYN segment is received against an established TCP
 connection, regardless of whether it has the TS option or the

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793

Demizu Expires September 2006 [Page 20]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 OTS option, it MUST be dropped, and an ACK segment without
 either the TS option or the OTS option SHOULD be sent in reply.
 The window size of the ACK segment is TS2_PASASR_WIN, which
 should be small enough (e.g., 1 RMSS). Then, TS.PASASR_On is
 set to true, and the current time is recorded in TS.PASASR_time.

 - When TS.PASASR_On is true, if a received segment is not dropped
 by the base mechanism of TS2, the PAWS test, the PASA-DF test,
 and the acceptability test of [RFC793], then do the following:
 if (1) the received segment is not a RST segment, (2) it is a
 RST segment with the OTS option, or (3) a long time has been
 passed since the last ACK segment was sent in reply to a SYN
 segment (i.e., CurrentTime - TS.PASASR_time >= TS2_PASASR_TIME),
 then TS.PASASR_On is set to false.

 - If a RST segment without the OTS option is received, and if
 TS.PASASR_On is false, or the segment does not satisfy
 (RCV.NXT <= RSEG.SEQ < RCV.NXT + TS2_PASASR_WIN), it MUST be
 dropped silently.

7.2.2 Examples

 If a SYN segment is received against an established TCP connection,
 there are two possible causes. The first is that the remote node has
 been rebooted or disconnected silently and is trying to establish a
 new TCP connection with the same quadruple by chance. The second
 cause is that a malicious node sent a spoofed SYN segment with the
 same quadruple by chance.

 If a RST segment without the OTS option is received against an
 established TCP connection, there are two possible causes. The first
 is that the remote node has been rebooted or disconnected silently
 and has sent a RST segment in reply to a segment sent by the local
 node. The second cause is that a malicious node sent a spoofed RST
 segment with the same quadruple by chance.

 In any case, genuine SYN and RST segments should cause the TCP
 connection to disconnect, while spoofed SYN and RST segments should
 not cause it to disconnect.

 The following four examples show how PASA-SR/TS2 would work against
 the four possible causes described above. Suppose that a local node
 and a remote node have an established TCP connection, and TS2 is
 enabled on it.

 Case 1: The remote node has been rebooted or disconnected silently,
 and it sent a SYN segment to establish a new TCP connection
 with the same quadruple by chance.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793

Demizu Expires September 2006 [Page 21]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 When this genuine SYN segment is received by the local node, an
 ACK segment with window size = TS2_PASASR_WIN without either the
 TS option or the OTS option is sent in reply because of
 PASA-SR/TS2.

 When the remote node receives this ACK segment, it sends a RST
 segment without the OTS option because it is in the SYN-SENT
 state.

 Since the sequence number of this RST segment would satisfy
 (RCV.NXT <= RSEG.SEQ < RCV.NXT + TS2_PASASR_WIN), this RST segment
 would be accepted by the local node because of PASA-SR/TS2. Then,
 this RST segment would disconnect the existing TCP connection
 successfully.

 After a while, another SYN segment will be retransmitted by the
 remote node, and a new TCP connection will be established.

 Case 2: A malicious node sent a spoofed SYN segment with the same
 quadruple by chance.

 When this spoofed SYN segment is received by the local node, an
 ACK segment with window size = TS2_PASASR_WIN without either the
 TS option or the OTS option is sent in reply because of
 PASA-SR/TS2. When the real remote node receives this ACK segment,
 since TS2 is enabled on the TCP connection, this ACK segment is
 dropped by the remote node, and an ACK segment is sent in reply.

 The ACK segment sent in reply would be accepted by the local node.
 Fortunately, it would have no effect other than that the duplicate
 ACK counter could be falsely increased by one. Thus, the spoofed
 SYN segment would not disconnect the existing TCP connection.

 Note: If the duplicate ACK counter is increased only by an ACK
 segment with the TS option, it would not be falsely increased in
 this case. See appendix C.

 In a case where a spoofed RST segment is also sent just behind the
 spoofed SYN segment above, if the spoofed RST segment does not
 carry the OTS option, the possibility of accepting the spoofed RST
 segment is TS2_PASASR_WIN in 2^32. If the spoofed RST segment
 carries the OTS option, the possibility of accepting the spoofed
 RST segment is equal to the possibility of breaking PASA-DF/TS2.
 Both possibilities would be sufficiently small in most
 environments.

 Case 3: The remote node sent a genuine RST segment without the OTS
 option to disconnect a TCP connection.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 22]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 When TS2 is enabled, this case cannot happen, because a legitimate
 RST segment MUST carry the OTS option.

 Case 4: A malicious node sent a spoofed RST segment without the OTS
 option with the same quadruple by chance.

 Such spoofed RST segment is accepted only when TS.PASASR_On is
 true and (RCV.NXT <= RSEG.SEQ < RCV.NXT + TS2_PASASR_WIN) is
 satisfied. Thus, the possibility of accepting this spoofed RST
 segment is lower than TS2_PASASR_WIN in 2^32. This would be
 sufficiently small in most environments.

Demizu Expires September 2006 [Page 23]

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

8. DLI (Data Loss Inference)

 DLI is a mechanism for inferring losses of original and retransmitted
 data segments by making use of the RSEG.TSecr field in the TS option
 on received segments. It can be enabled only when TS2 is enabled.
 When a received segment does not satisfy inequality (1) nor (2), or
 it does not carry the TS option, DLI/TS2 (DLI with TS2) MUST NOT be
 performed on the segment.

 Note: When TS1 is enabled, the algorithms described in this
 section might infer losses of original data segments in limited
 scenarios that comprises partial acknowledgements. Since DLI with
 TS1 would not be able to infer losses of retransmitted data
 segments, however, this memo does not propose to run DLI with TS1.

 DLI/TS2 improves overall throughput by reducing the number of
 retransmission timeouts under heavy loss rates.

8.1 Conceptual Algorithm

 This subsection describes a conceptual algorithm of DLI/TS2 that
 infers losses of any original and retransmitted octets.

 Two variables are associated with each sent octet: OC.SndTS
 (32bit-timestamp) and OC.SndRO (integer). OC.SndTS holds the
 SSEG.TSval value on the latest sent data segment containing the
 octet. The initial value of OC.SndRO is zero. When octets are
 retransmitted, the variables of these octets are reinitialized. If a
 segment with the TS option is received, every OC.SndRO of every octet
 satisfying (RSEG.TSecr > OC.SndTS) is increased by one. Then, every
 octet satisfying (OC.SndRO >= TS2_DLI_THRESH) is inferred lost. A
 real-world implementation would likely prefer to manage the
 retransmitted octets as sequence number ranges.

 DLI/TS2 uses the RSEG.TSecr field in the TS option only, because,
 when out-of-order data exist in the receive buffer, all segments sent
 in reply to data segments carry the TS option, while other segments
 carry the OTS option. That is, the number of data segments arriving
 at the remote node is equal to the number of segments with the TS
 option departing from the remote node. To count the number of
 observed possible reorders precisely, any segments with the TS option
 (including data segments, window updates, etc.) SHOULD be counted,
 while any segments with the OTS option (including apparently pure ACK
 segment, etc.) MUST NOT be counted.

 If the granularity of timestamps is coarser than the mean time
 between each data transmission, multiple data segments may carry the
 same SSEG.TSval value, and DLI/TS2 would be less effective. Some
 ideas to mitigate this problem is shown in appendix B.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 24]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS2_DLI_THRESH indicates the number of observed possible reorders
 required to infer a loss. The default value is 3, which is the same
 value as the so-called duplicate acknowledgement threshold specified
 in [RFC2581]. TS2_DLI_THRESH might be implemented as an adaptive
 variable in the future.

8.2 Space-Optimized Algorithms

 The conceptual algorithm, however, would not be easy to implement
 because of memory limitations. Therefore, this memo proposes the
 following space-optimized algorithms that do not require a huge
 memory space.

 (1) DLI-SEG/TS2 infers losses of any original and retransmitted
 data segments. It uses two variables for each data segment.

 (2) DLI-SACK/TS2 infers losses of original and retransmitted data
 in SACK holes, which exist between SND.UNA and SND.FACK. It
 uses two variables for each SACK hole.

 (3) DLI-UNA/TS2 infers losses of original and retransmitted data
 at SND.UNA. It uses two variables for each TCP connection.

 (4) DLI-NXT/TS2 infers losses of original and retransmitted data
 at SND.NXT minus one. When (SND.FACK < SND.NXT) is true, it
 infers losses of data between SND.FACK and SND.NXT. It uses
 two variables for each TCP connection.

 (5) DLI-MAX/TS2 infers losses of original and retransmitted data
 at SND.MAX minus one. When (SND.NXT < SND.FACK) is true, it
 infers losses of data between SND.FACK and SND.MAX. It uses
 two variables for each TCP connection.

 These algorithms can be implemented independently. Since DLI-SEG/TS2
 is sufficiently powerful, however, if it is implemented, other
 algorithms (2)-(5) need not be implemented.

 Note 1: Fast Retransmit [RFC2581] and SACK [RFC2018][RFC3517] are
 helpful for inferring losses of original data segments, while they
 cannot infer losses of retransmitted data segments in contrast to
 DLI/TS2. They are helpful, however, if DLI-UNA/TS2 is implemented
 but DLI-SEG/TS2 and DLI-SACK/TS2 are not implemented.
 See appendix C.2 for more details.

 Note 2: If some data have been retransmitted, losses of data
 between SND.UNA and the highest retransmitted sequence number
 cannot be inferred using IsLost() [RFC3517], while such losses can
 be inferred by DLI/TS2. See appendix C.2 for more details.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517

Demizu Expires September 2006 [Page 25]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

8.2.1 DLI-SEG/TS2 (DLI for Data Segments with TS2)

 This subsection describes an algorithm called DLI-SEG/TS2 that infers
 losses of any original and retransmitted data segments. It is useful
 when each data segment is already managed by an internal data
 structure and is not repacketized.

 DLI-SEG/TS2 uses two variables for each sent or retransmitted data
 segment: DS.SndTS (32bit-timestamp) and DS.SndRO (integer). DS.SndTS
 holds the SSEG.TSval value on the latest sent data segment. DS.SndRO
 counts the number of received segments with the TS option satisfying
 (RSEG.TSecr > DS.SndTS). In other words, it counts the number of
 observed possible reorders from the point of the view of the data
 segment.

 The procedure is as follows.

 When a data segment is sent or retransmitted, its SSEG.TSval value is
 recorded in DS.SndTS, and DS.SndRO is cleared.

 When a segment with the TS option is received, every DS.SndRO of
 every data segment satisfying (RSEG.TSecr > DS.SndTS) is increased by
 one. Then, all data segments satisfying (DS.SndRO >= TS2_DLI_THRESH)
 are inferred lost.

 Implementation Hint: Prepare a chain of structures for data
 segments, sorted by DS.SndTS. When a new data segment is sent, a
 new structure for the data segment is allocated, SSEG.TSval is
 copied to DS.SndTS, and DS.SndRO is cleared; then the structure is
 inserted at the tail of the chain. When a data segment is
 retransmitted, SSEG.TSval is copied to DS.SndTS, and DS.SndRO is
 cleared; then the structure is moved to the tail of the chain.
 When a segment with the TS option is received, traverse the chain
 from the head while (RSEG.TSecr > DS.SndTS). For each structure
 satisfying this inequality, DS.SndRO is increased by one. Then,
 every structure satisfying (DS.SndRO >= TS2_DLI_THRESH) is
 inferred lost.

8.2.2 DLI-SACK/TS2 (DLI for Data in SACK Holes with TS2)

 This subsection describes an algorithm called DLI-SACK/TS2 that
 infers losses of original and retransmitted data in SACK holes, which
 exist between SND.UNA and SND.FACK. It can be enabled when SACK is
 enabled.

 DLI-SACK/TS2 uses two variables for each SACK hole: SH.SndTS
 (32bit-timestamp) and SH.SndRO (integer). SH.SndTS holds the
 SSEG.TSval value on the latest sent data segment containing data in
 the SACK hole. SH.SndRO counts the number of received segments with

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 26]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 the TS option satisfying (RSEG.TSecr > SH.SndTS). In other words, it
 counts the number of observed possible reorders from the point of the
 view of the data in the SACK hole since part or all of the data in
 the SACK hole were sent or retransmitted last time.

 The procedure is as follows.

 When a segment with the TCP SACK option is received, if a new SACK
 hole is created, then a new data structure is allocated, the received
 RSEG.TSecr value is copied to SH.SndTS, and SH.SndRO is cleared.

 Note: The SSEG.TSval values on the un-SACKed data segments in the
 new SACK hole likely would be no greater than the received
 RSEG.TSecr value. Thus, it would be safe to use the received
 RSEG.TSecr value for the initial value of SH.SndTS here.

 If an existing SACK hole is split by a received SACK block, SH.SndTS
 and updated SH.SndRO are inherited to the split SACK holes. If an
 existing SACK hole is shrunken or expanded, SH.SndTS and SH.SndRO are
 unchanged.

 When part or all of data in a SACK hole is retransmitted, the
 SSEG.TSval value on the data segment is copied to SH.SndTS, and
 SH.SndRO is cleared.

 When a segment with the TS option is received, SH.SndRO of every SACK
 hole satisfying (RSEG.TSecr > SH.SndTS) is increased by one. Then,
 whole data in all SACK holes satisfying (SH.SndRO >= TS2_DLI_THRESH)
 are inferred lost.

 Implementation Hint: Prepare a chain of SACK holes, sorted by
 SH.SndTS. When a new SACK hole is created, RSEG.TSecr is copied
 to SH.SndTS, SH.SndRO is cleared, and the SACK hole is inserted at
 the tail of the chain. When data in a SACK hole is retransmitted,
 SSEG.TSval is copied to SH.SndTS, and SH.SndRO is cleared; then
 the SACK hole is moved to the tail of the chain. When a segment
 with the TS option is received, traverse the chain from the head
 while (RSEG.TSecr > SH.SndTS). For each SACK hole satisfying this
 inequality, SH.SndRO is increased by one. Then, every SACK hole
 satisfying (SH.SndRO >= TS2_DLI_THRESH) is inferred lost. If a
 SACK hole is split by a received SACK block, the split SACK holes
 inherit SH.SndTS, SH.SndRO, and the position in the chain.

8.2.3 DLI-UNA/TS2 (DLI for Data at SND.UNA with TS2)

 This subsection describes an algorithm called DLI-UNA/TS2 that infers
 losses of original and retransmitted data at SND.UNA. It works only
 when (SND.UNA < SND.MAX) is true.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 27]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 DLI-UNA/TS2 uses two variables: TS.UNA.SndTS (32bit-timestamp) and
 TS.UNA.SndRO (integer). TS.UNA.SndTS holds the SSEG.TSval value on
 the latest sent data segment containing data at SND.UNA.
 TS.UNA.SndRO counts the number of received segments with the TS
 option satisfying (RSEG.TSecr > TS.UNA.SndTS). In other words, it
 counts the number of observed possible reorders from the point of the
 view of data at SND.UNA since last sent. The variables have valid
 values only when (SND.UNA < SND.MAX) is true.

 The procedure is as follows.

 When data at SND.UNA is sent or retransmitted, the SSEG.TSval value
 on the data segment is recorded in TS.UNA.SndTS, and TS.UNA.SndRO is
 cleared.

 When (SND.UNA < SND.MAX) is true, if a received segment does not
 advance SND.UNA (i.e., RSEG.ACK <= SND.UNA), and if it carries the TS
 option and satisfies (RSEG.TSecr > TS.UNA.SndTS), then TS.UNA.SndRO
 is increased by one. After that, if (TS.UNA.SndRO >= TS2_DLI_THRESH)
 is true, data at SND.UNA is inferred lost. Otherwise, if a received
 segment advances SND.UNA (i.e., old SND.UNA < RSEG.ACK <= SND.MAX),
 the current external timestamp value is copied to TS.UNA.SndTS, and
 TS.UNA.SndRO is cleared.

 Implementation Note: If PASA-DF/TS2 is enabled, then when SND.UNA
 is advanced, for time-optimization TS.SndMax can be copied to
 TS.UNA.SndTS, instead of the current external timestamp value.

 If DLI-SACK/TS2 is enabled, when SND.UNA is advanced by a received
 segment (i.e., old SND.UNA < RSEG.ACK <= SND.MAX), and if the new
 SND.UNA is in an existing SACK hole, SH.SndTS and SH.SndRO of the
 SACK hole are copied to TS.UNA.SndTS and TS.UNA.SndRO, respectively.

8.2.4 DLI-NXT/TS2 (DLI for Data at SND.NXT minus one with TS2)

 This subsection describes an algorithm called DLI-NXT/TS2 that infers
 losses of data at SND.NXT-1. It works only when (SND.UNA < SND.NXT)
 is true. When (SND.FACK < SND.NXT) is true, it infers losses of
 original and retransmitted data between SND.FACK and SND.NXT.

 DLI-NXT/TS2 uses two variables: TS.NXT.SndTS (32bit-timestamp) and
 TS.NXT.SndRO (integer). TS.NXT.SndTS holds the SSEG.TSval value on
 the latest sent data segment containing the data at SND.NXT-1.
 TS.NXT.SndRO counts the number of received segments with the TS
 option satisfying (RSEG.TSecr > TS.NXT.SndTS). In other words, it
 counts the number of observed possible reorders from the point of the
 view of the data at SND.NXT-1 since last sent. The variables have
 valid values when the data at SND.NXT-1 have not been acknowledged
 nor SACKed.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 28]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 The procedure is as follows.

 When the data at SND.NXT is sent, or when (SND.FACK < SND.NXT) is
 true and part or all of data between SND.FACK and SND.NXT is
 retransmitted, if previously received window size is not zero (i.e.,
 TCP persist timer is off), then the SSEG.TSval value on the data
 segment is recorded in TS.NXT.SndTS, and TS.NXT.SndRO is cleared.

 When the data at SND.NXT-1 have not been acknowledged nor SACKed, if
 a segment with the TS option satisfying (RSEG.TSecr > TS.NXT.SndTS)
 is received, then TS.NXT.SndRO is increased by one. After that, if
 (TS.NXT.SndRO >= TS2_DLI_THRESH), the data at SND.NXT-1 is inferred
 lost. In this case, if (SND.FACK < SND.NXT) is also true, the data
 between SND.FACK and SND.NXT is inferred lost.

8.2.5 DLI-MAX/TS2 (DLI for Data at SND.MAX minus one with TS2)

 This subsection describes an algorithm called DLI-MAX/TS2 that infers
 losses of data at SND.MAX-1. It works only when (SND.UNA < SND.MAX)
 is true. When (SND.NXT < SND.FACK) is true, it infers losses of
 original and retransmitted data between SND.FACK and SND.MAX.

 DLI-MAX/TS2 uses two variables: TS.MAX.SndTS (32bit-timestamp) and
 TS.MAX.SndRO (integer). TS.MAX.SndTS holds the SSEG.TSval value on
 the latest sent data segment containing the data at SND.MAX-1.
 TS.MAX.SndRO counts the number of received segments with the TS
 option satisfying (RSEG.TSecr > TS.MAX.SndTS). In other words, it
 counts the number of observed possible reorders from the point of the
 view of the data at SND.MAX-1 since last sent. The variables have
 valid values when the data at SND.MAX-1 have not been acknowledged
 nor SACKed.

 The procedure is as follows.

 When the data at SND.MAX is sent, or when (SND.NXT < SND.FACK) is
 true and part or all of data between SND.FACK and SND.MAX is
 retransmitted, if previously received window size is not zero (i.e.,
 TCP persist timer is off), then the SSEG.TSval value on the data
 segment is recorded in TS.MAX.SndTS, and TS.MAX.SndRO is cleared.

 When the data at SND.MAX-1 have not been acknowledged nor SACKed, if
 a segment with the TS option satisfying (RSEG.TSecr > TS.MAX.SndTS)
 is received, then TS.MAX.SndRO is increased by one. After that, if
 (TS.MAX.SndRO >= TS2_DLI_THRESH), the data at SND.MAX-1 is inferred
 lost. In this case, if (SND.NXT < SND.FACK) is also true, the data
 between SND.FACK and SND.MAX is inferred lost.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 29]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

9. SLID (Spurious Loss Inference Detection)

 SLID is a mechanism for detecting spurious loss inference by making
 use of the received RSEG.TSecr value in the TS option and the OTS
 option. SLID can be enabled when TS2 is enabled. When a received
 segment does not satisfy inequality (1) nor (2), or it does not carry
 the TS option nor the OTS option, then SLID/TS2 (SLID with TS2) MUST
 NOT be performed on the segment.

 To decide whether a loss inference is genuine or spurious, when a
 loss is inferred, SLID/TS2 first sends an arbitrary in-window data
 segment as a probe, then examines incoming segments until a decision
 is made. Probe data segment may not contain the data being probed.
 Therefore, it may consist of unsent data, decidedly lost data, or
 inferredly lost data.

 SLID/TS2 makes it possible to postpone the retransmission of data
 that has been inferred lost until the loss inference is decided to be
 genuine, in order to avoid wasting bandwidth and transmission battery
 power on unnecessary retransmissions. It also makes it possible to
 postpone the reduction of congestion window until the loss inference
 is decided to be genuine. In addition, SLID/TS2 can be applied to
 detect a posteriori spurious retransmissions in order to alleviate
 unnecessary data retransmissions and duplicate acknowledgements.
 Response algorithms are outside the scope of this memo.

9.1 Conceptual Algorithm

 This subsection describes a conceptual algorithm of SLID/TS2 that
 detects spurious loss inference of any octet.

 Two variables are associated with each sent octet: OC.TgtTS
 (32bit-timestamp) and OC.PrbTS (32bit-timestamp). OC.TgtTS (target
 timestamp) holds the latest SSEG.TSval value on the original or
 retransmitted decidedly-lost segments containing the octet. OC.PrbTS
 (probe timestamp) holds the SSEG.TSval value on the first data
 segment that is sent since the octet has been inferred lost. This
 sent segment is called "probe segment" in this memo. It may not
 contain the octet being probed.

 After sending a probe segment, every incoming segment is examined
 until all necessary decisions are made for every octet that is
 inferred lost. More specifically, the RSEG.TSecr values of every
 incoming segment is compared with the "border timestamp" of each
 octet that has been inferred lost in order to decide whether each
 loss inference is genuine or spurious.

 The border timestamp is calculated as follows:

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 30]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS2_SLID_BTS(TgtTS, PrbTS) = (k * TgtTS + (1 - k) * PrbTS),

 where k = 1/2.

 If a received RSEG.TSecr value is greater than the border timestamps
 of some octets, the loss inferences of those octets are decided to be
 genuine. Otherwise, if a received segment acknowledges or SACKs some
 octets, the loss inferences of those octets are decided to be
 spurious. In other cases, another segment is awaited. The reason
 why received RSEG.TSecr values are compared with the border timestamp
 of each octet instead of OC.TgtTS is shown in appendix G.4.

 The precise procedure is as follows.

 To reset the target timestamp, when an octet is first sent, or when a
 decidedly lost octet is retransmitted, the SSEG.TSval value on the
 sent data segment is recorded in both OC.TgtTS and OC.PrbTS.

 To set the probe timestamp, when any data segment is sent, the
 SSEG.TSval value on the segment is copied to OC.PrbTS of all octets
 that have been inferred lost and satisfy (OC.TgtTS == OC.PrbTS).
 The sent data segment may carry these octets.

 To make a decision, when a segment with the TS option or the OTS
 option is received, for any octet satisfying (OC.TgtTS < OC.PrbTS),
 if (RSEG.TSecr > TS2_SLID_BTS(OC.TgtTS, OC.PrbTS)) is true, then its
 loss inference is decided to be genuine. Otherwise, if such an octet
 is acknowledged or SACKed by the segment, then its loss inference is
 decided to be spurious. In other cases, another segment is awaited.

 To avoid incorrect decision due to underflow, when any segment is
 sent, for any octet that is inferred lost, if (SSEG.TSval - OC.TgtTS)
 is negative, then its loss inference is decided to be spurious.

 When a decision is made, an appropriate response algorithm such as
 [RFC4015] is executed, then OC.PrbTS is copied to OC.TgtTS to
 terminate this procedure.

 Note: (OC.TgtTS < OC.PrbTS) is true only when the octet has been
 inferred lost and has been probed. After a decision is made,
 (OC.TgtTS == OC.PrbTS) becomes true.

 A real-world implementation would likely prefer to manage the octets
 as sequence number ranges.

9.2 Space-Optimized Algorithms

 The conceptual algorithm, however, would not be easy to implement
 because of memory limitations. Therefore, this memo proposes the

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc4015

Demizu Expires September 2006 [Page 31]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 following space-optimized algorithms that do not require a huge
 memory space.

 (1) SLID-SEG/TS2 detects spurious loss inference of any data
 segments. It uses two variables for each data segment.

 (2) SLID-SACK/TS2 detects spurious loss inference of data in SACK
 holes, which exist between SND.UNA and SND.FACK. It uses two
 variables for each SACK hole.

 (3) SLID-UNA/TS2 detects spurious loss inference of data at
 SND.UNA. It uses two variables for each TCP connection.

 (4) SLID-NXT/TS2 detects spurious loss inference of data at
 SND.NXT minus one. When (SND.FACK < SND.NXT) is true, it
 detects spurious loss inference of data between SND.FACK and
 SND.NXT. It uses two variables for each TCP connection.

 (5) SLID-MAX/TS2 detects spurious loss inference of data at
 SND.MAX minus one. When (SND.NXT < SND.FACK) is true, it
 detects spurious loss inference of data between SND.FACK and
 SND.MAX. It uses two variables for each TCP connection.

 These algorithms can be implemented independently. Since
 SLID-SEG/TS2 is sufficiently powerful, however, if it is implemented,
 other algorithms (2)-(5) need not be implemented.

9.2.1 SLID-SEG/TS2 (SLID for Data Segments with TS2)

 This subsection describes an algorithm called SLID-SEG/TS2 that
 detects spurious loss inference of any sent data segments. It is
 useful when each data segment is already managed by an internal data
 structure and is not repacketized.

 SLID-SEG/TS2 uses two variables for each sent or retransmitted data
 segment: DS.TgtTS (32bit-timestamp) and DS.PrbTS (32bit-timestamp).
 DS.TgtTS (target timestamp) holds the latest SSEG.TSval value on the
 original or retransmitted decidedly-lost data segments. DS.PrbTS
 (probe timestamp) holds the SSEG.TSval value on the first data
 segment that is sent since the data segment has been inferred lost.
 The sent segment may be different from the data segment being probed.

 The procedure is as follows.

 To reset the target timestamp, when a data segment is first sent, or
 when a decidedly lost data segment is retransmitted, the SSEG.TSval
 value on the sent data segment is recorded in both DS.TgtTS and
 DS.PrbTS.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 32]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 To set the probe timestamp, when any data segment is sent, the
 SSEG.TSval value on the segment is copied to DS.PrbTS of all data
 segment structures that have been inferred lost, and satisfy
 (DS.TgtTS == DS.PrbTS). The sent data segment may be the same as one
 of these data structures.

 To make a decision, when a segment with the TS option or the OTS
 option is received, for any data segment structure satisfying
 (DS.TgtTS < DS.PrbTS), if the received RSEG.TSecr value is greater
 than TS2_SLID_BTS(DS.TgtTS, DS.PrbTS), then its loss inference is
 decided to be genuine. Otherwise, if such data segment structure is
 acknowledged or SACKed by the segment, then its loss inference is
 decided to be spurious. In other cases, another segment is awaited.

 To avoid incorrect decision due to underflow, when any segment is
 sent, for any data segment structure that is inferred lost, if
 (SSEG.TSval - DS.TgtTS) is negative, then its loss inference is
 decided to be spurious.

 When a decision is made, an appropriate response algorithm is
 executed, then DS.PrbTS is copied to DS.TgtTS to terminate this
 procedure.

 Note: (DS.TgtTS < DS.PrbTS) is true only when the data segment has
 been inferred lost and has been probed. After a decision is made,
 (DS.TgtTS == DS.PrbTS) becomes true.

 The implementation hint for DLI-SEG/TS2 might be of help in
 implementing SLID-SEG/TS2.

9.2.2 SLID-SACK/TS2 (SLID for Data in SACK Holes with TS2)

 This subsection describes an algorithm called SLID-SACK/TS2 that
 detects spurious loss inference of data segments containing data in
 SACK holes, which exist between SND.UNA and SND.FACK. The
 implementation hint for DLI-SACK/TS2 might be of help in implementing
 SLID-SACK/TS2.

 SLID-SACK/TS2 uses two variables for each SACK hole: SH.TgtTS
 (32bit-timestamp) and SH.PrbTS (32bit-timestamp). SH.TgtTS (target
 timestamp) holds the RSEG.TSecr value on the segment which created
 the SACK hole. SH.PrbTS (probe timestamp) holds the SSEG.TSval value
 on the first data segment that is sent since the data in the SACK
 hole has been inferred lost. The sent segment may not carry the data
 being probed.

 The procedure is as follows.

 To reset the target timestamp, when a segment with the TS option or

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 33]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 the OTS option is received, if a SACK hole is created by the SACK
 blocks on the segment, its RSEG.TSecr value is recorded in both
 SH.TgtTS and SH.PrbTS of the created SACK hole. If a SACK hole is
 expanded by the SACK blocks on the segment, the RSEG.TSecr value is
 recorded in both SH.TgtTS and SH.PrbTS of the expanded SACK hole.

 Note: The SSEG.TSval values on the lost data segments in a new
 SACK hole likely would be less than the received RSEG.TSecr value.
 Therefore, it would be safe to use the RSEG.TSecr value of the
 received segment which created the SACK hole as initial values of
 SH.TgtTS and SH.PrbTS.

 To set the probe timestamp, when any data segment is sent, the
 SSEG.TSval value on the segment is copied to SH.PrbTS of all SACK
 holes that are inferred lost and satisfy (SH.TgtTS == SH.PrbTS).
 The sent data segment may carry data in one of these SACK holes.

 To make a decision, when a segment with the TS option or the OTS
 option is received, for any SACK hole with (SH.TgtTS < SH.PrbTS), if
 (RSEG.TSecr > TS2_SLID_BTS(SH.TgtTS, SH.PrbTS)) is true, then its
 loss inference is decided to be genuine. Otherwise, if part or all
 of data in such SACK hole is acknowledged or SACKed by the segment,
 then its loss inference is decided to be spurious. In other cases,
 another segment is awaited.

 To avoid incorrect decision due to underflow, when any segment is
 sent, for any SACK hole that is inferred lost, if
 (SSEG.TSval - SH.TgtTS) is negative, then its loss inference is
 decided to be spurious.

 When a decision is made, an appropriate response algorithm is
 executed, then SH.PrbTS is copied to SH.TgtTS to terminate this
 procedure.

 Note: (SH.TgtTS < SH.PrbTS) is true only when the data in the SACK
 hole has been inferred lost and has been probed. After a decision is
 made, (SH.TgtTS == SH.PrbTS) becomes true.

9.2.3 SLID-UNA/TS2 (SLID for Data at SND.UNA with TS2)

 This subsection describes an algorithm called SLID-UNA/TS2 that
 detects spurious loss inference of data segment containing data at
 SND.UNA. It works only when (SND.UNA < SND.MAX) is true.

 SLID-UNA/TS2 uses two variables: TS.UNA.TgtTS (32bit-timestamp) and
 TS.UNA.PrbTS (32bit-timestamp). TS.UNA.TgtTS (target timestamp)
 holds the closest subsequent timestamp value to the latest SSEG.TSval
 value on original or retransmitted decidedly-lost data segments
 containing data at SND.UNA. TS.UNA.PrbTS (probe timestamp) holds the

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 34]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 SSEG.TSval value on the first data segment that is sent since the
 data at SND.UNA has been inferred lost. The sent segment may not
 contain the data at SND.UNA. The initial values of both TS.UNA.TgtTS
 and TS.UNA.PrbTS are equal to the SSEG.TSval value on the first sent
 SYN segment. The variables have valid values if (SND.UNA < SND.MAX)
 is true.

 The procedure is as follows.

 To reset the target timestamp, when an original or decidedly lost
 data segment containing data at SND.UNA is sent, the SSEG.TSval value
 is recorded in both TS.UNA.TgtTS and TS.UNA.PrbTS. In addition, when
 a received segment with the TS option or the OTS option advances
 SND.UNA (i.e., old SND.UNA < RSEG.ACK <= SND.MAX), RSEG.TSecr is
 copied to TS.UNA.PrbTS if (RSEG.TSecr > TS.UNA.PrbTS) is true, then
 TS.UNA.PrbTS is copied to TS.UNA.TgtTS.

 To set the probe timestamp, when any data segment is sent, if data at
 SND.UNA is inferred lost and (TS.UNA.TgtTS == TS.UNA.PrbTS) is true,
 then the SSEG.TSval value on the sent data segment is recorded in
 TS.UNA.PrbTS. The sent data segment may carry data at SND.UNA.

 To make a decision, when a segment with the TS option or the OTS
 option is received, if (TS.UNA.TgtTS < TS.UNA.PrbTS) is true, and
 (RSEG.TSecr > TS2_SLID_BTS(TS.UNA.TgtTS, TS.UNA.PrbTS)) is true, then
 the loss inference is decided to be genuine. Otherwise, if SND.UNA
 is advanced by the segment (i.e., old SND.UNA < RSEG.ACK <= SND.MAX),
 the loss inference is decided to be spurious. In other cases,
 another segment is awaited.

 To avoid incorrect decision due to underflow, when any segment is
 sent, if the data at SND.UNA is inferred lost, and if
 (SSEG.TSval - TS.UNA.TgtTS) is negative, then the loss inference is
 decided to be spurious.

 When a decision is made, an appropriate response algorithm is
 executed. Then, if (RSEG.TSecr > TS.UNA.PrbTS) is satisfied,
 RSEG.TSecr is copied to TS.UNA.PrbTS. After that, TS.UNA.PrbTS is
 copied to TS.UNA.TgtTS to terminate this procedure.

 Note: (TS.UNA.TgtTS < TS.UNA.PrbTS) is true only when data at SND.UNA
 has been inferred lost and has been probed. After a decision is
 made, (TS.UNA.TgtTS == TS.UNA.PrbTS) becomes true.

 If SLID-SACK/TS2 is enabled, when SND.UNA is advanced by a received
 segment (i.e., old SND.UNA < RSEG.ACK <= SND.MAX), if the new SND.UNA
 is in an existing SACK hole, SH.TgtTS and SH.PrbTS of the SACK hole
 are copied to TS.UNA.TgtTS and TS.UNA.PrbTS, respectively.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 35]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

9.2.4 SLID-NXT/TS2 (SLID for Data at SND.NXT minus one with TS2)

 This subsection describes an algorithm called SLID-NXT/TS2 that
 detects spurious loss inference of data segment containing data at
 SND.NXT-1. It works only when (SND.UNA < SND.NXT) is true. When
 (SND.FACK < SND.NXT) is true, it detects spurious loss inference of
 data segment containing data between SND.FACK and SND.NXT.

 SLID-NXT/TS2 uses two variables: TS.NXT.TgtTS (32bit-timestamp) and
 TS.NXT.PrbTS (32bit-timestamp). TS.NXT.TgtTS (target timestamp)
 holds the latest SSEG.TSval value on the original or retransmitted
 decidedly-lost data segments containing data at SND.NXT-1.
 TS.NXT.PrbTS (probe timestamp) holds the SSEG.TSval value on the
 first data segment that is sent since the data at SND.NXT-1 has been
 inferred lost. The sent segment may not contain the data at
 SND.NXT-1. The initial values of both TS.NXT.TgtTS and TS.NXT.PrbTS
 are equal to the SSEG.TSval value on the first sent SYN segment. The
 variables have valid values if (SND.UNA < SND.NXT) is true.

 The procedure is as follows.

 To reset the target timestamp, when data at SND.NXT is sent, the
 SSEG.TSval value on the data segment is recorded in both TS.NXT.TgtTS
 and TS.NXT.PrbTS. Note that SND.NXT is increased by SSEG.LEN after
 the data segment is sent.

 To set the probe timestamp, when any data segment is sent, if it does
 not contain data at SND.NXT, data at SND.NXT-1 is inferred lost,
 (TS.NXT.TgtTS == TS.NXT.PrbTS) is true, and previously received
 window size is not zero (i.e., TCP persist timer is off), then the
 SSEG.TSval value on the sent data segment is recorded in
 TS.NXT.PrbTS. The sent data segment may carry data at SND.NXT-1.

 To make a decision, when a segment with the TS option or the OTS
 option is received, if (TS.NXT.TgtTS < TS.NXT.PrbTS) is true, and
 (RSEG.TSecr > TS2_SLID_BTS(TS.NXT.TgtTS, TS.NXT.PrbTS)) is true, then
 the loss inference is decided to be genuine. Otherwise, if the data
 is acknowledged or SACKed by the segment, then the loss inference is
 decided to be spurious. In other cases, another segment is awaited.

 To avoid incorrect decision due to underflow, when any segment is
 sent, if the data at SND.NXT-1 is inferred lost, and if
 (SSEG.TSval - TS.NXT.TgtTS) is negative, then the loss inference is
 decided to be spurious.

 When a decision is made, an appropriate response algorithm is
 executed, and TS.NXT.PrbTS is copied to TS.NXT.TgtTS to terminate
 this procedure. When (SND.FACK < SND.NXT) is true, the decision is
 applied to all data segments containing data between SND.FACK and

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 36]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 SND.NXT.

 Note: (TS.NXT.TgtTS < TS.NXT.PrbTS) is true only when data at
 SND.NXT-1 has been inferred lost and has been probed. After a
 decision is made, (TS.NXT.TgtTS == TS.NXT.PrbTS) becomes true.

9.2.5 SLID-MAX/TS2 (SLID for Data at SND.MAX minus one with TS2)

 This subsection describes an algorithm called SLID-MAX/TS2 that
 detects spurious loss inference of data segment containing data at
 SND.MAX-1. It works only when (SND.UNA < SND.MAX) is true. When
 (SND.NXT < SND.FACK) is true, it detects spurious loss inference of
 data segment containing data between SND.FACK and SND.MAX.

 SLID-MAX/TS2 uses two variables: TS.MAX.TgtTS (32bit-timestamp) and
 TS.MAX.PrbTS (32bit-timestamp). TS.MAX.TgtTS (target timestamp)
 holds the latest SSEG.TSval value on the original or retransmitted
 decidedly-lost data segments containing data at SND.MAX-1.
 TS.MAX.PrbTS (probe timestamp) holds the SSEG.TSval value on the
 first data segment that is sent since the data at SND.MAX-1 has been
 inferred lost. The sent segment may not contain the data at
 SND.MAX-1. The initial values of both TS.MAX.TgtTS and TS.MAX.PrbTS
 are equal to the SSEG.TSval value on the first sent SYN segment. The
 variables have valid values if (SND.UNA < SND.MAX) is true.

 The procedure is as follows.

 To reset the target timestamp, when data at SND.MAX is sent, the
 SSEG.TSval value on the data segment is recorded in both TS.MAX.TgtTS
 and TS.MAX.PrbTS. Note that SND.MAX is increased by SSEG.LEN after
 the data segment is sent.

 To set the probe timestamp, when any data segment is sent, if it does
 not contain data at SND.MAX, data at SND.MAX-1 is inferred lost,
 (TS.MAX.TgtTS == TS.MAX.PrbTS) is true, and previously received
 window size is not zero (i.e., TCP persist timer is off), then the
 SSEG.TSval value on the sent data segment is recorded in
 TS.MAX.PrbTS. The sent data segment may carry data at SND.MAX-1.

 To make a decision, when a segment with the TS option or the OTS
 option is received, if (TS.MAX.TgtTS < TS.MAX.PrbTS) is true, and
 (RSEG.TSecr > TS2_SLID_BTS(TS.MAX.TgtTS, TS.MAX.PrbTS)) is true, then
 the loss inference is decided to be genuine. Otherwise, if the data
 is acknowledged or SACKed by the segment, then the loss inference is
 decided to be spurious. In other cases, another segment is awaited.

 To avoid incorrect decision due to underflow, when any segment is
 sent, if the data at SND.MAX-1 is inferred lost, and if
 (SSEG.TSval - TS.MAX.TgtTS) is negative, then the loss inference is

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 37]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 decided to be spurious.

 When a decision is made, an appropriate response algorithm is
 executed, and TS.MAX.PrbTS is copied to TS.MAX.TgtTS to terminate
 this procedure. When (SND.NXT < SND.FACK) is true, the decision is
 applied to all data segments containing data between SND.FACK and
 SND.MAX.

 Note: (TS.MAX.TgtTS < TS.MAX.PrbTS) is true only when data at
 SND.MAX-1 has been inferred lost and has been probed. After a
 decision is made, (TS.MAX.TgtTS == TS.MAX.PrbTS) becomes true.

Demizu Expires September 2006 [Page 38]

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

10. Security Considerations

 PASA/TS2 is a lightweight protection mechanism against spoofing
 attacks injecting faked SYN, data, FIN, and RST segments.

 The vulnerability described in [CVE05] and [CERT05] is mitigated in
 PAWS/TS1 and PAWS/TS2 because of inequalities (1) and (2). When TS2
 is enabled, it is also mitigated by PASA/TS2.

11. IANA Considerations

 The option-kind value of the TCP Old Timestamps option needs to be
 assigned.

12. Acknowledgements

 The TCP Timestamps option was originally specified in [RFC1323] by
 Van Jacobson, Bob Braden, and Dave Borman. Many ideas in this memo
 are thus inherited from it.

 The TS.Recent update rule of TS2 was inspired by Reiner Ludwig
 [Lud03a][Lud03b]. The idea of detecting spurious loss inference by
 making use of the TSecr field was inspired by the Eifel Detection
 Algorithm [RFC3522] proposed by Reiner Ludwig.

 The idea of detecting spoofed segments by making use of the TSecr
 field was proposed by Kacheong Poon. He has given the author
 invaluable insights, ideas, and comments on timestamp handling
 through discussions on [PD04], etc.

13. References

13.1 Normative References

 [RFC793] J. Postel, "Transmission Control Protocol", STD7, RFC793,
 September 1981.

 [RFC1323] V. Jacobson, R. Braden, and D. Borman, "TCP Extensions for
 High Performance", RFC1323, May 1992.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP14, RFC2119, March 1997.

 [RFC2581] M. Allman, V. Paxson, and W. Stevens, "TCP Congestion
 Control", RFC2581, April 1999.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581

Demizu Expires September 2006 [Page 39]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 [RFC2988] V. Paxson and M. Allman, "Computing TCP's Retransmission
 Timer", RFC2988, November 2000.

 [RFC3522] R. Ludwig and M. Meyer, "The Eifel Detection Algorithm for
 TCP", RFC3522, April 2003.

13.2 Informative References

 [RFC1122] R. Braden, Editor, "Requirements for Internet Hosts -
 Communication Layers", RFC1122, October 1989.

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, "TCP
 Selective Acknowledgement Options", RFC2018, October
 1996.

 [RFC2385] A. Heffernan, "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC2385, August 1998.

 [RFC2883] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, "An
 Extension to the Selective Acknowledgement (SACK) Option
 for TCP", RFC2883, July 2000.

 [RFC3042] M. Allman, H. Balakrishnan, and S. Floyd, "Enhancing TCP's
 Loss Recovery Using Limited Transmit", RFC3042, January
 2001.

 [RFC3465] M. Allman, "TCP Congestion Control with Appropriate Byte
 Counting (ABC)", RFC3465, February 2003.

 [RFC3517] E. Blanton, M. Allman, K. Fall, and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC3517, April 2003.

 [RFC3708] E. Blanton and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC3708,
 February 2004.

 [RFC3782] S. Floyd, T. Henderson, and A. Gurtov, "The NewReno
 Modification to TCP's Fast Recovery Algorithm", RFC3582,
 April 2004.

 [RFC4015] R. Ludwig and A. Gurtov, "The Eifel Response Algorithm for
 TCP", RFC4015, February 2005.

 [All04] M. Allman, "Re: [tcpm] long options draft revision",
 the IETF TCPM WG mailing list, September 2004. URL
 "http://www1.ietf.org/mail-archive/web/tcpm/current/

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3708
https://datatracker.ietf.org/doc/html/rfc3582
https://datatracker.ietf.org/doc/html/rfc4015

Demizu Expires September 2006 [Page 40]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 msg00748.html"

 [Bra93] R. Braden, "TCP Extensions for High Performance: An
 Update", (work in progress), Internet-Draft, June 1993.
 URL "http://www.kohala.com/start/tcplw-extensions.txt"

 [CERT05] US-CERT, "Vulnerability Note VU#637934", May 2005.
 URL "http://www.kb.cert.org/vuls/id/637934"

 [CVE05] CVE-2005-0356, May 2005. URL "http://www.cve.mitre.org/
 cgi-bin/cvename.cgi?name=2005-0356"

 [Duk03a] M. Duke, "[Tsvwg] Updating timestamps (ts_recent) in
 Linux", the IETF TSVWG WG mailing list, August 2003. URL
 "http://www1.ietf.org/mail-archive/web/tsvwg/current/
 msg04379.html"

 [Duk03b] M. Duke, "RE: [Tsvwg] Updating timestamps (ts_recent) in
 Linux", the IETF TSVWG WG mailing list, August 2003. URL
 "http://www1.ietf.org/mail-archive/web/tsvwg/current/
 msg04391.html"

 [JBB97] V. Jacobson, R. Braden, and D. Borman, "TCP Extensions for
 High Performance", (work in progress), Internet-Draft
 <draft-ietf-tcplw-high-performance-00.txt>, February 1997.

 [JBB03] V. Jacobson, R. Braden, and D. Borman, "TCP Extensions for
 High Performance", (work in progress), Internet-Draft
 <draft-jacobson-tsvwg-1323bis-00.txt>, August 2003.

 [KP87] P. Karn and C. Partridge, "Estimating Round-Trip Times in
 Reliable Transport Protocols", Proceedings of SIGCOMM'87,
 August 1987.

 [Lud03a] R. Ludwig, "RE: [Tsvwg] Updating timestamps (ts_recent) in
 Linux", the IETF TSVWG WG mailing list, August 2003. URL
 "http://www1.ietf.org/mail-archive/web/tsvwg/current/
 msg04389.html"

 [Lud03b] R. Ludwig, "[Tsvwg] RFC1323.bis [was: Updating timestamps
 (ts_recent)]", the IETF TSVWG WG mailing list, August
 2003. URL "http://www1.ietf.org/mail-archive/web/tsvwg/
 current/msg04397.html"

 [Mil98] D. Miller, "possible bug in PAWS", the IETF TCP-IMPL WG
 mailing list, March 1998. URL "http://tcp-impl.grc.nasa.
 gov/tcp-impl/list/archive/1035.html"

 [MM96] M. Mathis and J. Mahdavi, "Forward Acknowledgment:

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tcplw-high-performance-00.txt
https://datatracker.ietf.org/doc/html/draft-jacobson-tsvwg-1323bis-00.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 41]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 Refining TCP Congestion Control", Proceedings of
 SIGCOMM'96, August 1996.

 [MSM99] M. Mathis, J. Semke, and J. Mahdavi, "The Rate-Halving
 Algorithm for TCP Congestion Control", (work in progress),
 Internet-Draft <draft-mathis-tcp-ratehalving-00.txt>,
 August 1999.

 [PD04] K. Poon and N. Demizu, "Use of TCP timestamp option to
 defend against blind spoofing attack", (work in progress),
 Internet-Draft <draft-poon-tcp-tstamp-mod-01.txt>, October
 2004.

Author's Address

 Noritoshi Demizu
 National Institute of Information and Communications Technology
 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
 Phone: +81-42-327-7432 (Ex.5813)
 E-mail: demizu@nict.go.jp

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/draft-mathis-tcp-ratehalving-00.txt
https://datatracker.ietf.org/doc/html/draft-poon-tcp-tstamp-mod-01.txt

Demizu Expires September 2006 [Page 42]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix A: TS2 Reference

 This appendix gives the formal description of TS1 and TS2 by using
 C-like pseudocode as a reference.

 An implementation MAY support TS2. If an implementation supports
 TS2, it MAY implement one or more of RTTM, PAWS, PASA, DLI and SLID.

A.1 TCP Options

 TS2 uses "the TCP Timestamps option" (see section 3.1), and "the TCP
 Old Timestamps option" (see section 3.2).

 For simplicity, the TCP Timestamps option is called "the TS option".
 The TCP Old Timestamps option with option-length=10 is called "the
 OTS option", and that with option-length=2 is called "the OTS_OK
 option".

A.2 Types

 The following types are used in this appendix: boolean, integer,
 32bit-sequence-number, 32bit-timestamp, and internal-time.

 All arithmetic dealing with the 32bit-sequence-number and
 32bit-timestamp types must be performed modulo 2^32.

 The format of internal-time depends on the implementation:
 for example, it may be an integer with unit = 1 second, or
 an OS-dependent structure.

 The following type conversion function is used:
 time2ts() converts an internal-time value to a 32bit-timestamp value.

A.3 Functions

 The following boolean functions are defined.

 To compare sequence numbers:

 SEQ_GT(a, b) True if (a > b) in modulo 2^32. False, otherwise.
 SEQ_GE(a, b) True if (a >= b) in modulo 2^32. False, otherwise.
 SEQ_LT(a, b) True if (a < b) in modulo 2^32. False, otherwise.
 SEQ_LE(a, b) True if (a <= b) in modulo 2^32. False, otherwise.

 To compare timestamps:

 TS_GT(a, b) True if (a > b) in modulo 2^32. False, otherwise.
 TS_GE(a, b) True if (a >= b) in modulo 2^32. False, otherwise.
 TS_LT(a, b) True if (a < b) in modulo 2^32. False, otherwise.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 43]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS_LE(a, b) True if (a <= b) in modulo 2^32. False, otherwise.

 To compare times:

 TIME_GE(a, b) True if a is no earlier than b. False, otherwise.
 TIME_LT(a, b) True if a is earlier than b. False, otherwise.

 To check octets:

 IsSACKed(seq) True if the octet at sequence number "seq" has
 been ACKed or SACKed. False, otherwise.
 IsSACKed(range) True if part or all of the octets in "range" have
 been ACKed or SACKed. False, otherwise.

 IsInferredLost(seq) True if the octet at sequence number "seq"
 has been inferred lost. False, otherwise.
 IsInferredLost(range) True if part or all of the octets in "range"
 have been inferred lost. False, otherwise.

 The following function which returns a timestamp is defined.

 To calculate border timestamp:

 TS2_SLID_BTS(TgtTS, PrbTS) = (k * TgtTS + (1 - k) * PrbTS),
 where k = 1/2.

A.4 Inequalities

 The following inequalities are defined for testing received segments.

 - Inequality (1) --- for data, SYN and FIN segments:

 (RSEG.LEN > 0 &&
 SEQ_LT(Last.Ack.Sent - max(RCV.WND), RSEG.SEQ + RSEG.LEN) &&
 SEQ_LT(RSEG.SEQ, RCV.NXT + RCV.WND))

 - Inequality (2) --- for ACK segments:

 (RSEG.LEN == 0 &&
 SEQ_LE(Last.Ack.Sent - max(RCV.WND), RSEG.SEQ) &&
 SEQ_LT(RSEG.SEQ, RCV.NXT + RCV.WND))

 The following boolean function is defined for evaluating these
 inequalities with respect to a received segment.

 TS_ISLEG() True if (1) or (2) is satisfied. False, otherwise.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 44]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

A.5 Variables

 If a received segment does not satisfy inequality (1) nor (2),
 variables below MUST NOT be updated.

A.5.1 Variables for Base Mechanism

 The following variables are defined for the base mechanism.
 (See section 4)

 TS.Req (integer)
 - This variable represents a user's request:
 0 if neither TS1 nor TS2 is requested,
 1 if TS1 is requested, or
 2 if TS2 is requested.
 - The initial value is given by the user.

 TS.Mode (integer)
 - This variable represents the result of the mode negotiation:
 negative if negotiation has not been completed,
 0 if both TS1 and TS2 are disabled,
 1 if TS1 is enabled, or
 2 if TS2 is enabled.
 - The initial value is negative.

 TS.Recent (32bit-timestamp)
 - This variable holds the value to be echoed in SSEG.TSecr.
 The initial value is zero.
 - If TS1 is enabled, this variable holds the maximum
 RSEG.TSval value received on segments satisfying
 SEQ_LE(RSEG.SEQ, Last.ACK.sent).
 - If TS2 is enabled, this variable holds the minimum
 RSEG.TSval value on segments satisfying (RSEG.LEN > 0)
 received after a segment has last been sent.
 - It is similar as TS.Recent as defined in [RFC1323].

 TS.RecentIsOld (boolean)
 - This variable is true when TS.Mode == 2 and no segment is
 received after the last segment has been sent. Therefore,
 this variable indicates whether the value in TS.Recent has
 been echoed to a remote node when TS.Mode == 2.
 - Its value is valid only when TS.Mode is 2. Its value is
 undefined in other modes.

 Last.Ack.Sent (32bit-sequence-number)
 - This variable holds the last SSEG.ACK value sent.
 - It is the same as Last.Ack.Sent as defined in [RFC1323].

 TS.SndOff (32bit-timestamp)

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 45]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 - This variable holds an offset to convert an internal
 timestamp value to an external timestamp value.

 TS.SndAdj (32bit-timestamp)
 - This variable holds the difference between the return values
 of GetIntTS1() and GetIntTS2() when the first SYN was sent.
 - It adjusts TS.SndOff in the TCP three-way handshake phase
 when a TCP connection is established with TS2 by a local
 node.

A.5.2 Variables for PAWS

 The following variables are defined for PAWS. (See section 6)

 TS.RcvMin (32bit-timestamp)
 - This variable holds the maximum received RSEG.TSval value in
 both the TS option and the OTS option.

 TS.RcvMin_time (internal-time)
 - This variable holds the time when TS.RcvMin was last updated.

A.5.3 Variables for PASA

A.5.3.1 Variables for PASA-DF/TS2

 The following variables are defined for PASA-DF/TS2.
 (See section 7.1)

 TS.SndMin (32bit-timestamp)
 - This variable holds the maximum received RSEG.TSecr value in
 both the TS option and the OTS option.

 TS.SndMax (32bit-timestamp)
 - This variable holds the maximum SSEG.TSval value on sent
 segments satisfying (SSEG.LEN > 0).

 TS.SndMax_time (internal-time)
 - This variable holds the time when TS.SndMax was last updated.
 - This variable is referred to in order to determine whether
 TS.SndOff MUST be tweaked. If there is another, simpler way
 to determine it, this variable can be omitted.

 TS.PASADF_On (boolean)
 - This variable indicates whether the PASA-DF test can be
 performed.
 - The initial value is true.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 46]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

A.5.3.2 Variables for PASA-SR/TS2

 The following variables are defined for PASA-SR/TS2.
 (See section 7.2)

 TS.PASASR_On (boolean)
 - This variable indicates whether PASA-SR/TS2 should be
 performed.
 - The initial value is false. It is set to true when a SYN
 segment is received against an established TCP connection.

 TS.PASASR_time (internal-time)
 - This variable holds the time when the last SYN segment was
 received.
 - Its value is valid only when TS.PASASR_On is true.

A.5.4 Variables for DLI

A.5.4.1 Variables for DLI-SEG/TS2

 The following variables are defined for DLI-SEG/TS2. They are
 associated with each data segment. (See section 8.2.1)

 DS.SndTS (32bit-timestamp) for each data segment
 - This variable holds the SSEG.TSval value on the latest sent
 data segment.

 DS.SndRO (integer) for each data segment
 - This variable counts the number of received segments with the
 TS option satisfying TS_GT(RSEG.TSecr, DS.SndTS), which means
 the number of observed possible reorders.

 The following variables are associated with each data segment. They
 might have been implemented.

 DS.Start (32bit-sequence-number) for each data segment
 - This variable holds the lowest sequence number of the data
 segment.

 DS.End (32bit-sequence-number) for each data segment
 - This variable holds the highest sequence number in the data
 segment, plus one.

 Note: Since DLI-SEG/TS2 is very powerful, if it is implemented, other
 algorithms need not be implemented.

A.5.4.2 Variables for DLI-SACK/TS2

 The following variables are defined for DLI-SACK/TS2. They are

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 47]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 associated with each SACK hole. (See section 8.2.2)

 SH.SndTS (32bit-timestamp) for each SACK hole
 - This variable holds the SSEG.TSval value on the latest sent
 data segment containing data in this SACK hole.
 - When a SACK hole is allocated, it holds the RSEG.TSecr value.

 SH.SndRO (integer) for each SACK hole
 - This variable counts the number of received segments with the
 TS option satisfying TS_GT(RSEG.TSecr, SH.SndTS), which means
 the number of observed possible reorders.

 The following variables are associated with each SACK hole. They
 would have been implemented in typical SACK implementations.

 SH.Start (32bit-sequence-number) for each SACK hole
 - This variable holds the lowest sequence number in the SACK
 hole.

 SH.End (32bit-sequence-number) for each SACK hole
 - This variable holds the highest sequence number in the SACK
 hole, plus one.

A.5.4.3 Variables for DLI-UNA/TS2

 The following variables are defined for DLI-UNA/TS2.
 (See section 8.2.3)

 TS.UNA.SndTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the latest sent
 data segment containing data at SND.UNA.
 - Its value is valid only when SEQ_LT(SND.UNA, SND.MAX).

 TS.UNA.SndRO (integer)
 - This variable counts the number of received segments with the
 TS option satisfying TS_GT(RSEG.TSecr, TS.UNA.SndTS), which
 means the number of observed possible reorders. It is
 cleared when TS.UNA.SndTS is updated.
 - Its value is valid only when SEQ_LT(SND.UNA, SND.MAX).

A.5.4.4 Variables for DLI-NXT/TS2

 The following variables are defined for DLI-NXT/TS2.
 (See section 8.2.4)

 TS.NXT.SndTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the latest sent
 data segment containing data at SND.NXT-1.
 - Its value is valid only when data at SND.NXT-1 have not been

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 48]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 acknowledged nor SACKed.

 TS.NXT.SndRO (integer)
 - This variable counts the number of received segments with the
 TS option satisfying TS_GT(RSEG.TSecr, TS.NXT.SndTS), which
 means the number of observed possible reorders. It is
 cleared when TS.NXT.SndTS is updated.
 - Its value is valid only when data at SND.NXT-1 have not been
 acknowledged nor SACKed.

A.5.4.5 Variables for DLI-MAX/TS2

 The following variables are defined for DLI-MAX/TS2.
 (See section 8.2.5)

 TS.MAX.SndTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the latest sent
 data segment containing data at SND.MAX-1.
 - Its value is valid only when data at SND.MAX-1 have not been
 acknowledged nor SACKed.

 TS.MAX.SndRO (integer)
 - This variable counts the number of received segments with the
 TS option satisfying TS_GT(RSEG.TSecr, TS.MAX.SndTS), which
 means the number of observed possible reorders. It is
 cleared when TS.MAX.SndTS is updated.
 - Its value is valid only when data at SND.MAX-1 have not been
 acknowledged nor SACKed.

A.5.5 Variables for SLID

 The following variables are defined for SLID. (See section 9)

A.5.5.1 Variables for SLID-SEG/TS2

 The following variables are defined for SLID-SEG/TS2. They are
 associated with each data segment. (See section 9.2.1)

 DS.TgtTS (32bit-timestamp) for each data segment
 - This variable holds the SSEG.TSval value on the original or
 retransmitted decidedly-lost data segments.

 DS.PrbTS (32bit-timestamp) for each data segment
 - This variable holds the SSEG.TSval value on the first data
 segment that is sent since the data segment has been inferred
 lost.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 49]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

A.5.5.2 Variables for SLID-SACK/TS2

 The following variables are defined for SLID-SACK/TS2. They are
 associated with each SACK hole. (See section 9.2.2)

 SH.TgtTS (32bit-timestamp) for each SACK hole
 - This variable holds the RSEG.TSecr value on the segment that
 created the SACK hole.

 SH.PrbTS (32bit-timestamp) for each SACK hole
 - This variable holds the SSEG.TSval value on the first data
 segment that is sent since the data in the SACK hole has been
 inferred lost.

A.5.5.3 Variables for SLID-UNA/TS2

 The following variables are defined for SLID-UNA/TS2.
 (See section 9.2.3)

 TS.UNA.TgtTS (32bit-timestamp)
 - This variable holds the closest subsequent timestamp value to
 the SSEG.TSval value on original or retransmitted
 decidedly-lost data segments containing data at SND.UNA.

 TS.UNA.PrbTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the first data
 segment that is sent since the data at SND.UNA has been
 inferred lost.

A.5.5.4 Variables for SLID-NXT/TS2

 The following variables are defined for SLID-NXT/TS2.
 (See section 9.2.4)

 TS.NXT.TgtTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the original or
 retransmitted decidedly-lost data segments containing data at
 SND.NXT-1.

 TS.NXT.PrbTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the first data
 segment that is sent since the data at SND.NXT-1 has been
 inferred lost.

A.5.5.5 Variables for SLID-MAX/TS2

 The following variables are defined for SLID-MAX/TS2.
 (See section 9.2.5)

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 50]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS.MAX.TgtTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the original or
 retransmitted decidedly-lost data segments containing data at
 SND.MAX-1.

 TS.MAX.PrbTS (32bit-timestamp)
 - This variable holds the SSEG.TSval value on the first data
 segment that is sent since the data at SND.MAX-1 has been
 inferred lost.

A.6 Current Time

 The following pseudocode functions are defined for getting the
 current time or current timestamp.

 GetTime() --- Get Current Time (internal-time)
 - Get the current time in an internal time format.
 - The time returned by this function MUST NOT be wrapped in the
 lifetime of any TCP connections.

 GetIntTS1() --- Get Current Internal TS for TS1 (32bit-timestamp)
 - Get the current time in a 32-bit unsigned integer in the unit
 of the TS1 timestamp. Note that the actual SSEG.TSval value
 is calculated as GetIntTS1() + TS.SndOff.
 - The timestamp unit for TS1 is in the range of 1 sec to 1 ms.

 GetIntTS2() --- Get Current Internal TS for TS2 (32bit-timestamp)
 - Get the current time in a 32-bit unsigned integer in the unit
 of the TS2 timestamp. Note that the actual SSEG.TSval value
 is calculated as GetIntTS2() + TS.SndOff.
 - The timestamp unit for TS2 is fixed at 1 usec.

 GetRTO2() --- Get Current RTO value for TS2 (32bit-timestamp)
 - Get the current RTO value in a 32-bit unsigned integer in the
 unit of the TS2 timestamp so that it can be used in PAWS/TS2
 and PASA-DF/TS2.

A.7 Random Number Generator

 The following pseudocode function is defined for getting random
 numbers.

 RandomNumber(max)
 - It returns a random number between 0 and max.

A.8 Constants

 The following constants are defined.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 51]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS1_GRANULARITY (32bit-timestamp) for TS1
 - This constant represents the granularity of GetIntTS1() in
 the unit of the TS1 timestamp.

 TS2_GRANULARITY (32bit-timestamp) for TS2
 - This constant represents the granularity of GetIntTS2() in
 the unit of the TS2 timestamp.

 TS1_PAWS_MARGIN (32bit-timestamp) for PAWS/TS1
 - When PAWS/TS1 is enabled, the minimum acceptable RSEG.TSval
 is calculated as (TS.RcvMin - TS1_PAWS_MARGIN).
 - The default value is 1.

 TS1_PAWS_IDLE (internal-time) for PAWS/TS1
 - The value of TS.RcvMin is valid for this amount of time if
 TS1 is enabled.
 - The default value is 24 days.

 TS2_PAWS_IDLE (internal-time) for PAWS/TS2
 - The value of TS.RcvMin is valid for this amount of time if
 TS2 is enabled.
 - The default value is 20 minutes. (This value should be
 longer than the longest timeout.)

 TS2_PAWS_DEV (32bit-timestamp) for PAWS/TS2
 - This constant represents the acceptable deviation of received
 RSEG.TSval.
 - The default value is 1 minute.

 TS2_PASADF_RNDMAX_REUSE (32bit-timestamp) for PASA-DF/TS2
 - When a TCP control block is reused by a new TCP connection,
 TS.SndOff is increased by a random number in the range from 0
 to this value.
 - The default value is 2^29 - 1 usec (about 9 minutes).

 TS2_PASADF_RNDMAX_IDLE (32bit-timestamp) for PASA-DF/TS2
 - After an idle of TS2_PASADF_MAXADV, TS.SndOff is increased by
 TS2_PASADF_MAXADV plus a random number in the range from 0 to
 this value.
 - The default value is 2^26 - 1 usec (about 67 seconds).

 TS2_PASADF_MAXADV (internal-time) for PASA-DF/TS2
 - This constant represents the maximum increase in SSEG.TSval.
 - The default value is 64 seconds. (This value SHOULD be
 greater than the maximum RTO value.)

 TS2_PASASR_WIN (integer) for PASA-SR/TS2
 - This constant represents the window size of the ACK segments
 sent in reply to SYN segments.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 52]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 - The default value is the maximum default SMSS value on the
 node. The value MAY be RMSS on the TCP connection (In this
 case, it is not constant, though).

 TS2_PASASR_TIME (internal-time) for PASA-SR/TS2
 - This constant represents the time in which received RST
 segments should be specially handled.
 - The default value is 10 seconds.

 TS2_DLI_THRESH (integer) for DLI/TS2
 - If the number of observed possible reorders from the point of
 the view of a target octet is greater than or equal to this
 value, the target segment is inferred lost.
 - The default value is 3 (The same value as the so-called
 duplicate acknowledgement threshold specified in [RFC2581]).
 - It might be implemented as an adaptive variable in the
 future.

A.9 Attributes

A.9.1 Attributes of Received Segments

 The following flags represent attributes of the received segment.

 isSYN True only if it is a SYN segment.
 isSYNACK True only if it is a SYN+ACK segment.
 isRST True only if it is a RST segment.
 isFirstSYN True only if it is the first SYN segment.
 isFirstSYNACK True only if it is the first SYN+ACK segment.
 withTS True only if it carries the TS option.
 withOTS True only if it carries the OTS option.
 withOTS_OK True only if it carries the OTS_OK option.

A.9.2 Attributes of TCP Connection

 The following variable indicates an attribute of TCP connection.

 TCP.State The current TCP State (See section 3.2 of [RFC793])

A.10 Procedures

A.10.1 Initialization

 When a TCP Control Block is created or reused, the procedure below is
 followed to initialize the variables.

 /* Step 1: Base(TS1&TS2) */
 TS.Req = 0, 1 or 2; /* Requested by user */
 TS.Mode = -1; /* Not negotiated yet */

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793#section-3.2

Demizu Expires September 2006 [Page 53]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS.SndAdj = 0;
 if (<TCP Control Block is reused>) {
 if (TS.Req == 2) {
 /*
 * To avoid reusing the same range of SSEG.TSval
 */
 TS.SndOff += (GetIntTS2() - GetIntTS1());
 } else {
 /* No need to change TS.SndOff */
 }
 } else {
 TS.SndOff = 0;
 }

 if (TS.Req == 2) {
 /* Step 2-1: PASA-DF/TS2 */
 TS.PASADF_On = true;
 if (<TCP Control Block is reused>) {
 TS.SndOff +=
 RandomNumber(TS2_PASADF_RNDMAX_REUSE);
 } else {
 /* Randomize the initial timestamp */
 TS.SndOff = RandomNumber(2^32);
 }
 /* Step 2-2: PASA-SR/TS2 */
 TS.PASASR_On = false;
 }

 When a SACK hole is allocated, the procedure below is followed to
 initialize the variables.

 /* Step 1: DLI-SACK/TS2 */
 if (TS.Mode == 2) {
 SH.SndTS = RSEG.TSecr;
 SH.SndRO = 0;
 }

 /* Step 2: SLID-SACK/TS2 */
 if (TS.Mode == 2) {
 SH.TgtTS = RSEG.TSecr;
 SH.PrbTS = RSEG.TSecr;
 }

A.10.2 Input Processing

A.10.2.1 Input Processing in LISTEN and SYN-SENT States

 When a SYN segment is received in the LISTEN state, or a SYN or

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 SYN+ACK segment is received in the SYN-SENT state, the procedure

Demizu Expires September 2006 [Page 54]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 below is followed.

 /* Step 1: Base(TS1&TS2) */
 TS.Mode = (!withTS ? 0 : !withOTS_OK ? 1 : 2);
 if (TS.Mode > TS.Req) {
 TS.Mode = TS.Req;
 }
 if (TS.Mode > 0) {
 TS.Recent = RSEG.TSval;
 if (TS.Mode == 2) {
 TS.RecentIsOld = false;
 if (TCP.State == "SYN-SENT") {
 TS.SndOff += TS.SndAdj;
 }
 }
 }

 /* Step 2: RTTM(TS1&TS2) */
 if (TCP.State == "SYN-SENT" && TS.Mode > 0) {
 if (TS.Mode == 1 && withTS && RSEG.TSecr != 0) {
 Measured_RTT = ((GetIntTS1() + TS.SndOff)
 - RSEG.TSecr + TS1_GRANULARITY);
 } else if (TS.Mode == 2 && withTS) {
 Measured_RTT = ((GetIntTS2() + TS.SndOff)
 - RSEG.TSecr + TS2_GRANULARITY);
 }
 }

 /* Step 3: PAWS(TS1&TS2) */
 if (TS.Mode > 0) {
 TS.RcvMin = RSEG.TSval;
 TS.RcvMin_time = GetTime();
 }

A.10.2.2 Input Processing in Other States

 When a segment is received in the SYN-RECEIVED state, the ESTABLISHED
 state, or a later state, the procedure below is followed. Note that
 TS.Mode is determined when the first SYN or SYN+ACK segment is
 received, as described in appendix A.10.2.1.

 /*
 * Step 1: Check received segment.
 */
 if (TS.Mode == 1) {
 /* Step 1-1-1: PAWS/TS1 */
 idle_time = GetTime() - TS.RcvMin_time;
 if (!isSYN && && !isRST &&

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 TIME_LT(idle_time, TS1_PAWS_IDLE) &&

Demizu Expires September 2006 [Page 55]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS_LT(RSEG.TSval, TS.RcvMin - TS1_PAWS_MARGIN)) {
 /* This segment MUST be dropped. */
 /* An ACK SHOULD be sent in reply. */
 }
 } else if (TS.Mode == 2) {
 /* Step 1-2-1: Base(TS2) */
 if ((!isSYN && !isRST && (!withTS && !withOTS)) ||
 (withTS && withOTS)) {
 /* This segment MUST be dropped. */
 /* An ACK SHOULD be sent in reply. */
 }
 /* Step 1-2-2: PAWS/TS2 */
 idle_time = GetTime() - TS.RcvMin_time;
 if (!isSYN && (!isRST || withOTS) &&
 TIME_LT(idle_time, TS2_PAWS_IDLE)) {
 if (TS_LT(RSEG.TSval, TS.RcvMin - GetRTO2())) {
 /* This segment MUST be dropped. */
 /* An ACK SHOULD be sent in reply. */
 }
 mean_ts = (TS.RcvMin + time2ts(idle_time));
 if (TS_GT(RSEG.TSval, mean_ts + TS2_PAWS_DEV)) {
 /*
 * This segment MAY be dropped.
 * If PASA-DF/TS2 is enabled,
 * it SHOULD be dropped.
 * If it is dropped,
 * an ACK SHOULD be sent in reply.
 */
 }
 }
 /* Step 1-2-3-1: PASA-DF/TS2 */
 if (!isSYN && (!isRST || withOTS) && TS.PASADF_On) {
 if (TS_LT(RSEG.TSecr, TS.SndMin - GetRTO2()) ||
 TS_GT(RSEG.TSecr, TS.SndMax)) {
 /* This segment MUST be dropped. */
 /* An ACK SHOULD be sent in reply. */
 }
 }
 /* Step 1-2-3-2: PASA-SR/TS2 */
 if (isSYN) {
 TS.PASASR_On = true;
 TS.PASASR_time = GetTime();
 /*
 * This segment MUST be dropped.
 * An ACK with win=TS2_PASASR_WIN
 * without TS nor OTS SHOULD be sent in reply.
 */
 }

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 if (isRST && !withOTS && TS.PASASR_On) {

Demizu Expires September 2006 [Page 56]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 if (TIME_GE(GetTime() - TS.PASASR_time,
 TS2_PASASR_TIME)) {
 TS.PASASR_On = false;
 }
 if (TS.PASASR_On &&
 !(SEQ_LE(RCV.NXT, RSEG.SEQ) &&
 SEQ_LT(RSEG.SEQ,
 RCV.NXT + TS2_PASASR_WIN))) {
 /* This segment MUST be dropped. */
 /* ACK MUST NOT be sent. */
 }
 }
 }

 /*
 * Step 2: Check acceptability by [RFC793].
 */

 /*
 * Step 3: Process received segment.
 *
 * Note: (RSEG.LEN > 0 && TS_ISLEG()) is equal to inequality (1)
 */
 if (TS.Mode == 1 && TS_ISLEG()) {
 /* Step 3-1-1: Base(TS1) */
 if (RSEG.LEN > 0 && SEQ_LE(RSEG.SEQ, Last.ACK.sent) &&
 TS_LT(TS.Recent, RSEG.TSval)) {
 TS.Recent = RSEG.TSval;
 }
 /* Step 3-1-2: RTTM/TS1 */
 if (withTS && RSEG.TSecr != 0) {
 Measured_RTT = ((GetIntTS1() + TS.SndOff)
 - RSEG.TSecr + TS1_GRANULARITY);
 }
 /* Step 3-1-3: PAWS/TS1 */
 if (TIME_GE(GetTime() - TS.RcvMin_time, TS1_PAWS_IDLE)||
 TS_LT(TS.RcvMin, RSEG.TSval)) {
 TS.RcvMin = RSEG.TSval;
 TS.RcvMin_time = GetTime();
 }
 } else if (TS.Mode == 2 && TS_ISLEG()) {
 /* Step 3-2-1: Base(TS2) */
 if (RSEG.LEN > 0 &&
 (TS.RecentIsOld || TS_GT(TS.Recent, RSEG.TSval))) {
 TS.Recent = RSEG.TSval;
 TS.RecentIsOld = false;
 }
 /* Step 3-2-2: RTTM/TS2 */

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793

 if (withTS) {

Demizu Expires September 2006 [Page 57]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 Measured_RTT = ((GetIntTS2() + TS.SndOff)
 - RSEG.TSecr + TS2_GRANULARITY);
 }
 /* Step 3-2-3: PAWS/TS2 */
 if (TIME_GE(GetTime() - TS.RcvMin_time, TS2_PAWS_IDLE)||
 TS_LT(TS.RcvMin, RSEG.TSval)) {
 TS.RcvMin = RSEG.TSval;
 TS.RcvMin_time = GetTime();
 }
 /* Step 3-2-4-1: PASA-DF/TS2 */
 if (TS.PASADF_On) {
 if (TS_LT(TS.SndMin, RSEG.TSecr)) {
 TS.SndMin = RSEG.TSecr;
 }
 } else {
 if (TS_GE(TS.SndMax, RSEG.TSecr)) {
 /* Restart the PASA-DF test. */
 TS.SndMin = RSEG.TSecr;
 TS.PASADF_On = true;
 }
 }
 /* Step 3-2-4-2: PASA-SR/TS2 */
 if (TS.PASASR_On && (!isRST || withOTS)) {
 TS.PASASR_On = false;
 }
 /* Step 3-2-5-1: DLI-SEG/TS2 */
 foreach data segment {
 if (withTS && TS_GT(RSEG.TSecr, DS.SndTS) &&
 ++DS.SndRO >= TS2_DLI_THRESH) {
 /*
 * This data segment is inferred lost.
 */
 }
 }
 /* Step 3-2-5-2: DLI-SACK/TS2 */
 foreach SACK hole {
 if (withTS && TS_GT(RSEG.TSecr, SH.SndTS) &&
 ++SH.SndRO >= TS2_DLI_THRESH) {
 /*
 * Whole data in this SACK hole
 * is inferred lost.
 */
 }
 /* To help DLI-UNA/TS2 */
 if (SEQ_LE(SH.Start, new SND.UNA) &&
 SEQ_LT(new SND.UNA, SH.End)) {
 /* New SND.UNA is in this SACK hole. */
 TS.UNA.SndTS = SH.SndTS;

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 TS.UNA.SndRO = SH.SndRO;

Demizu Expires September 2006 [Page 58]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 }
 }
 /* Step 3-2-5-3: DLI-UNA/TS2 */
 if (SEQ_LT(old SND.UNA, SND.MAX)) {
 if (SEQ_LE(RSEG.ACK, old SND.UNA)) {
 if (withTS &&
 TS_GT(RSEG.TSecr, TS.UNA.SndTS) &&
 ++TS.UNA.SndRO >= TS2_DLI_THRESH) {
 /*
 * Data at SND.UNA
 * is inferred lost.
 */
 }
 } else {
 TS.UNA.SndTS = GetIntTS2() + TS.SndOff;
 TS.UNA.SndRO = 0;
 }
 }
 /* Step 3-2-5-4: DLI-NXT/TS2 */
 if (!IsSACKed(SND.NXT-1)) {
 if (withTS && TS_GT(RSEG.TSecr, TS.NXT.SndTS) &&
 ++TS.NXT.SndRO >= TS2_DLI_THRESH) {
 if (SEQ_LT(new SND.FACK, SND.NXT)) {
 /*
 * Data between SND.FACK and
 * SND.NXT is inferred lost.
 */
 } else {
 /*
 * Data at SND.NXT-1
 * is inferred lost.
 */
 }
 }
 }
 /* Step 3-2-5-5: DLI-MAX/TS2 */
 if (!IsSACKed(SND.MAX-1)) {
 if (withTS && TS_GT(RSEG.TSecr, TS.MAX.SndTS) &&
 ++TS.MAX.SndRO >= TS2_DLI_THRESH) {
 if (SEQ_LT(SND.NXT, new SND.FACK)) {
 /*
 * Data between SND.FACK and
 * SND.MAX is inferred lost.
 */
 } else {
 /*
 * Data at SND.MAX-1
 * is inferred lost.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 */

Demizu Expires September 2006 [Page 59]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 }
 }
 }
 /* Step 3-2-6-1: SLID-SEG/TS2 */
 foreach data segment {
 if (TS_LT(DS.TgtTS, DS.PrbTS)) {
 b_ts = TS2_SLID_BTS(DS.TgtTS, DS.PrbTS);
 if (TS_GT(RSEG.TSecr, b_ts)) {
 /*
 * The loss inference is
 * GENUINE.
 */
 DS.TgtTS = DS.PrbTS;
 } else if (IsSACKed(DS)) {
 /*
 * The loss inference is
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 DS.TgtTS = DS.PrbTS;
 }
 }
 }
 /* Step 3-2-6-2: SLID-SACK/TS2 */
 foreach SACK hole {
 if (TS_LT(SH.TgtTS, SH.PrbTS)) {
 b_ts = TS2_SLID_BTS(SH.TgtTS, SH.PrbTS);
 if (TS_GT(RSEG.TSecr, b_ts)) {
 /*
 * The loss inference is
 * GENUINE.
 */
 SH.TgtTS = SH.PrbTS;
 } else if (IsSACKed(SH)) {
 /*
 * The loss inference is
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 SH.TgtTS = SH.PrbTS;
 }
 }
 /* To help SLID-UNA/TS2 */
 if (SEQ_LE(SH.Start, new SND.UNA) &&
 SEQ_LT(new SND.UNA, SH.End)) {
 /* New SND.UNA is in this SACK hole. */
 TS.UNA.TgtTS = SH.TgtTS;
 TS.UNA.PrbTS = SH.PrbTS;

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 }

Demizu Expires September 2006 [Page 60]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 }
 /* Step 3-2-6-3: SLID-UNA/TS2 */
 if (TS_LT(TS.UNA.TgtTS, TS.UNA.PrbTS)) {
 b_ts = TS2_SLID_BTS(TS.UNA.TgtTS, TS.UNA.PrbTS);
 if (TS_GT(RSEG.TSecr, b_ts)) {
 /*
 * The loss inference is GENUINE.
 */
 TS.UNA.TgtTS = TS.UNA.PrbTS;
 } else if (SEQ_LT(old SND.UNA, new SND.UNA)) {
 /*
 * The loss inference is SPURIOUS.
 * Execute a response algorithm
 * if necessary.
 */
 if (TS_GT(RSEG.TSecr, TS.UNA.PrbTS)) {
 TS.UNA.PrbTS = RSEG.TSecr;
 }
 TS.UNA.TgtTS = TS.UNA.PrbTS;
 }
 } else {
 if (SEQ_LT(old SND.UNA, new SND.UNA)) {
 if (TS_GT(RSEG.TSecr, TS.UNA.PrbTS)) {
 TS.UNA.PrbTS = RSEG.TSecr;
 }
 TS.UNA.TgtTS = TS.UNA.PrbTS;
 }
 }
 /* Step 3-2-6-4: SLID-NXT/TS2 */
 if (TS_LT(TS.NXT.TgtTS, TS.NXT.PrbTS)) {
 b_ts = TS2_SLID_BTS(TS.NXT.TgtTS, TS.NXT.PrbTS);
 if (TS_GT(RSEG.TSecr, b_ts)) {
 /*
 * The loss inference is GENUINE.
 */
 TS.NXT.TgtTS = TS.NXT.PrbTS;
 } else if (IsSACKed(SND.NXT-1)) {
 /*
 * The loss inference is SPURIOUS.
 * Execute a response algorithm
 * if necessary.
 */
 TS.NXT.TgtTS = TS.NXT.PrbTS;
 }
 }
 /* Step 3-2-6-5: SLID-MAX/TS2 */
 if (TS_LT(TS.MAX.TgtTS, TS.MAX.PrbTS)) {
 b_ts = TS2_SLID_BTS(TS.MAX.TgtTS, TS.MAX.PrbTS);

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 if (TS_GT(RSEG.TSecr, b_ts)) {

Demizu Expires September 2006 [Page 61]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 /*
 * The loss inference is GENUINE.
 */
 TS.MAX.TgtTS = TS.MAX.PrbTS;
 } else if (IsSACKed(SND.MAX-1)) {
 /*
 * The loss inference is SPURIOUS.
 * Execute a response algorithm
 * if necessary.
 */
 TS.MAX.TgtTS = TS.MAX.PrbTS;
 }
 }
 }

A.10.3 Output Processing

 When a RST segment is sent in reply to a received segment because of
 [RFC793], the following processing is utilized.

 - If the received segment carries the TS option or the OTS option,
 the RST segment MUST carry the OTS option with
 <SSEG.TSval=RSEG.TSecr><SSEG.TSecr=RSEG.TSval>. Otherwise, the
 RST segment SHOULD NOT carry the TS option nor the OTS option.

 When an ACK segment is sent in reply to a received SYN or SYN+ACK
 segment because of [RFC793], the following procedure is performed:

 /* Step 1: PASA-SR/TS2 */
 if (TS.Mode == 2) {
 TS.PASASR_On = true;
 TS.PASASR_time = GetTime();
 /*
 * This segment MUST be dropped.
 * An ACK with win=TS2_PASASR_WIN
 * without TS nor OTS SHOULD be sent in reply.
 */
 }

 In other cases, when a segment is sent, the procedure below is
 followed:

 /* Step 1: PASA-DF/TS2 */
 /* To avoid advancing SSEG.TSval too much after an idle. */
 if (TS.Mode == 2) {
 over_time = ((GetTime() - TS.SndMax_time)
 - TS2_PASADF_MAXADV);
 if (over_time > 0) {

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

 TS.SndOff -= time2ts(over_time);

Demizu Expires September 2006 [Page 62]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TS.SndOff +=
 RandomNumber(TS2_PASADF_RNDMAX_IDLE);
 TS.SndMax_time = GetTime();
 }
 }

 /* Step 2: Base(TS1&TS2) */
 if (isSYN ? (TS.Req > 0) : (TS.Mode > 0)) {
 if (isSYN && TS.Req == 2) {
 /* Put the OTS_OK option. */
 }
 if (TS.Mode == 2) {
 if (isRST || TS.RecentIsOld) {
 SSEG.TSkind = OTS;
 } else {
 SSEG.TSkind = TS;
 TS.RecentIsOld = true;
 }
 SSEG.TSval = GetIntTS2() + TS.SndOff;
 SSEG.TSecr = TS.Recent;
 } else {
 SSEG.TSkind = TS;
 SSEG.TSval = GetIntTS1() + TS.SndOff;
 SSEG.TSecr = TS.Recent;
 }
 }
 if (isFirstSYN && TS.Req == 2 && TS.Mode < 0) {
 TS.SndAdj = GetIntTS1() - GetIntTS2();
 }
 LAST.Ack.Sent = SSEG.ACK;

 /* Step 3: PASA-DF/TS2 */
 if ((isSYN ? (TS.Req == 2) : (TS.Mode == 2)) && SSEG.LEN > 0) {
 TS.SndMax = SSEG.TSval;
 TS.SndMax_time = GetTime();
 if (TS_GT(TS.SndMin, TS.SndMax)) {
 /* Stop the PASA-DF test */
 TS.PASADF_On = false;
 }
 }
 if ((isFirstSYN || isFirstSYNACK) && TS.Req == 2) {
 TS.SndMin = SSEG.TSval;
 }

 /* Step 4-1: DLI-SEG/TS2 */
 if (TS.Mode == 2 && SSEG.LEN > 0) {
 /* A data segment is sent. */
 DS.SndTS = SSEG.TSval;

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 DS.SndRO = 0;

Demizu Expires September 2006 [Page 63]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 }

 /* Step 4-2: DLI-SACK/TS2 */
 if (TS.Mode == 2 && SSEG.LEN > 0) {
 /* Data in a SACK hole is retransmitted. */
 if (SEQ_LT(SSEG.SEQ, SH.End) &&
 SEQ_LT(SH.Start, SSEG.SEQ + SSEG.LEN)) {
 SH.SndTS = SSEG.TSval;
 SH.SndRO = 0;
 }
 }

 /* Step 4-3: DLI-UNA/TS2 */
 if ((isSYN ? (TS.Req == 2) : (TS.Mode == 2)) && SSEG.LEN > 0) {
 /* Data at SND.UNA is sent. */
 if (SEQ_LE(SSEG.SEQ, SND.UNA) &&
 SEQ_LT(SND.UNA, SSEG.SEQ + SSEG.LEN)) {
 TS.UNA.SndTS = SSEG.TSval;
 TS.UNA.SndRO = 0;
 }
 }

 /* Step 4-4: DLI-NXT/TS2 */
 if ((isSYN ? (TS.Req == 2) : (TS.Mode == 2)) && SSEG.LEN > 0) {
 /* Data at SND.NXT or between SND.FACK and SND.NXT */
 if ((SSEQ.SEQ == old SND.NXT && SND.WND > 0) ||
 (SEQ_LT(SND.FACK, old SND.NXT) &&
 SEQ_LT(SSEG.SEQ, old SND.NXT) &&
 SEQ_LT(SND.FACK, SSEG.SEQ + SSEG.LEN))) {
 TS.NXT.SndTS = SSEG.TSval;
 TS.NXT.SndRO = 0;
 }
 }

 /* Step 4-5: DLI-MAX/TS2 */
 if ((isSYN ? (TS.Req == 2) : (TS.Mode == 2)) && SSEG.LEN > 0) {
 /* Data at SND.MAX or between SND.FACK and SND.MAX */
 if ((SSEQ.SEQ == old SND.MAX && SND.WND > 0) ||
 (SEQ_LT(old SND.NXT, SND.FACK) &&
 SEQ_LT(SSEG.SEQ, old SND.MAX) &&
 SEQ_LT(SND.FACK, SSEG.SEQ + SSEG.LEN))) {
 TS.MAX.SndTS = SSEG.TSval;
 TS.MAX.SndRO = 0;
 }
 }

 /* Step 5-1: SLID-SEG/TS2 */
 if (TS.Mode == 2) {

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 foreach data segment {

Demizu Expires September 2006 [Page 64]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 if (IsInferredLost(DS)) {
 if (TS_GT(DS.TgtTS, SSEG.TSval)) {
 /*
 * The loss inference is assumed
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 } else {
 /* An probe segment is sent. */
 DS.PrbTS = SSEG.TSval;
 }
 } else {
 /* Assert(DS.TgtTS == DS.PrbTS) */
 if (SEQ_LT(SSEG.SEQ, DS.End) &&
 SEQ_LT(DS.Start,
 SSEG.SEQ + SSEG.LEN)){
 /*
 * The sent segment is original
 * or decidedly lost.
 */
 DS.TgtTS = SSEG.TSval;
 DS.PrbTS = SSEG.TSval;
 }
 }
 }
 }

 /* Step 5-2: SLID-SACK/TS2 */
 if (TS.Mode == 2) {
 foreach SACK hole {
 if (IsInferredLost(SH)) {
 if (TS_GT(SH.TgtTS, SSEG.TSval)) {
 /*
 * The loss inference is assumed
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 } else {
 /* An probe segment is sent. */
 SH.PrbTS = SSEG.TSval;
 }
 } else {
 /* Assert(SH.TgtTS == SH.PrbTS) */
 if (SEQ_LT(SSEG.SEQ, SH.End) &&
 SEQ_LT(SH.Start,
 SSEG.SEQ + SSEG.LEN)){
 /*
 * The sent segment is original

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 * or decidedly lost.

Demizu Expires September 2006 [Page 65]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 */
 SH.TgtTS = SSEG.TSval;
 SH.PrbTS = SSEG.TSval;
 }
 }
 }
 }

 /* Step 5-3: SLID-UNA/TS2 */
 if ((isFirstSYN || isFirstSYNACK) && TS.Req == 2) {
 TS.UNA.TgtTS = SSEG.TSval;
 TS.UNA.PrbTS = SSEG.TSval;
 }
 if (TS.Mode == 2) {
 if (IsInferredLost(SND.UNA)) {
 if (TS_GT(TS.UNA.TgtTS, SSEG.TSval)) {
 /*
 * The loss inference is assumed
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 } else {
 /* An probe segment is sent. */
 TS.UNA.PrbTS = SSEG.TSval;
 }
 } else {
 /* Assert(TS.UNA.TgtTS == TS.UNA.PrbTS) */
 if (SEQ_LE(SSEG.SEQ, SND.UNA) &&
 SEQ_LT(SND.UNA,
 SSEG.SEQ + SSEG.LEN)) {
 /*
 * The sent segment is original
 * or decidedly lost.
 */
 TS.UNA.TgtTS = SSEG.TSval;
 TS.UNA.PrbTS = SSEG.TSval;
 }
 }
 }

 /* Step 5-4: SLID-NXT/TS2 */
 if ((isFirstSYN || isFirstSYNACK) && TS.Req == 2) {
 /* Initialize TS.NXT.TgtTS and TS.NXT.PrbTS */
 TS.NXT.TgtTS = SSEG.TSval;
 TS.NXT.PrbTS = SSEG.TSval;
 }
 if (TS.Mode == 2) {
 if (IsInferredLost(new SND.NXT-1)) {

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 if (TS_GT(TS.NXT.TgtTS, SSEG.TSval)) {

Demizu Expires September 2006 [Page 66]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 /*
 * The loss inference is assumed
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 } else {
 /* An probe segment is sent. */
 TS.NXT.PrbTS = SSEG.TSval;
 }
 } else {
 /* Assert(TS.NXT.TgtTS == TS.NXT.PrbTS) */
 if (SEQ_LE(SEG.SEQ, new SND.NXT-1) &&
 SEQ_LT(new SND.NXT-1,
 SSEQ.SEQ + SSEG.LEN)) {
 /*
 * The sent segment is original
 * or decidedly lost.
 */
 TS.NXT.TgtTS = SSEG.TSval;
 TS.NXT.PrbTS = SSEG.TSval;
 }
 }
 }

 /* Step 5-5: SLID-MAX/TS2 */
 if ((isFirstSYN || isFirstSYNACK) && TS.Req == 2) {
 /* Initialize TS.MAX.TgtTS and TS.MAX.PrbTS */
 TS.MAX.TgtTS = SSEG.TSval;
 TS.MAX.PrbTS = SSEG.TSval;
 }
 if (TS.Mode == 2) {
 if (IsInferredLost(new SND.MAX-1)) {
 if (TS_GT(TS.MAX.TgtTS, SSEG.TSval)) {
 /*
 * The loss inference is assumed
 * SPURIOUS. Execute a response
 * algorithm if necessary.
 */
 } else {
 /* An probe segment is sent. */
 TS.MAX.PrbTS = SSEG.TSval;
 }
 } else {
 /* Assert(TS.MAX.TgtTS == TS.MAX.PrbTS) */
 if (SEQ_LE(SEG.SEQ, new SND.MAX-1) &&
 SEQ_LT(new SND.MAX-1,
 SSEQ.SEQ + SSEG.LEN)) {
 /*

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

 * The sent segment is original

Demizu Expires September 2006 [Page 67]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 * or decidedly lost.
 */
 TS.MAX.TgtTS = SSEG.TSval;
 TS.MAX.PrbTS = SSEG.TSval;
 }
 }
 }

A.11 Layouts of TCP Options

 When both the OTS_OK option and the TS option are sent on SYN or
 SYN+ACK segments, the following format is recommended.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Kind = <TBD> | Length = 2 | Kind = 8 | Length = 10 |
 +-+
 | TSval (TS Value) |
 +-+
 | TSecr (TS Echo Reply) |
 +-+

 Figure A-1: The OTS_OK option and the TS option

 When either the TS option or the OTS option is sent, the following
 format is recommended. Two NOPs may be replaced with another
 2-octet option.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | NOP | NOP | Kind = 8 | Length = 10 |
 +-+
 | TSval (TS Value) |
 +-+
 | TSecr (TS Echo Reply) |
 +-+

 Figure A-2: The TS option and NOPs

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 68]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix B: Granularity of Timestamps

 The granularity of a timestamp is a different concept from the unit
 of a timestamp. Timestamps are internally generated from an internal
 tick count or a real time clock. The unit of a timestamp means the
 time length of 1 in the timestamp, while the granularity of a
 timestamp means the interval time for updating a timestamp source so
 that the resulting timestamp is changed.

 Note: In many cases, the granularity of a timestamp would not be
 shorter than the unit of the timestamp. With TS1, since the
 timestamp unit can be chosen between 1 second and 1 ms, it would
 be simplest to make it the same as the granularity of a timestamp.
 In contrast, with TS2, since the timestamp unit is fixed at 1
 usec, the granularity will be much longer than the unit in most
 cases.

 If the granularity of timestamps is coarser than the mean time
 between each data transmission, multiple data segments may carry the
 same SSEG.TSval value, and DLI/TS2 and SLID/TS2 would be less
 effective. If the granularity of timestamp is not fine enough, the
 following idea might improve it.

 The first idea uses segment counter. It is associated with each TCP
 connection. It is increased by one when a segment is sent. Its
 maximum value is TS2_GRANULARITY - 1 to keep timestamps monotonically
 nondecreasing. It is cleared when timestamp source is changed, or
 TS.SndOff is changed. Whenever an internal timestamp is generated,
 it is added to the timestamp.

 The second idea uses a CPU's embedded cycle counter. Each time when
 an internal tick count is increased, or a real time clock is read,
 the value of CPU's embedded cycle counter is also recorded. Then,
 when an internal timestamp is generated, add the difference between
 the recorded cycle counter value and the current cycle counter value
 to the generated timestamp.

 In any case, since the timestamp unit for TS2 is fine (i.e., 1 usec)
 compared to today's possible RTTs, some lower bits of internal
 timestamps might be usable as nonce to obfuscate timestamps.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 69]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix C: Loss Inference With SACK and DLI/TS2

 This appendix discusses a loss inference procedure making use of SACK
 [RFC2018][RFC3517] and DLI/TS2.

 It does not discuss which data should be transmitted when more than
 one data segment can be sent or retransmitted. This topic is outside
 the scope of this appendix.

C.1 Highest Sequence Number of Retransmitted Data

 This appendix uses one variable: SND.RTX (32bit-sequence-number).
 RTX stands for retransmission. It holds the maximum sequence number
 of acknowledged or retransmitted data, plus one octet.

 The initial value of SND.RTX is SND.UNA. When an acceptable segment
 is received, if SND.UNA is advanced and (SND.RTX < new SND.UNA) is
 true, then the new SND.UNA is copied to SND.RTX. When a segment is
 sent, if (SSEG.SEQ < SND.MAX && SND.RTX < SSEG.SEQ + SSEG.LEN) is
 satisfied, then SSEG.SEQ + SSEG.LEN is copied to SND.RTX. Note that
 SND.RTX is not rewound upon a retransmission timeout.

 As a result, all retransmitted but unacknowledged data satisfies
 (SND.UNA <= data < SND.RTX), while all transmitted but unacknowledged
 data satisfies (SND.UNA <= data < SND.MAX). By the definition given
 in the terminology section, at least one octet in an "original data
 segment" satisfies (SND.RTX <= octet < SND.MAX), and all octets in a
 "retransmitted data segment" satisfy (SND.UNA <= octet < SND.RTX).

C.2 Loss Inference

 This subsection describes how losses are inferred with or without
 SACK and DLI/TS2.

 When DLI/TS2 is enabled, it infers losses of both original and
 retransmitted data segments in the range from SND.UNA to SND.MAX.
 Since DLI/TS2 counts the number of received segments with the TS
 option for inferring losses, it is not very robust against losses of
 segments sent by a remote node.

 When SACK is enabled, IsLost(), as specified in [RFC3517], infers
 losses of original data segments. In other words, it can infer
 losses of data satisfying (SND.RTX <= data < SND.MAX), but it cannot
 infer losses of data satisfying (SND.UNA <= data < SND.RTX).
 Nevertheless, it is more robust against losses of ACK segments than
 DLI/TS2, because multiple SACK blocks can be sent on each segment.
 Therefore, in spite of its limitations, IsLost() is helpful even when
 DLI/TS2 is enabled.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc3517

Demizu Expires September 2006 [Page 70]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 When DLI/TS2 is disabled, if SACK is disabled or (SND.UNA < SND.RTX)
 is true, duplicate ACK segments need to be counted to trigger a Fast
 Retransmit (i.e., to infer the loss of data at SND.UNA), as follows:

 - After a retransmission timeout, duplicate ACK segments SHOULD
 NOT be counted until the retransmitted data is acknowledged.

 The purpose is to avoid counting duplicate ACK segments sent in
 reply to data segments that were sent before the timeout. Such
 duplicate ACK segments are often observed when a retransmission
 timeout is triggered because of the loss of the data segment
 sent by a Fast Retransmit.

 - Duplicate ACK segments for data below SND.UNA SHOULD NOT be
 counted. That is, if SACK is enabled, ACK segments with D-SACK
 [RFC2883] below RSEG.ACK and ACK segments without SACK blocks
 SHOULD NOT be counted.

 - Duplicate ACK segments for data above SND.UNA SHOULD be counted.
 That is, if SACK is enabled, ACK segments with D-SACK above
 RSEG.ACK and ACK segments with SACK blocks but without D-SACK
 SHOULD be counted. If TS2 is enabled, however, segments without
 the TS option SHOULD NOT be counted for accuracy.

 - When SND.UNA is advanced in the loss recovery phase, regardless
 of the number of received duplicate ACK segments, data starting
 at the new SND.UNA SHOULD be inferred lost as with NewReno
 [RFC3782]. This is especially helpful when SACK is enabled and
 (new SND.UNA < SND.RTX) is true.

C.3 SACK Scoreboard

 A data sender SHOULD maintain a SACK scoreboard carefully so that it
 can effectively recover losses and transmit new data.

 According to section 5.1 of [RFC2018], "When a retransmit timeout
 occurs the data sender MUST ignore prior SACK information in
 determining which data to retransmit". When TS2 is enabled, however,
 this appendix recommends that the SACK scoreboard not be discarded
 upon a retransmission timeout. Instead, it recommends that existing
 SACK blocks in the SACK scoreboard be updated by newly received SACK
 blocks if there are conflicts, as follows.

 - One variable is associated with each SACK block: SB.RcvTS
 (32bit-timestamp). It holds the RSEG.TSval value on the segment
 that last updated this SACK block.

 - When a received SACK block other than a D-SACK block satisfies
 (RSEG.TSval > SB.RcvTS), where RSEG.TSval represents the

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc2018#section-5.1

Demizu Expires September 2006 [Page 71]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 RSEG.TSval value on the segment that carried the received SACK
 block, the corresponding existing SACK block SHOULD be
 overwritten by the received SACK block in order to avoid
 possible conflicts. Otherwise, if (RSEG.TSval == SB.RcvTS) is
 true, the corresponding existing SACK block MAY be expanded by
 the received SACK block.

 - If RSEG.ACK points to the middle of an existing SACK block, the
 start sequence number of the existing SACK block is changed to
 new SND.UNA + 1 SMSS without updating SB.RcvTS. Then, the data
 at SND.UNA are inferred lost.

 In the Slow Start and Congestion Avoidance phase [RFC2581], when
 (SND.NXT < SND.MAX) is true (i.e., when SND.NXT has been rewound
 because of a retransmission timeout), SND.NXT SHOULD skip the SACKed
 data so as not to retransmit it. In addition, skipped SACKed data
 SHOULD NOT be calculated as part of the flight size.

 If ABC [RFC3465] is enabled, then when an ACK segment is received,
 the number of octets acknowledged by the ACK segment needs to be
 calculated. In this calculation, already SACKed data SHOULD be
 omitted. Since the SACK information may not be fully synchronized
 with the data receiver, the number of octets acknowledged by each ACK
 segment SHOULD NOT exceed some upper bound (e.g., 2 SMSS).

 Note: According to the fourth paragraph of section 2.3 in [RFC3465],
 TCP stacks need to determine whether a TCP connection is "during a
 slow start phase that follows a retransmission timeout". This
 appendix recommends that (SND.NXT < SND.MAX) be used to determine
 this.

C.4 SACK-LF (SACK Lowest First)

 A data receiver SHOULD inform its data sender of appropriate SACK
 information so that the sender can recover lost data effectively.

 A data receiver maintains a queue of SACK blocks to be sent in the
 TCP SACK option to the data sender. To comply with section 4 of
 [RFC2018], when a SACK block is updated, it is typically moved to the
 head of the queue. As a result, the most recently updated SACK
 blocks are informed to the data sender using the TCP SACK option.

 Suppose that some data segments are lost within an RTT. In this
 case, a data receiver typically receives the out-of-order data
 segments in ascending order. Therefore, SACK blocks sent in reply
 within the same RTT (or the first RTT) are typically sorted in
 descending order. In contrast, within the next RTT (or the second
 RTT), if the data receiver receives all the lost data, the same SACK
 blocks (which would be the highest SACK blocks) on the last ACK

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3465
https://datatracker.ietf.org/doc/html/rfc3465#section-2.3
https://datatracker.ietf.org/doc/html/rfc2018#section-4
https://datatracker.ietf.org/doc/html/rfc2018#section-4

Demizu Expires September 2006 [Page 72]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 segment within the first RTT, excluding cumulatively acknowledged
 SACK blocks, are sent in reply, while RSEG.ACK is gradually
 advancing. In general, by considering the possibility that some
 retransmitted data segments are lost, the most recently updated SACK
 blocks (which would be located far from SND.NXT) will be sent in
 reply within the second or later RTTs, while the data sender would
 want to confirm the SACK blocks just above SND.NXT.

 In the current standard TCP, whenever a retransmitted data segment is
 lost, a retransmission timeout is triggered in order to re-retransmit
 the lost data. According to section 5.1 of [RFC2018], "When a
 retransmit timeout occurs the data sender MUST ignore prior SACK
 information in determining which data to retransmit". Thus, for the
 same reason discussed in the previous paragraph, the data receiver
 keeps sending the same SACK blocks, which likely would be the highest
 SACK blocks. As a result, the data sender will retransmit all data
 between SND.UNA and the lowest reported SACK block. This
 retransmitted data will include data that was SACKed before the
 retransmission timeout. That is, bandwidth might be wasted if the
 data sender complies with section 5.1 of [RFC2018].

 To mitigate this problem, this subsection proposes SACK-LF, as
 follows:

 When RCV.NXT is advanced at a data receiver, a certain number of the
 lowest SACK blocks are moved to the head of the queue. The number of
 SACK blocks to be moved is chosen so that all SACK blocks are sent
 the same number of times, so as to make the SACK information robust
 against losses of ACK segments.

 This memo proposes that the number of SACK blocks to be moved to the
 head of the queue be the sum of the following two numbers plus one
 (i.e., num_removed + num_lowest + 1).

 - num_removed:

 The number of SACK blocks that were sent in the previous TCP
 SACK option and are removed by the received RSEG.ACK.

 - num_lowest:

 The number of SACK blocks that were sent in the previous TCP
 SACK option and are in the current lowest N SACK blocks, where N
 is the number of SACK blocks sent in the previous TCP SACK
 option.

 If a data sender discards the SACK scoreboard upon a retransmission
 timeout, SACK-LF that is performed at a data receiver will mitigate
 the number of unnecessary retransmissions. If D-SACK is not

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2018#section-5.1
https://datatracker.ietf.org/doc/html/rfc2018#section-5.1

Demizu Expires September 2006 [Page 73]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 supported by the data sender, SACK-LF will also mitigate the number
 of spurious Fast Retransmits. If the SACK information has not been
 fully synchronized with the data receiver, SACK-LF will suppress
 unnecessary retransmissions.

 In addition to SACK-LF, this subsection proposes the following:

 - If a data receiver discards part of an out-of-order consecutive
 data block that has been informed to the data sender by using
 the TCP SACK option, the shrunken SACK block SHOULD be moved to
 the head of the queue in order to inform of the change.

 - When a data receiver receives a data segment, if it discards
 part or all of the data, the SACK blocks on the segment sent in
 reply SHOULD NOT include the discarded part of the data. Note
 that section 8 of [RFC2018] says "MUST" instead of "SHOULD NOT".

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2018#section-8

Demizu Expires September 2006 [Page 74]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix D: Summary of TCP Timestamps Option in RFC1323

 The TCP Timestamps option [RFC1323] is currently deployed widely.
 There is also a variant of the TCP Timestamps option, which probably
 is more prevalent than the option described in [RFC1323]. The
 variant is called "rfc1323bis" [JBB03] (see also [Bra93] and [JBB97])
 in this appendix. For simplicity, the TCP Timestamps option is
 called "the TS option" here.

 This appendix describes the behaviors of the TCP Timestamps option
 specified in RFC1323 and rfc1323bis, by using C-like pseudocode.
 Some definitions are borrowed from the TS2 reference given in

appendix A.

D.1 Types

 The following types are borrowed from the TS2 reference: boolean,
 integer, 32bit-sequence-number, 32bit-timestamp, and internal-time.

D.2 Functions

 The following functions are borrowed from the TS2 reference:
 SEQ_LE(), SEQ_LT(), TS_LT(), TS_LE(), and TIME_LT().

D.3 Inequalities

 The following inequalities are defined.

 - Inequality (A) ... RFC1323

 (SEQ_LE(RSEG.SEQ, Last.ACK.sent) &&
 SEQ_LT(Last.ACK.sent, RSEG.SEQ + RSEG.LEN))

 - Inequality (B) ... rfc1323bis

 SEQ_LE(RSEG.SEQ, Last.ACK.sent)

 Note: (RSEG.TSval >= TS.Recent) is omitted in this inequality
 because it is part of the PAWS test.

 Only one of (A) or (B) SHOULD be implemented. A boolean function
 called TS_ISLEG() returns true if the selected inequality is
 satisfied. Otherwise, it returns false.

 Note: In addition to the inequalities given above, this memo
 recommends that (Last.Ack.Sent - max(RCV.WND) <= RSEG.SEQ) also be
 checked, in addition to (A) or (B).

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 75]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

D.4 Variables

 The following variables are defined in [RFC1323].

 TS.Recent (32bit-timestamp)
 - This variable records the maximum RSEG.TSval value on the
 received segments satisfying TS_ISLEG(). It is echoed in
 SSEG.TSecr.

 Last.Ack.Sent (32bit-sequence-number)
 - This variable holds the last SSEG.ACK value sent.

 The following variables are defined here to describe the behaviors.

 TS.Req (boolean)
 - This variable represents a user's request:
 True if the TCP Timestamps option is requested.
 False, otherwise.
 - The initial value is given by the user.

 TS.OK (boolean)
 - This variable is true if the TS option is enabled. The
 initial value is false. It is set to true if the TS option
 is exchanged on SYN and SYN+ACK segments in the TCP three-way
 handshake phase.

 TS.Recent_time (internal-time)
 - This variable holds the time when TS.Recent was last updated.

D.5 Current Time

 The following pseudocode functions are defined here for getting the
 current time or current timestamp.

 GetTime() --- Get Current Time (internal-time)
 - Get the current time in an internal time format.
 - The time returned by this function MUST NOT be wrapped in the
 lifetime of any TCP connections.

 GetTS() --- Get Current Timestamp (32bit-timestamp)
 - Get the current time in a 32bit unsigned integer so that it
 can be sent in the TS option.
 - The timestamp unit MUST be in the range of 1 sec to 1 ms.

D.6 Constants

 The following constants are defined here to describe the behaviors.

 TS_GRANULARITY (32bit-timestamp)

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 76]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 - This constant represents the granularity of GetTS() in the
 unit of the return value of GetTS().

 TS_PAWS_IDLE (internal-time) for PAWS
 - The value of TS.Recent is valid for TS_PAWS_IDLE if TS.OK is
 true.
 - The default value is 24 days.

D.7 Attributes of Received Segments

 The following flags are borrowed from the TS2 reference:
 isSYN, isRST, isFirstSYN, isFirstSYNACK, and withTS.

D.8 Procedures

D.8.1 Initialization

 When a TCP Control Block is created or reused, the procedure below is
 followed.

 TS.Req = true or false; /* Requested by user */
 TS.OK = false;

D.8.2 Input Processing

 When a segment is received, the procedure below is followed.

 if (isFirstSYN || isFirstSYNACK) {
 if (TS.Req && withTS) {
 TS.OK = true;
 TS.Recent = RSEG.TSval;
 TS.Recent_time = GetTime();
 }
 } else if (TS.OK) {
 /* (R1) PAWS */
 if (!isSYN && !isRST &&
 TIME_LT(GetTime() - TS.Recent_time, TS_PAWS_IDLE) &&
 TS_LT(RSEG.TSval, TS.Recent)) {
 /* This segment MUST be dropped. */
 /* An ACK with TS SHOULD be sent. */
 }
 /* (R2) If it is outside the window, reject it. */
 /* (R3) Update TS.Recent */
 if (TS_ISLEG() && TS_LE(TS.Recent, RSEG.TSval)) {
 TS.Recent = RSEG.TSVal;
 TS.Recent_time = GetTime();
 }
 /* RTTM: If it advances SND.UNA, do RTTM. */
 Measured_RTT = GetTS() - RSEG.TSecr + TS_GRANULARITY;

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 77]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 }

D.8.3 Output Processing

 When a segment is sent, the procedure below is followed.

 if (TS.OK) {
 /* Put the TCP Timestamps option */
 SSEG.TSval = GetTS();
 SSEG.TSecr = TS.Recent;
 }
 LAST.Ack.Sent = SSEG.ACK;

Demizu Expires September 2006 [Page 78]

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix E: Issues with TCP Timestamps Option in RFC1323

 This appendix discusses the issues with both the TCP Timestamps
 option in [RFC1323] and rfc1323bis [JBB03]. It also discusses how
 these issues are handled in TS1 and TS2.

E.1 RTTM

 This subsection discusses the issues of RTT measurements.

 Since the RTTMs in RFC1323, rfc1323bis, and TS1 take RTT measurements
 only when SND.UNA is advanced, they cannot take RTT measurements
 during the loss recovery phase, except when partial or full
 acknowledgement is received. In contrast, RTTM/TS2 can take RTT
 measurements whenever it receives the TS option, even when SND.UNA is
 not advanced.

 When a remote node is compliant with RFC1323, RTTM overestimates RTTs
 in the following scenario.

 Assume that all data segments sent within an RTT arrive at the
 remote node but all ACK segments sent in reply are lost. Upon a
 retransmission timeout, the lowest lost data is retransmitted, and
 an ACK segment sent in reply is received.

 In this case, the TSecr field on the received ACK segment has the
 TSval value on the last original data segment that arrived at the
 remote node. Therefore, RTTM at the local node measures the time
 from when the last original data segment was sent until when an
 ACK segment sent in reply to the retransmitted data segment is
 received. Thus, the measured RTT is much longer than the real RTT
 and nearly equal to the RTO value [Duk03a].

 In contrast, if the remote node complies with RTTM in rfc1323bis,
 RTTM/TS1, or RTTM/TS2, then the received ACK segment carries the
 TSval value on the retransmitted data segment. Therefore, RTTM at
 the local node takes a correct RTT measurement, because it
 measures the time from when the lowest lost data is retransmitted
 until when its ACK segment is received.

 When a remote node is compliant with RFC1323, rfc1323bis or TS1, RTTM
 overestimates RTTs in the following scenario.

 Assume that the local node sends a data segment but an ACK segment
 sent in reply is lost. Before the retransmission timeout at the
 local node, the remote node sends a data segment, which
 acknowledges the data sent by the local node.

 In this case, the TSecr field on the received data segment has the

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 79]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 TSval value on the data segment sent by the local node. Since
 SND.UNA at the local node is advanced by the received data
 segment, RTTM at the local node measures the time from when the
 data segment was sent by the local node until when the data
 segment is received. Thus, the measured RTT is longer than the
 real RTT [Duk03b].

 In contrast, RTTM/TS2 will not take an RTT measurement because the
 data segment sent by the remote node carries the OTS option.

E.2 PAWS and Reordering

 As described in appendix F, there is a possibility that a legitimate
 data segment could be discarded by PAWSs in RFC1323 and rfc1323bis
 when it is delayed because of reordering.

 In addition, there is a possibility that a legitimate ACK segment in
 a unidirectional data flow could be discarded by PAWS in rfc1323bis
 when it is delayed because of reordering [Mil98].

 In contrast, PAWS/TS1 is slightly more robust against reordering than
 PAWS in RFC1323 and rfc1323bis, because of TS1_PAWS_MARGIN. PAWS/TS2
 is robust against reordering, and legitimate segments are unlikely to
 be discarded even when they are delayed because of reordering.

 Note: Linux seems to comply with RFC1323, instead of rfc1323bis, and
 it appears to have implemented measures including the same idea as
 TS1_PAWS_MARGIN.

E.3 Spoofed Segment Detection

 [PD04] proposes to detect spoofed segments by making use of the TSecr
 field. To achieve this goal, when an ACK segment is sent, its TSval
 value is the same value as the TSval value on the last data segment.
 Unfortunately, this mechanism makes it impossible to apply PAWS for
 ACK segments. In addition, there could be other unknown problems.

 In contrast, PASA/TS2 detects spoofed segments without tweaking the
 TSval values. Thus, it does not have such problems.

E.4 Retransmitted Data Loss Inference

 It has been said that if the TSval values on out-of-order data
 segments were echoed by a data receiver, the data sender would be
 able to infer losses of retransmitted data segments. The TCP
 Timestamps options in RFC1323, rfc1323bis, and TS1 cannot infer such
 losses.

 In contrast, TS2 enables DLI/TS2 to infer losses of both

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 80]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 retransmitted data segments and original data segments.

E.5 Corner Case of Eifel

 According to section 3.3 of [RFC3522], if a remote node supports the
 TCP Timestamps option in RFC1323 and does not support D-SACK
 [RFC2883], then when all ACK segments within an RTT are lost, the
 Eifel Detection Algorithm [RFC3522] will misinterpret the consequent
 retransmission timeout as a spurious timeout.

 In contrast, if a remote node supports the TCP Timestamps option in
 rfc1323bis or TS1, there is no such problem.

E.6 Vulnerability

 If an implementation that complies with rfc1323bis overwrites
 TS.Recent with RSEG.TSval whenever it receives a segment satisfying
 (RSEG.TSval >= TS.Recent && RSEG.SEQ <= Last.ACK.sent), it has a
 vulnerability [CVE05][CERT05].

 In contrast, implementations complying with RFC1323, TS1, and TS2 do
 not have such a vulnerability when the window size is not very large.
 If TS2 is enabled, PASA/TS2 combined with PAWS/TS2 will detect
 spoofed segments even when the window size is very large.

E.7 Summary

 The table below summarizes the issues discussed in this appendix.

 +----------------------------+---------+------------+------+-----+
 | | RFC1323 | rfc1323bis | TS1 | TS2 |
 +----------------------------+---------+------------+------+-----+
 | RTTM: Dup-ACKs | NG | NG | NG | OK |
 | RTTM: Overestimation | NG | Fair | Fair | OK |
 | PAWS: Reordering | NG | NG | Fair | OK |
 | PASA: PAWS for ACKs | NG | NG | NG | OK |
 | DLI: Retransmitted Data | NG | NG | NG | OK |
 | Eifel: A Corner Case | NG | OK | OK | OK |
 | Vulnerability | Fair | NG | Fair | OK |
 +----------------------------+---------+------------+------+-----+

 Table E-1: Summary of Issues with TCP Timestamps Option

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc3522#section-3.3
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 81]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix F: Problem of PAWS in RFC1323 and Reordering

 There is a possibility that legitimate data segments could be
 discarded by PAWS in [RFC1323] when those segments are delayed
 because of reordering. This appendix shows some examples of this
 problem, and describes a generic scenario and possible negative
 effects, then proposes a possible solution.

F.1 Example 1: Reordering and Fast Retransmit with Limited Transmit

 In this example, suppose that TCP A is sending data to TCP B. Assume
 that TCP A supports the TCP Timestamps option in [RFC1323], TCP
 Congestion Control [RFC2581], and Limited Transmit [RFC3042], and
 that TCP B supports the TCP Timestamps option with PAWS in [RFC1323].

 Suppose that the data segment sequence W.1, X.2, Y.3, Z.4, S.5 is
 sent by TCP A, where the letter indicates the sequence number and the
 digit represents the timestamp in the TSval field. In this data
 segment sequence, suppose that W.1 and X.2 are sent in the Congestion
 Avoidance phase, Y.3 and Z.4 are sent by Limited Transmit, and S.5 is
 sent by Fast Retransmit.

 Figure F-1 illustrates the data segment sequence observed at TCP A.
 The x-axis represents time, and the y-axis represents the sequence
 number. W.1 through Z.4 and S.5 indicate the data segments sent.
 Each 'o' mark indicates a received ACK segment. Lines are drawn to
 connect the symbols between data segments and between ACK segments.

 Sequence number
 A Z.4
 | Y.3~~ \
 | X.2~~ \
 | W.1~~ \
 | ~~ \
 | S.5
 | o____o____o____o
 | o~~~~ 1 2 3!! <-- dup-ACK count
 | o~~~~
 +--------------------------------> Time

 Figure F-1: Time vs. sequence number at TCP A

 Now, suppose that the data segment sequence W.1, X.2, Y.3, Z.4, S.5
 sent by TCP A is reordered as W.1, X.2, Y.3, S.5, Z.4 (i.e., Z.4 and
 S.5 are exchanged) on the path to TCP B. Figure F-2 illustrates the
 resulting data segment sequence observed at TCP B.

 What happens at TCP B is described below.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3042
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 82]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 0. Assume TS.Recent is valid and TS.Recent == 0.
 Assume RCV.NXT == S.

 1. W.1 is received. PAWS accepts it because TS.Recent < 1.
 TS.Recent is not updated because RCV.NXT < W.

 2. X.2 is received. PAWS accepts it because TS.Recent < 2.
 TS.Recent is not updated because RCV.NXT < X.

 3. Y.3 is received. PAWS accepts it because TS.Recent < 3.
 TS.Recent is not updated because RCV.NXT < Y.

 4. S.5 is received. PAWS accepts it because TS.Recent < 5.
 TS.Recent is updated because RCV.NXT == S and S.5 has data.

 Now, TS.Recent == 5 and RCV.NXT >= S + the data length of S.5.
 (The actual new value of RCV.NXT depends on the out-of-order
 data queue in TCP B.)

 5. Z.4 is received. PAWS discards it because TS.Recent > 4.

 In this example, the legitimate segment Z.4 is discarded by PAWS in
 step 5. Figure F-2 illustrates this scenario.

 Sequence number
 A Z.4
 | Y.3 /
 | X.2~~ \ /
 | W.1~~ \ /
 | ~~ \ /
 | S.5
 |
 +--------------------------------> Time

 +---------+-------------------------------+
 |Segment |(prev) W.1 X.2 Y.3 S.5 Z.4 |
 +---------+-------------------------------+
 |PAWS | - Pass Pass Pass Pass Fail|
 |TS.Recent| 0 0 0 0 5 5 |
 |RCV.NXT | S S S S >S >S |
 +---------+-------------------------------+

 Figure F-2: Time vs. sequence number at TCP B

 Even in the case where TCP A does not support Limited Transmit (i.e.,
 the case where Y.3 and Z.4 are not sent in the example above), if the
 data segment sequence W.1, X.2, S.5 sent by TCP A is reordered as
 W.1, S.5, X.2 (i.e., X.2 and S.5 are exchanged) on the path to TCP B,
 X.2 could be discarded by PAWS. Since there would be a small gap

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 83]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 between the time when X.2 is sent and the time when S.5 is sent, the
 possibility of this problem occurring would be less than in the
 example above.

F.2 Example 2: Reordering and NewReno

 In this example, suppose that TCP A is sending data to TCP B. Assume
 that TCP A supports the TCP Timestamps option in [RFC1323], TCP
 Congestion Control [RFC2581], and NewReno [RFC3782], and that TCP B
 supports the TCP Timestamps option with PAWS in [RFC1323].

 Suppose that the data segment sequence W.1, X.2, Y.3, Z.4, S.5 is
 sent by TCP A, where the letter indicates the sequence number and the
 digit represents the timestamp in the TSval field. In the data
 segment sequence, suppose that W.1 through Z.4 are sent by Fast
 Recovery at each time when a duplicate ACK segment is received, and
 that S.5 is sent by NewReno.

 Figure F-3 illustrates the data segment sequence observed at TCP A.
 This figure uses the same notation that in Figure F-1.

 Sequence number
 A Z.4
 | Y.3~~ \
 | X.2~~ \
 | W.1~~ \
 | ~~ \
 | S.5
 | o
 | /
 | /
 | /
 | /
 | ..o____o____o____o
 |
 +--------------------------------> Time

 Figure F-3: Time vs. sequence number at TCP A

 Now, suppose that the data segment sequence W.1, X.2, Y.3, Z.4, S.5
 sent by TCP A is reordered as W.1, X.2, Y.3, S.5, Z.4 (i.e., Z.4 and
 S.5 are exchanged) on the path to TCP B.

 The resulting data segment sequence observed at TCP B is the same as
 that shown in Figure F-2. What happens at TCP B is also the same as
 in Example 1 above. Consequently, the legitimate segment Z.4 is
 discarded by PAWS.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 84]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

F.3 Generic Scenario

 In general, this problem occurs in the following scenario.

 Suppose that TCP A is sending data to TCP B, and data segments Z.4
 and S.5 are sent by TCP A, where the letter indicates the sequence
 number and the digit represents the timestamp in the TSval field.

 1. Data segment Z.4 is sent by the sender (TCP A).

 2. Data segment S.5 is sent by the sender (TCP A).

 Note: Segment S.5 would be a retransmitted segment sent by
 Fast Retransmit, NewReno, SACK [RFC2018][RFC3517], or
 another mechanism that infers a segment loss and
 retransmits the lost data quickly. The sequence number
 of segment S.5 would be less than SND.NXT.

 3. Segment S.5 arrives at the receiver earlier than segment Z.4.

 Suppose that segment S.5 satisfies (RSEG.SEQ <= RCV.NXT <
 RSEG.SEQ + RSEG.LEN), and that the TSval value on segment S.5
 is not older than the TS.Recent value at the receiver (TCB B).

 Segment S.5 is accepted by PAWS at the receiver. TS.Recent at
 the receiver is updated with the TSval value on segment S.5
 (i.e., TS.Recent = 5). RCV.NXT is also updated.

 4. Segment Z.4 arrives at the receiver (TCP B).

 Segment Z.4 is discarded by PAWS because the TSval value (= 4)
 on segment Z.4 is older than the TS.Recent value (= 5) at the
 receiver.

 In this scenario, the gap between the time when segment Z.4 is sent
 and the time when segment S.5 is sent should be small, so that
 reordering could exchange segments Z.4 and S.5.

F.4 Negative effects

 This problem would cause some negative effects on TCP performance.

 A data sender would spend additional time detecting a loss and
 recovering from it. Moreover, the sender would consider the loss to
 be a congestion indication, and the congestion window would
 needlessly be further reduced.

 In addition, discarding legitimate segments at a data receiver is a
 waste of bandwidth.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc2018

Demizu Expires September 2006 [Page 85]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

F.5 Possible Solution

 A straightforward way to solve this problem would be to modify the
 rules of PAWS so that valid delayed segments are accepted.

 The new rule would be as follows:

 - Change the inequality in R1) in section 4.2.1 of [RFC1323] as shown
 below:

 Current: RSEG.TSval < TS.Recent
 Proposal: RSEG.TSval < TS.Recent - T1, where T1 = RTO value.

 - In addition, to keep TS.Recent be monotonically nondecreasing, in
 R3) in section 4.2.1 of [RFC1323], TS.Recent should be updated only
 when RSEG.TSval >= TS.Recent.

 With this new rule, it would be very important to choose the value of
 T1 appropriately. This would be difficult for a data receiver,
 however, because it does not know the unit of the TSval values on the
 received segments.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc1323#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc1323#section-4.2.1

Demizu Expires September 2006 [Page 86]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix G: Alternative Ideas

G.1 TCP Feature Array Option

 Since the purpose of the OTS_OK option (i.e., the OTS option with
 option-length=2) is to negotiate the enabling of a feature, it could
 be replaced with a bit in something like a "binary option negotiation
 option" [All04]. The format would be like the following:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Kind = <TBD> | Length = 3 | flags |
 +-+

 Figure B-1: The TCP Feature Array option

 This idea is not employed because it requires additional TCP option
 space (i.e., at least 3 octets) and a new option-kind value.

 Nevertheless, this new 3-octet option can be carried on a SYN segment
 even in the following combination (40 octets total).

 - 4 octets: TCP MSS option [RFC793]
 - 3 octets: TCP Feature Array option
 - 3 octets: TCP Window Scale option [RFC1323]
 - 10 octets: TCP Timestamps option [RFC1323]
 - 2 octets: TCP SACK-PERMITTED option [RFC2018]
 - 18 octets: TCP MD5 Signature option [RFC2385]

 Normally, for alignment at a 32-bit boundary, one NOP is put after
 the TCP Window Scale option, and two NOPs are put before the TCP
 Timestamps option, as described in appendix A of [RFC1323]. If these
 three NOPs are removed, the TCP Feature Array option can be inserted
 as above without breaking the 32-bit timestamps alignment.

G.2 Timestamp Unit

 In this memo, the timestamp unit for TS2 is fixed at 1 usec (10^-6).
 This value is advantageous for inferring losses of data and detecting
 spurious loss inference quickly, especially in highspeed networks,
 and taking finer RTT measurements in LAN environments. In addition,
 some lower bits of timestamps can be used as nonce to obfuscate
 timestamps.

 An alternative idea would be to fix the unit at 1 ms (10^-3). Since
 [RFC1323] specifies that the unit is in the range of 1 second to 1
 ms, the unit of 1 ms is interoperable with [RFC1323]. In addition,
 if the timestamp unit for TS2 is changed to 1 ms, PASA-DF/TS2 would

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2385
https://datatracker.ietf.org/doc/html/rfc1323#appendix-A
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323

Demizu Expires September 2006 [Page 87]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 become more powerful, because the difference between TS.SndMax and
 TS.SndMin becomes thousand times smaller. This idea is not employed
 here, however, in order to obtain the advantages given in the
 previous paragraph.

 Note: If the timestamp unit is changed to 1 ms, the variable
 TS.SndAdj can be removed. The default value of TS2_PAWS_IDLE is
 changed from 20 minutes to 24 days. TS.PASADF_On of PASA-DF/TS2
 can be removed.

 Another alternative idea would be to negotiate the timestamp unit by
 using SYN segments within the range between, e.g., 1 sec and 1 nsec.
 In this case, TS2_PAWS_IDLE should be replaced with a variable. This
 idea is not employed here because such negotiation would not be
 simple and would require additional TCP option space.

G.3 TS option without TSecr field

 Since the value in the TSecr field in the OTS option may be very old
 and useless, an alternative idea would be to replace the OTS option
 (of option-length=10) with the TS option without the TSecr field
 (i.e., option-length=6) [Duk03b].

 This idea is not employed here because the TSecr field in the OTS
 option is referred to by PASA-DF/TS2 and SLID/TS2. In addition,
 some new mechanisms might use this field in the future.

G.4 Eifel Detection Algorithm and TS2

 This subsection shows the reason why this memo proposes not to apply
 the Eifel Detection Algorithm [RFC3522], which detects a posteriori
 spurious retransmissions by making use of the TCP Timestamps option
 [RFC1322], to TS2 by illustrating a case where the Eifel Detection
 Algorithm is not robust against reordering with TS2.

 Suppose that TCP A is sending certain amount of data to TCP B, where
 TS2 is enabled on the TCP connection between them, and TCP A supports
 the Eifel Detection Algorithm. Assume that TCP A now sends two data
 segments: an original data segment S.1 and a retransmitted data
 segment R.2, where the letter indicates the sequence number and the
 digit represents the timestamp in the TSval field. The following
 scenario shows the problem.

 1. First, TCP A sends an original data segment S.1 to TCP B.

 2. Then, TCP A sends a retransmitted data segment R.2 to TCP B.
 The TSval value on data segment R.2 is recorded in RetransmitTS
 in [RFC3522]. Assume that this retransmission is genuine.
 Note that the sequence number R.2 is less than S.1.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc1322
https://datatracker.ietf.org/doc/html/rfc3522

Demizu Expires September 2006 [Page 88]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

 3. Assume that the data segments sequence S.1, R.2 sent by TCP A
 is reordered as R.2, S.1 (i.e., they are exchanged) on the path
 to TCP B.

 4. First, TCP B receives retransmitted data segment R.2. TCP B
 sends an ACK segment with TSecr=2 sent in reply to R.2. Assume
 that this ACK segment is lost.

 5. Then, TCP B receives original data segment S.1. TCP B sends an
 ACK segment with TSecr=1 sent in reply to S.1.

 6. TCP A receives an ACK segment with TSecr=1 only. Since the
 received TSecr value (=1) is less than RetransmitTS (=2) in
 [RFC3522], TCP A falsely infers the retransmission of data
 segment R.2 spurious.

 As illustrated in this scenario, when TS2 is enabled, the Eifel
 Detection Algorithm is not robust against the combination of the
 reordering of data segments and the losses of ACK segments. The
 cause of this problem is that the Eifel Detection Algorithm assumes
 that TS.Recent is monotonically nondecreasing, while TS.Recent with
 TS2 is not monotonically nondecreasing (See section 4.4).

 To solve this problem, SLID/TS2 is proposed. It compares RSEG.TSecr
 with the border timestamp calculated by TS2_SLID_BTS() specified in

section 9.1, instead of comparing with either target timestamp or
 probe timestamp. With the current definition of TS2_SLID_BTS(),
 SLID/TS2 is robust against reordering if delays are less than RTT/2.
 Unfortunately, the permissible delays of SLID-SACK/TS2 may be less
 than RTT/TS2 depending on SACK hole sizes.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/rfc3522

Demizu Expires September 2006 [Page 89]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Appendix H: Changes from -00 version.

 - Base Mechanism
 - Former sections 4.3 and 4.4 are renumbered to 4.4 and 4.5 in
 order to introduce new section 4.3 "Internal Timestamp and
 External Timestamp".

 - RTTM
 - TS1_RTTM_G is renamed to TS1_GRANULARITY.
 - TS2_RTTM_G is renamed to TS2_GRANULARITY.
 - TS_RTTM_G is renamed to TS_GRANULARITY.

 - PAWS
 - Section 6.2 is split into 6.2.1 and 6.2.2.

 - PASA
 - In section 7.1.3 and appendix A.10.2.1: When a SYN+ACK segment
 is received in the SYN-SENT state, RSEG.TSecr is not tested now.
 - TS2_PASADF_RNDMAX_REUSE is introduced.
 - TS2_PASADF_RNDMAX_IDLE is introduced.

 - DLI
 - DLD (Data Loss Detection) is renamed to DLI (Data Loss
 Inference).
 - Sections 8.1 to 8.3 are renumbered to 8.2.1 to 8.2.3.
 Sections 8.1 and 8.2 are added.
 Sections for DLI-UNA/TS2 and DLI-SACK/TS2 are exchanged.
 (Sections 8.2.2 and 8.2.3 are exchanged, and
 appendices A.5.4.2 and A.5.4.3 are exchanged.)
 - DS.Start and DS.End are added to appendix A.5.4.1.
 - TS.SndUnaTS is renamed to TS.UNA.SndTS.
 - TS.SndUnaRO is renamed to TS.UNA.SndRO.
 - Section 8.2.4 "DLI-NXT/TS2" is added.

Appendix A.5.4.4 is also added.
 - Section 8.2.5 "DLI-MAX/TS2" is added.

Appendix A.5.4.5 is also added.

 - SLID
 - SRD (Spurious Retransmission Detection) is replaced with SLID
 (Spurious Loss Inference Detection).

 - Appendices
 - isSYNACK is introduced in appendix A.
 - Former Appendices A.1 to A.10 are renumbered to A.2 to A.11 in
 order to introduce new appendix A.1 "TCP Options".
 - Former appendix B is moved to appendix G in order to introduce
 new appendix B "Granularity of Timestamps".
 - Appendix H "Changes from -00 version" is added.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt

Demizu Expires September 2006 [Page 90]

Internet-Draft <draft-demizu-tcp-ts2-01.txt> March 2006

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology
 described in this document or the extent to which any license
 under such rights might or might not be available; nor does it
 represent that it has made any independent effort to identify any
 such rights. Information on the procedures with respect to
 rights in RFC documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention
 any copyrights, patents or patent applications, or other
 proprietary rights that may cover technology that may be required
 to implement this standard. Please address the information to the
 IETF at ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/draft-demizu-tcp-ts2-01.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Demizu Expires September 2006 [Page 91]

