INTERNET-DRAFT

Victor Demjanenko David Satterlee VOCAL Technologies, Ltd. September 22, 2015

Intended Status: Experimental Expires: March 25, 2016

RTP Payload Format for MELPe Codec draft-demjanenko-payload-melpe-04

Status of this Memo

Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.

This Internet-Draft is submitted in full conformance with the provisions of <u>BCP 78</u> and <u>BCP 79</u>.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (<u>http://trustee.ietf.org/license-info</u>) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at <u>http://datatracker.ietf.org/drafts/current/</u>.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

Abstract

This document describes the RTP payload format for the Mixed Excitation Linear Prediction Enhanced (MELPe) speech coder algorithm developed by Atlanta Signal Processing (ASPI), Texas Instruments (TI), SignalCom (now Microsoft) and Thales Communications with noise preprocessor contributions from AT&T under contract with NSA/DOD as international NATO Standard STANAG 4591. All three different speech encoding rates and sample frames sizes are included. Comfort noise procedures and packet loss concealment are detailed. Also, within the document there are included necessary details for the use of MELP with SDP.

[Page 1]

Table of Contents

<u>1</u> Introduction	. <u>3</u>
<u>1.1</u> Conventions, Definitions and Acronyms	. <u>3</u>
2 Background	. <u>3</u>
$\underline{3}$ Payload Format	. <u>4</u>
<u>3.1</u> MELPe Bitstream Definition	. <u>5</u>
<u>3.1.1</u> 2400 bps Bitstream Structure	. <u>5</u>
3.1.2 1200 bps Bitstream Structure	. <u>8</u>
<u>3.1.3</u> 600 bps Bitstream Structure	. <u>11</u>
<u>3.2</u> MELPe Comfort Noise Bitstream Definition	
<u>3.3</u> Multiple MELPe frames in a RTP packet	
<u>3.4</u> Congestion Control Considerations	
<u>4</u> Payload Format Parameters	. <u>18</u>
<u>4.1</u> Media Type Definition	
<u>4.2</u> Mapping to SDP	
<u>5</u> Discontinious Transmission	
<u>6</u> Packet Loss Concealment	
7 IANA Considerations	. <u>24</u>
<u>8</u> Security Considerations	
9 RFC Editor Considerations	
<u>10</u> References	
<u>10.1</u> Normative References	
<u>10.2</u> Informative References	
Authors' Addresses	. <u>26</u>

1 Introduction

This document describes how compressed MELPe speech as produced by the MELPe codec may be formatted for use as an RTP payload. Details are provided to packetize the three different codec bit-rate data frames (2400, 1200, and 600) into RTP packets. The sender may send one or more codec data frames per packet, depending on the application scenario or based on the transport network condition, bandwidth restriction, delay requirements and packet-loss tolerance.

<u>1.1</u> Conventions, Definitions and Acronyms

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in <u>RFC 2119</u> [<u>RFC2119</u>].

2 Background

The MELP speech coder was developed by the US military as an upgrade from LPC-based CELP standard vocoder for low bit-rate communications [MELP]. MELP was further enhanced and subsequently adopted by NATO as MELPe for use by its members and Partnership for Peace countries for military and other governmental communications [MELPE]. Commercial/civilian applications have arisen because of the low bitrate property of MELPe with its (relatively) high intelligibility. As such MELPe is being used in a variety of wired and radio communications systems. VoIP/SIP systems need to transport MELPe without decoding and re-encoding in order to preserve its intelligibility. Hence it is desirable and necessary to define the proper payload formatting and use conventions of MELPe in RTP payloads.

The MELPe codec [MELPE] supports three different vocoder bit rates; 2400, 1200, and 600 bps. The basic 2400 bps bit-rate vocoder uses a 22.5 ms frame of speech consisting of 180 8000 Hz, 16-bit speech samples. The 1200 and 600 bps bit-rate vocoders uses respectively three and four 22.5 ms frames of speech each. These reduced bit-rate vocoders internally use multiple 2400 bps parameter sets with further processing to strategically remove redundancy. The payload sizes for each of the bitrates are 54, 81, and 54 bits respectively for the 2400, 1200, and 600 bps frames. Dynamic bit-rate switching is permitted but only if supported by both endpoints.

The MELPe algorithm distinguishes between voiced and un-voiced speech and encodes each differently. Unvoiced speech can be coded with

Demjanenko, Satterlee Expires March 25, 2016

[Page 3]

fewer information bits for the same quality. Forward error correction (FEC) is applied to the 2400 bps codec unvoiced speech for better protection of the subtle differences in signal reconstruction. The lower bit-rate coders do not allocate any bits for FEC and rely on strong error protection and correction in the communications channel.

Comfort noise handling for MELPe is recommended to follow SCIP-210 <u>Appendix B</u> [SCIP210]. After VAD no longer indicates the presence of speech/voice, a grace period of a minimum of two comfort noise vocoder fames are to be transmitted. The contents of the comfort noise frames is described in the next section.

Packet loss concealment (PLC) exploits the FEC (and more precisely, any combination of two set bits in the pitch/voicing parameter) of the 2400 bps speech coder. The pitch/voicing parameter has a sparse set of permitted values. A value of zero indicates a non-voiced frame. At least three bits are set for all valid pitch parameters. The PLC erasure indication utilizes any of the two bit set errored/erasure encodings of a non-voiced frame as will be described infra.

<u>3</u> Payload Format

The MELPe codec uses 22.5, 67.5 or 90 ms frames with a sampling rate clock of 8 kHz, so the RTP timestamp MUST be in units of 1/8000 of a second.

The RTP payload for MELPe has the format shown in the figure below. No additional header specific to this payload format is required.

This format is intended for the situations where the sender and the receiver send one or more codec data frames per packet. The RTP packet looks as follows:

Figure 1 - Packet format diagram

Demjanenko, Satterlee Expires March 25, 2016

[Page 4]

The RTP header of the packetized encoded MELPe speech has the expected values as described in [RFC3550]. The usage of M bit SHOULD be as specified in the applicable RTP profile, for example, RFC 3551 [RFC3551], where [RFC3551] specifies that if the sender does not suppress silence (i.e., sends a frame on every frame interval), the M bit will always be zero. When more then one codec data frame is present in a single RTP packet, the timestamp is, as always, that of the oldest data frame represented in the RTP packet.

The assignment of an RTP payload type for this new packet format is outside the scope of this document, and will not be specified here. It is expected that the RTP profile for a particular class of applications will assign a payload type for this encoding, or if that is not done, then a payload type in the dynamic range shall be chosen by the sender.

3.1 MELPe Bitstream Definition

The total number of bits used to describe one frame of 2400 bps speech is 54, which fits in 7 octets (with two unused bits). For the 1200 bps speech the total number of bits used is 81, which fits in 11 octets (with seven unused bits). For the 600 bps speech the total number of bits used is 54, which fits in 7 octets (with two unused bits). Unused bits are coded as described in 3.3 in support of dynamic bit-rate switching.

In the MELPe bitstream definition, the most significant bits are considered priority bits. The intention was that these bits receive greater protection in the underlying communications channel. For IP networks, such additional protection is irrelevant. However, for convenience of interoperable gateway devices, the bitstreams will be presented identically in IP networks.

3.1.1 2400 bps Bitstream Structure

According to Table 3 of [MELPE], the 2400 bit/s MELPe bit transmission order (bit priority is not shown for clarity) is the following:

+-		-+-		-+-		- +
•		•		•	Unvoiced	•
	B_01	I	g20	1	g20	1
Ι	B_02		BP0		FEC10	
	B_03		P0		P0	

Demjanenko, Satterlee Expires March 25, 2016

[Page 5]

B_04 B_05 B_06 B_07 B_08 +	LSF20 LSF30 g23 g24 LSF35 	LSF20 LSF30 g23 g24 LSF35 + g21
B_00	g22	g22
B_11	P4	P4
B_12	LSF34	LSF34
B_13 B_14	P5 P1	P5 P1
B_15	P2	P2
B_16	LSF40	LSF40
B_17	P6	P6
B_18	LSF10	LSF10
B_19 B 20	LSF16 LSF45	LSF16 LSF45
B_21	P3	P3
B_22	LSF15	LSF15
B_23	LSF14	LSF14
B_24 ++-	LSF25	LSF25
B_25	BP3	FEC13
B_26	LSF13	LSF13
B_27	LSF12	LSF12
B_28	LSF24	LSF24
B_29 B_30	LSF44 FM0	LSF44 FEC40
B_31	LSF11	LSF11
B_32	LSF23	LSF23
++-	+-	+
B_33	FM7	FEC22 FEC21
B_34 B_35	FM6 FM5	FEC21
B_36	g11	g11
B_37	g10	g10
B_38	BP2	FEC12
B_39	BP1	FEC11
B_40 ++-	LSF21	LSF21
B_41	LSF33	LSF33
B_42	LSF22	LSF22
B_43	LSF32	LSF32
B_44	LSF31	LSF31
B_45	LSF43	LSF43
B_46	LSF42	LSF42

[Page 6]

	B_47		AF		FEC42	
	B_48		LSF41		LSF41	
+-		-+		+		-+
	B_49		FM4		FEC32	
	B_50		FM3		FEC31	
	B_51		FM2		FEC30	
	B_52		FM1		FEC41	
	B_53		g12		g12	
	B_54		SYNC		SYNC	
+-		-+		+		-+

NOTES: g = Gain BP = Bandpass Voicing P = Pitch/Voicing LSF = Line Spectral Frequencies FEC = Forward Error Correction Parity Bits FM = Fourier Magnitudes AF = Aperiodic Flag

B_01 = least significant bit of data set

Table 3.1 - The bitstream definition for MELPe 2400 bps.

The 2400 bps MELPe RTP payload is constructed as per Figure 2. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When filling octets, the least significant bits of the seventh octet are filled with bits B_49 to B_54 respectively.

MSB 0	1	2	3	4	5	6	LSB 7
++-			.++	+		+	++
B_08 ++-	B_07	B_06	B_05	B_04	B_03	B_02	B_01
B_16 ++-	B_15	B_14	B_13	B_12	B_11	B_10	B_09
B_24 ++-	B_23	B_22	B_21	B_20	B_19	B_18	B_17
B_32 ++-	B_31	B_30	B_29	B_28	B_27	B_26	B_25
B_40	B_39	B_38		B_36	B_35	B_34	B_33
B_48	B_47	B_46		B_44	B_43	B_42	B_41
RSVA ++-							

Demjanenko, Satterlee Expires March 25, 2016

[Page 7]

Figure 2 - Packed MELPe 2400 bps payload octets.

3.1.2 1200 bps Bitstream Structure

According to Tables D9a and D9b of [MELPE], the 1200 bit/s MELPe bit transmission order is the following:

	+	+
Bit	Modes 1-4	
	(Volced) +	(Unvoiced)
B_01	Syn	Syn
B_02	Pitch&UV0	Pitch&UV0
B_03	Pitch&UV1	Pitch&UV1
B_04	Pitch&UV2	Pitch&UV2
B_05	Pitch&UV3	Pitch&UV3
B_06	Pitch&UV4	Pitch&UV4
B_07	Pitch&UV5	Pitch&UV5
B_08	Pitch&UV6	Pitch&UV6
B_09	+ Pitch&UV7	<pre>+ Pitch&UV7 </pre>
B_10	Pitch&UV8	Pitch&UV8
B_11	Pitch&UV9	Pitch&UV9
B_12	Pitch&UV10	Pitch&UV10
B_13	Pitch&UV11	Pitch&UV11
B_14	LSP0	LSP0
B_15	LSP1	LSP1
B_16	LSP2	LSP2
B_17	+	+
 B 18	LSP4	LSP4
	LSP5	LSP5
 В20	LSP6	LSP6
B_21	LSP7	LSP7
B_22	LSP8	LSP8
B_23	LSP9	LSP9
B_24	LSP10	LSP10
в 25 В	+	++ LSP11
B 26	LSP12	LSP12
B_27	LSP13	LSP13
B_28	LSP14	LSP14
B_29	LSP15	LSP15
B_30	LSP16	LSP16
B_31	LSP17	LSP17
	LSP18	LSP18

[Page 8]

+		_++
B_33	LSP19	LSP19
B_34	LSP20	LSP20
B_35	LSP21	LSP21
B_36	LSP22	LSP22
• •	LSF22 LSP23	LSP23
B_37		
B_38	LSP24	LSP24
B_39	LSP25	LSP25
B_40	LSP26	LSP26
B_41	LSP27	GAINO
B_42	LSP28	GAIN1
B 43	LSP29	GAIN2
B_44	LSP30	GAIN3
B 45	LSP31	GAIN4
B 46	LSP32	GAIN5
B_47	LSP33	GAIN6
B_48	LSP34	GAINO
++		-++
B_49	LSP35	GAIN8
B_50	LSP36	GAIN9
B_51	LSP37	i i
B_52	LSP38	i i
B_53	LSP39	i i
B_54	LSP40	i i
B_55	LSP41	i i
B_56	LSP42	i i
++		-++
B_57	GAINO	
B_58	GAIN1	
B_59	GAIN2	
B_60	GAIN3	
B_61	GAIN4	i i
B_62	GAIN5	i i
B_63	GAIN6	i i
B_64	GAIN7	i i
++		-++
B_65	GAIN8	
B_66	GAIN9	
B_67	BP0	
B_68	BP1	
B_69	BP2	
B_70	BP3	
B_71	BP4	
B_72	BP5	
++		-++
B_73	JITTER	
B_74	FS0	

[Page 9]

Ι	B_75	I	FS1		1
I.	B_76		FS2		
I.	B_77		FS3		
	B_78		FS4		
	B_79		FS5		
	B_80		FS6		
+-		-+		+	- +
Ι	B_81	I	FS7		
+-		-+		+	-+

NOTES: BP = Band pass voicing FS = Fourier magnitudes

Table 3.2 - The bitstream definition for MELPe 1200 bps.

The 1200 bps MELPe RTP payload is constructed as per Figure 3. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When filling octets, the least significant bit of the eleventh octet is filled with bit B_81.

MSB 0	1	2	3	4	5	6	LSB 7
			- ++				
B_08	B_07	B_06	B_05 ++	B_04	B_03	B_02	B_01
B_16	B_15	B_14	B_13 ++	B_12	B_11	B_10	B_09
B_24	B_23	B_22	B_21	B_20	B_19	B_18	B_17
B_32	B_31	B_30		B_28	B_27	B_26	B_25
B_40 ++-	- '	_	B_37 +		- '		
B_48	B_47	B_46		B_44	B_43	B_42	B_41
B_56	B_55	B_54		B_52	B_51	B_50	B_49
B_64 ++-	B_63	B_62	B_61 ++	B_60	B_59	B_58	B_57
B_72 ++-	B_71	B_70	B_69 ++	B_68	B_67	B_66	B_65
B_80 ++-	B_79	B_78	B_77 ++	B_76	B_75	B_74	B_73
RSVA ++-	RSVB	RSVC	RSV0 ++	RSV0	RSV0 +	RSV0	B_81

Figure 3 - Packed MELPe 1200 bps payload octets.

3.1.3 600 bps Bitstream Structure

According to Tables M-11 to M-16 of [MELPE], the 600 bit/s MELPe bit transmission order (bit priority is not shown for clarity) is the following:

+	+	+	++
Bit	Mode 1	Mode 2	Mode 3
			(voiced)
+	+	+	++
B_01	Voicing (4)	Voicing (4)	Voicing (4)
B_02	Voicing (3)	Voicing (3)	Voicing (3)
B_03	Voicing (2)	Voicing (2)	Voicing (2)
B_04	Voicing (1)	Voicing (1)	Voicing (1)
B_05	Voicing (0)	Voicing (0)	Voicing (0)
B_06	LSF1,4 (3)	Pitch (5)	Pitch (7)
B_07	LSF1,4 (2)	Pitch (4)	Pitch (6)
B_08	LSF1,4 (1)		Pitch (5)
+	+	+	++
B_09	LSF1,4 (0)	Pitch (2)	Pitch (4)
B_10	LSF1,3 (3)	Pitch (1)	Pitch (3)
B_11	LSF1,3 (2)	Pitch (0)	Pitch (2)
B_12	LSF1,3 (1)	LSF1,3 (3)	Pitch (1)
B_13	LSF1,3 (0)	LSF1,3 (2)	Pitch (0)
B_14	LSF1,2 (3)	LSF1,3 (1)	LSF1,3 (3)
B_15	LSF1,2 (2)	LSF1,3 (0)	LSF1,3 (2)
B_16	LSF1,2 (1)	LSF1,2 (3)	LSF1,3 (1)
+	++	+	++
B_17	LSF1,2 (0)	LSF1,2 (2)	LSF1,3 (0)
B_18	LSF1,1 (5)	LSF1,2 (1)	LSF1,2 (4)
B_19	LSF1,1 (4)	LSF1,2 (0)	LSF1,2 (3)
B_20	LSF1,1 (3)	LSF1,1 (5)	LSF1,2 (2)
B_21	LSF1,1 (2)	LSF1,1 (4)	LSF1,2 (1)
B_22	LSF1,1 (1)	LSF1,1 (3)	LSF1,2 (0)
B_23	LSF1,1 (0)	LSF1,1 (2)	LSF1,1 (5)
B_24	LSF2,4 (3)	LSF1,1 (1)	LSF1,1 (4)
+	+	+	++
B_25	LSF2,4 (2)	LSF1,1 (0)	LSF1,1 (3)
B_26	LSF2,4 (1)	LSF2,3 (3)	LSF1,1 (2)
B_27	LSF2,4 (0)	LSF2,3 (2)	LSF1,1 (1)
B_28	LSF2,3 (3)	LSF2,3 (1)	LSF1,1 (0)
B_29	LSF2,3 (2)	LSF2,3 (0)	LSF2,3 (3)
B_30	LSF2,3 (1)	LSF2,2 (4)	LSF2,3 (2)
B_31	LSF2,3 (0)	LSF2,2 (3)	LSF2,3 (1)

B_32	LSF2,2 (3)	L	LSF2,2 (2)	L	LSF2,3 (0)
++-		+-		+ -	+
B_33	LSF2,2 (2)	L	LSF2,2 (1)	L	LSF2,2 (4)
B_34	LSF2,2 (1)		LSF2,2 (0)		LSF2,2 (3)
B_35	LSF2,2 (0)		LSF2,1 (6)		LSF2,2 (2)
B_36	LSF2,1 (5)		LSF2,1 (5)		LSF2,2 (1)
B_37	LSF2,1 (4)	1	LSF2,1 (4)	I.	LSF2,2 (0)
B_38	LSF2,1 (3)		LSF2,1 (3)	L	LSF2,1 (5)
B_39	LSF2,1 (2)		LSF2,1 (2)		LSF2,1 (4)
B_40	LSF2,1 (1)		LSF2,1 (1)	I.	LSF2,1 (3)
++-		+-		+ -	+
B_41	LSF2,1 (0)	L	LSF2,1 (0)	L	LSF2,1 (2)
B_42	GAIN2 (5)	1	GAIN2 (5)	I.	LSF2,1 (1)
B_43	GAIN2 (4)		GAIN2 (4)	L	LSF2,1 (0)
B_44	GAIN2 (3)		GAIN2 (3)	L	GAIN2 (4)
B_45	GAIN2 (2)	1	GAIN2 (2)	L	GAIN2 (3)
B_46	GAIN2 (1)	1	GAIN2 (1)	L	GAIN2 (2)
B_47	GAIN2 (0)		GAIN2 (0)	L	GAIN2 (1)
B_48	GAIN1 (6)		GAIN1 (6)		GAIN2 (0)
++-		+ -		+ -	+
B_49	GAIN1 (5)	L	GAIN1 (5)	L	GAIN1 (5)
B_50	GAIN1 (4)	1	GAIN1 (4)	I.	GAIN1 (4)
B_51	GAIN1 (3)	1	GAIN1 (3)	L	GAIN1 (3)
B_52	GAIN1 (2)		GAIN1 (2)	Ι	GAIN1 (2)
B_53	GAIN1 (1)	I	GAIN1 (1)	Ι	GAIN1 (1)
B_54	GAIN1 (0)		GAIN1 (0)		GAIN1 (0)
++-		+-		+ -	+

Table 3.3a - The bitstream definition for MELPe 600 bps (part 1 of 2).

+-		++
	Bit	Mode 4 Mode 5 Mode 6
		(voiced) (voiced) (voiced)
+-		++
	B_01	Voicing (4) Voicing (4) Voicing (4)
	B_02	Voicing (3) Voicing (3) Voicing (3)
	B_03	Voicing (2) Voicing (2) Voicing (2)
Ι	B_04	Voicing (1) Voicing (1) Voicing (1)
	B_05	Voicing (0) Voicing (0) Voicing (0)
	B_06	Pitch (7) Pitch (7) Pitch (7)
	B_07	Pitch (6) Pitch (6) Pitch (6)
	B_08	Pitch (5) Pitch (5) Pitch (5)
+-		++
Ι	B_09	Pitch (4) Pitch (4) Pitch (4)
	B_10	Pitch (3) Pitch (3) Pitch (3)
	B_11	Pitch (2) Pitch (2) Pitch (2)
	B_12	Pitch (1) Pitch (1) Pitch (1)

B_13	Pitch (0)	Pitch (0)	Pitch (0)
B_14	LSF1,3 (3)	LSF1,3 (3)	LSF1,3 (3)
B_15	LSF1,3 (2)	LSF1,3 (2)	LSF1,3 (2)
B_16	LSF1,3 (1)	LSF1,3 (1)	LSF1,3 (1)
B_17	LSF1,3 (0)	LSF1,3 (0)	LSF1,3 (0)
B_18	LSF1,2 (3)	LSF1,2 (4)	LSF1,2 (4)
B_19	LSF1,2 (2)	LSF1,2 (3)	LSF1,2 (3)
B_20	LSF1,2 (1)	LSF1,2 (2)	LSF1,2 (2)
B_21	LSF1,2 (0)	LSF1,2 (1)	LSF1,2 (1)
B_22	LSF1,1 (5)	LSF1,2 (0)	LSF1,2 (0)
B_23	LSF1,1 (4)	LSF1,1 (5)	LSF1,1 (6)
B_24	LSF1,1 (3)	LSF1,1 (4)	LSF1,1 (5)
B_25	LSF1,1 (2)	LSF1,1 (3)	LSF1,1 (4)
B_26	LSF1,1 (1)	LSF1,1 (2)	LSF1,1 (3)
B_27	LSF1,1 (0)	LSF1,1 (1)	LSF1,1 (2)
B_28	LSF2,3 (3)	LSF1,1 (0)	LSF1,1 (1)
B_29	LSF2,3 (2)	LSF2,3 (3)	LSF1,1 (0)
B_30	LSF2,3 (1)	LSF2,3 (2)	LSF2,3 (3)
B_31	LSF2,3 (0)	LSF2,3 (1)	LSF2,3 (2)
B_32	LSF2,2 (4)	LSF2,3 (0)	LSF2,3 (1)
B_33	LSF2,2 (3)	LSF2,2 (4)	LSF2,3 (0)
B_34	LSF2,2 (2)	LSF2,2 (3)	LSF2,2 (4)
B_35	LSF2,2 (1)	LSF2,2 (2)	LSF2,2 (3)
B_36	LSF2,2 (0)	LSF2,2 (1)	LSF2,2 (2)
B_37	LSF2,1 (6)	LSF2,2 (0)	LSF2,2 (1)
B_38	LSF2,1 (5)	LSF2,1 (5)	LSF2,2 (0)
B_39	LSF2,1 (4)	LSF2,1 (4)	LSF2,1 (6)
B_40	LSF2,1 (3)	LSF2,1 (3)	LSF2,1 (5)
+	LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0)	LSF2,1 (1) LSF2,1 (0) GAIN2 (4) GAIN2 (3) GAIN2 (2)	LSF2,1 (4) LSF2,1 (3) LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN1 (8) GAIN1 (7) GAIN1 (6)
+ B_50 B_51 B_52 B_53 B_54 +	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (1)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)

Notes: xxxx (0) = LSB xxxx (nbits-1) = MSB LSF1,p = MSVQ indice of the pth stage of the two first frames LSF2,p = MSVQ indice of the pth stage of the two last frames GAIN1 = VQ/MSVQ indice of the 1st stage GAIN2 = MSVQ indice of the 2nd stage

Table 3.3b - The bitstream definition for MELPe 600 bps (part 2 of 2).

The 600 bps MELPe RTP payload is constructed as per Figure 4. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When filling octets, the least significant bits of the seventh octet are filled with bits B_49 to B_54 respectively.

MSB 0	1	2	3	4	5	6	LSB 7
-	_		.++			-	, ++
B_08	B_07	B_06	B_05 ++	B_04	B_03	B_02	B_01
B_16	B_15	B_14	B_13 ++	B_12	B_11	B_10	B_09
B_24	B_23	B_22	B_21 ++	B_20	B_19	B_18	B_17
B_32	B_31	B_30	B_29 ++	B_28	B_27	B_26	B_25
B_40	B_39	B_38	B_37 ++	B_36	B_35	B_34	B_33
B_48	B_47	B_46	B_45	B_44	B_43	B_42	B_41
RSVA	RSVB	B_54	B_53 ++	B_52	B_51	B_50	

Figure 4 - Packed MELPe 600 bps payload octets.

3.2 MELPe Comfort Noise Bitstream Definition

Table B.3-1 of [<u>SCIP210</u>] identifies the usage of MELPe 2400 bps parameters for conveying comfort noise.

+		++
MELPe	Parameter	Value
+		++

Demjanenko, Satterlee Expires March 25, 2016 [Page 14]

| msvq[0] (line spectral frequencies) | * See Note +----+ | msvq[1] (line spectral frequencies) | Set to 0 | +----+ | msvq[2] (line spectral frequencies) | Set to 0 | +----+ | msvq[3] (line spectral frequencies) | Set to 0 +----+ fsvg (Fourier magnitudes) | Set to 0 +----+ | Set to O gain[0] (gain) +----+ gain[1] (gain) | * See Note 1 +----+ | pitch (pitch - overall voicing) | Set to 0 +----+ bp (bandpass voicing) | Set to 0 1 +----+ | af (aperiodic flag/jitter index) | Set to 0 +----+ sync (sync bit) | Alternations | 1 +----+

Note: The default value shall be the respective parameters from the vocoder frame. It is recommended that msvq[0] and gain[1] values be derived by averaging the respective parameter from some number of previous vocoder frames.

Table 3.4 - MELPe Comfort Noise Parameters

Since only msvq[0] (also known as LSF1x or the first LSP) and gain[1] (also known as g2x or the second gain) are required, the following bit order is used for comfort noise frames.

+ -		-+-		- +		
Ι	Bit	Ι	Comfort			
		Ι	Noise			
+ -		-+-		- +		
	B_01	Ι	LSF10			
	B_02		LSF11			
	B_03		LSF12			
	B_04		LSF13			
	B_05		LSF14			
	B_06		LSF15			
	B_07	Ι	LSF16			
	B_08		g20			

+-		- + -	+
Ι	B_09	Ι	g21
Ι	B_10		g22
Ι	B_11		g23
Ι	B_12		g24
Ι	B_13		SYNC
+-		-+-	+

NOTES: g = Gain LSF = Line Spectral Frequencies

Table 3.5 - The bitstream definition for MELPe Comfort Noise.

The Comfort Noise MELPe RTP payload is constructed as per Figure 5. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When When filling octets, the least significant bits of the second octet are filled with bits B_09 to B_13 respectively.

MSB							LSB
Θ	1	2	3	4	5	6	7
++-		+	++		+	+	++
B_08	B_07	B_06	B_05	B_04	B_03	B_02	B_01
++-		+	++		+	+	++
RSVA	RSVB	RSVC	B_13	B_12	B_11	B_10	B_09
++		+	++		+	+	++

Figure 5 - Packed MELPe Comfort Noise payload octets.

3.3 Multiple MELPe frames in a RTP packet

A MELPe RTP packet may consist of zero or more MELPe coder frames, followed by zero or one MELPe Comfort Noise frames. The presence of a comfort noise frame can be deduced from the length of the RTP payload. The default packetization interval is one coder frame (22.5, 67.5 or 90 ms) according to the coder bit rate (2400, 1200 or 600 bps). For some applications, a longer packetization interval may be required to reduce the packet rate.

All MELPe frames in a single RTP packet MUST be of the same coder bit rate. Dynamic switching between frame rates within an RTP stream may be permitted (if supported by both ends) provided that reserved bits, RSVA, RSVB, and RSVC are filled in as per Table 3.6. If bit-rate switching is not used, all reserved bits are encoded as 0 by the

Demjanenko, Satterlee Expires March 25, 2016 [Page 16]

sender and ignored by the receiver. (RSV0 is always coded as 0).

+----+ Coder Bit Rate | RSVA | RSVB | RSVC | 1 +----+ | 0 | 0 | N/A | 1 2400 bps +----+ 1200 bps +----+ 600 bps | 0 | 1 | N/A | +----+ Comfort Noise | 1 | 0 | 1 | +----+ | (reserved) | 1 | 1 | N/A | +----+

Table 3.6 - MELPe Frame Bit Rate Indicators.

It is important to observe that senders have the following additional restrictions:

Senders SHOULD NOT include more MELPe frames in a single RTP packet than will fit in the MTU of the RTP transport protocol.

Frames MUST NOT be split between RTP packets.

It is RECOMMENDED that the number of frames contained within an RTP packet is consistent with the application. For example, in a telephony and other real time applications where delay is important, then the fewer frames per packet the lower the delay, whereas for bandwidth constrained links or delay insensitive streaming messaging application, more than one or many frames per packet would be acceptable.

Information describing the number of frames contained in an RTP packet is not transmitted as part of the RTP payload. The way to determine the number of MELPe frames is to count the total number of octets within the RTP packet, and divide the octet count by the number of expected octets per frame (7/11/7 per frame). Keep in mind the last frame may be a 2 octet comfort noise frame.

When dynamic bit-rate switching is used and more than one frame is contained in a RTP packet, it is recommended to inspect the coder rate bits contained in the last octet. If the coder bit rate indicates a Comfort Noise frame, then inspect the third last octet for the coder bit rate. All MELPe speech frames in the RTP packet will be of this same coder bit rate.

Demjanenko, Satterlee Expires March 25, 2016 [Page 17]

3.4 Congestion Control Considerations

Congestion control for RTP SHALL be used in accordance with <u>RFC 3550</u> [<u>RFC3550</u>], and with any applicable RTP profile; e.g., <u>RFC 3551</u> [<u>RFC3551</u>]. An additional requirement if best-effort service is being used is: users of this payload format MUST monitor packet loss to ensure that the packet loss rate is within acceptable parameters. Circuit Breakers [<u>I-D.ietf-avtcore-rtp-circuit-breakers</u>] is an update to RTP [<u>RFC3550</u>] that defines criteria for when one is required to stop sending RTP Packet Streams. The circuit breakers is to be implemented and followed.

<u>4</u> Payload Format Parameters

This RTP payload format is identified using the MELP, MELP2400, MELP1200, and MELP600 media types which is registered in accordance with <u>RFC 4855</u> [<u>RFC4855</u>] and using the template of <u>RFC 6838</u> [<u>RFC6838</u>].

4.1 Media Type Definition

Type names:

MELP, MELP2400, MELP1200, and MELP600

Subtype name:

N/A

Required parameters:

N/A

Optional parameters:

ptime, maxptime, bitrate

Encoding considerations:

This media type is framed and binary, see <u>section 4.8 in RFC6838</u> [<u>RFC6838</u>].

Security considerations:

Please see security consideration in RFCXXXX

Interoperability considerations:

Demjanenko, Satterlee Expires March 25, 2016 [Page 18]

Early implementations used MELP2400, MELP1200, and MELP600 to indicate both coder type and bit rate. These media type names should be preserved with this registration.

Published specification:

N/A

Applications that use this media type:

N/A

Additional information:

N/A

Deprecated alias names for this type:

N/A

Magic number(s):

N/A

```
File extension(s):
```

N/A

Macintosh file type code(s):

N/A

Person & email address to contact for further information:

Victor Demjanenko, Ph.D. VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 USA Phone: +1 716 688 4675 Email: victor.demjanenko@vocal.com

Intended usage:

COMMON

Restrictions on usage:

Demjanenko, Satterlee Expires March 25, 2016 [Page 19]

This media type depends on RTP framing, and hence is only defined for transfer via RTP [RFC3550]. Transport within other framing protocols is not defined at this time.

Author:

Victor Demjanenko

Change controller:

IETF Payload working group delegated from the IESG.

Provisional registration? (standards tree only):

No

4.2 Mapping to SDP

The mapping of the above defined payload format media type and its parameters SHALL be done according to <u>Section 3 of RFC 4855</u> [<u>RFC4855</u>].

The information carried in the MIME media type specification has a specific mapping to fields in the Session Description Protocol (SDP) [<u>RFC2327</u>], which is commonly used to describe RTP sessions. When SDP is used to specify sessions employing the MELPe codec, the mapping is as follows:

o The MIME type ("audio") goes in SDP "m=" as the media name.

o The MIME subtype (payload format name) goes in SDP "a=rtpmap" as the encoding name.

o The parameter "bitrate" goes in the SDP "a=fmtp" attribute by copying it directly from the MIME media type string as "bitrate=value" or "bitrate=value1,value2" or "bitrate=value1,value2,value3".

When conveying information by SDP, the encoding name SHALL be "MELP" (the same as the MIME subtype). Alternative encoding name types, "MELP2400", "MELP1200", and "MELP600", may be used in SDP to convey fixed bit-rate configurations. These names have been observed in systems that do not support dynamic frame rate switching as specified by the parameter, "bitrate".

An example of the media representation in SDP for describing MELPe might be:

m=audio 49120 RTP/AVP 97

Demjanenko, Satterlee Expires March 25, 2016 [Page 20]

a=rtpmap:97 MELP/8000

An alternative example of SDP for fixed bit-rate configurations might be:

m=audio 49120 RTP/AVP 97 100 101 102 a=rtpmap:97 MELP/8000 a=rtpmap:100 MELP2400/8000 a=rtpmap:101 MELP1200/8000 a=rtpmap:102 MELP600/8000

If the encoding name "MELP" is received without a "bitrate" parameter, the fixed coder bit rate of 2400 MUST be used. The alternate encoding names, "MELP2400", "MELP1200", and "MELP600" directly specify the MELPe coder bit rate of 2400, 1200, and 600 respectively and MUST NOT specify a "bitrate" parameter.

A remote MELPe encoder SHALL receive "bitrate" parameter in the SDP "a=fmtp" attribute by copying them directly from the MIME media type string as a semicolon separated with parameter=value, where parameter is "bitrate", and value can be one or more of 2400, 1200, and 600 separated by commas (where each bit-rate value indicates the corresponding MELPe coder). An example of the media representation in SDP for describing MELPe when all three coder bit rates are supported might be:

m=audio 49120 RTP/AVP 97 a=rtpmap:97 MELP/8000 a=fmtp:97 bitrate=2400,600,1200

For streaming media, the "bitrate" parameter specifes the possible bit rates used by the sender. In an Offer/Answer mode [<u>RFC3264</u>], "bitrate" is a bi-directional parameter. Both sides MUST use a common "bitrate" value or values.

The offer contains the bit rates supported by the offerer listed in its preferred order. The answerer may agree to any bit rate by listing the bit rate first in the answerer response. Additionally the answerer may indicate any secondary bit rate or bit rates that it supports. The initial bit rate used by both parties SHALL be the first bit rate specified in the answerer response.

For example if offerer bit rates are "2400,600", and answer bit rates are "600,2400", the initial bit rate is 600. If other bit rates are provided by the answerer, any common bit rate between offer and answer may be used at any time in the future. Activation of these other common bit rates is beyond the scope of this document.

Demjanenko, Satterlee Expires March 25, 2016 [Page 21]

The use of a lower bit rate is often important for a case such as when one end point utilizes a bandwidth constrained link (e.g. 1200 bps radio link or slower), where only the lower coder bit rate will work.

Parameter ptime can not be used for the purpose of specifying MELPe operating mode, due to fact that for the certain values it will be impossible to distinguish which mode is about to be used (e.g. when ptime=68, it would be impossible to distinguish if packet is carrying 1 frames of 67.5 ms or 3 frames of 22.5 ms etc.).

When SDP is used for broadcast MELPe audio, multiple MELPe rtpmap values (such as 97, 98, and 99 as used below) may be used to convey MELPe coded voice at different bit rates. The receiver can then select an appropriate MELPe codec by using 97, 98, or 99.

m=audio 49120 RTP/AVP 97 98 99
a=rtpmap:97 MELP/8000
a=fmtp:97 bitrate=2400
a=rtpmap:98 MELP/8000
a=fmtp:98 bitrate=1200
a=rtpmap:99 MELP/8000
a=fmtp:99 bitrate=600

Note that the payload format (encoding) names are commonly shown in upper case. MIME subtypes are commonly shown in lower case. These names are case-insensitive in both places. Similarly, parameter names are case-insensitive both in media subtype name and in the default mapping to the SDP a=fmtp attribute

The value for "packet time" and "maximum packet time" parameters of the "ptime" and "maxptime" SDP attributes respectively, SHALL use the nearest rounded-up ms integer packet duration. For MELPe, this corresponds to the values: 23, 45, 68, 90, 112, 135, 156, and 180. Larger values may be used as long as they are properly rounded.

<u>5</u> Discontinious Transmission

A primary application of MELPe is for radio communications of voice conversations and discontinuous transmissions are normal. When MELPe is used in an IP network, MELPe RTP packet transmissions may cease and resume frequently. RTP SSRC sequence number gaps indicate lost packets to be filled by PLC while abrupt loss of RTP packets indicate intended discontinuous transmission.

If a MELPe coder so desires, it may send a comfort noise frame as per SCIP-210 <u>Appendix B</u> [<u>SCIP210</u>] prior to ceasing transmission. A

Demjanenko, Satterlee Expires March 25, 2016 [Page 22]

receiver may optionally use comfort noise during its silence periods. No SDP negotiations are required.

<u>6</u> Packet Loss Concealment

MELPe packet loss concealment (PLC) uses the special properties and coding for the pitch/voicing parameter of the MELPe 2400 bps coder. The PLC erasure indication may utilize any of the errored encodings of a non-voiced frame as identified in Table 1 of [MELPE]. For the sake of simplicity it is recommended to use a code value of 3 for the pitch/voicing parameter (represented by the bits P6 to P0 in Table 3.1). Hence, set bits P0 and P1 to one and bits P2, P3, P4, P5, and P6 to zero.

When using PLC in a 1200 bps or 600 bps mode, the MELPe 2400 bps decoder is called three or four times respectively to cover the loss of a MELPe frame.

Demjanenko, Satterlee Expires March 25, 2016 [Page 23]

7 IANA Considerations

This memo requests that IANA registers MELP, MELP2400, MELP1200, and MELP600 as specified in <u>Section 4.1</u>. The media type is also requested to be added to the IANA registry for "RTP Payload Format MIME types" (http://www.iana.org/assignments/rtp-parameters).

<u>8</u> Security Considerations

RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [RFC3550] , and in any applicable RTP profile such as RTP/AVP [RFC3551], RTP/AVPF [RFC4585], RTP/SAVP [RFC3711] or RTP/ SAVPF [<u>RFC5124</u>]. However, as "Securing the RTP Protocol Framework: Why RTP Does Not Mandate a Single Media Security Solution" [RFC7202] discusses, it is not an RTP payload format's responsibility to discuss or mandate what solutions are used to meet the basic security goals like confidentiality, integrity and source authenticity for RTP in general. This responsibility lays on anyone using RTP in an application. They can find guidance on available security mechanisms and important considerations in Options for Securing RTP Sessions [RFC7201]. Applications SHOULD use one or more appropriate strong security mechanisms. The rest of this security consideration section discusses the security impacting properties of the payload format itself.

This RTP payload format and its media decoder do not exhibit any significant non-uniformity in the receiver-side computational complexity for packet processing, and thus are unlikely to pose a denial-of-service threat due to the receipt of pathological data. Nor does the RTP payload format contain any active content.

9 RFC Editor Considerations

Note to RFC Editor: This section may be removed after carrying out all the instructions of this section.

10 References

<u>10.1</u> Normative References

[I-D.ietf-avtcore-rtp-circuit-breakers] Perkins, C. and V. Singh, "Multimedia Congestion Control: Circuit Breakers for Unicast RTP Sessions", <u>draft-ietf-avtcore-rtp-circuit-breakers-10</u> (work in progress), March 2015.

Demjanenko, Satterlee Expires March 25, 2016 [Page 24]

[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.

[RFC2327] M. Handley and V. Jacobson, "SDP: Session Description Protocol", IETF <u>RFC 2327</u>, April 1998

[RFC2736] M. Handley and C. Perkins, "Guidelines for Writers of RTP Payload Format Specifications", <u>BCP 36</u>, <u>RFC 2736</u>, December 1999.

[RFC3264] J. Rosenberg, H. Schulzrinne, "An Offer/Answer Model with the Session Description Protocol (SDP)" IETF <u>RFC 3264</u>, June 2002.

[RFC3550] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", IETF <u>RFC</u> <u>3550</u>, July 2003.

[RFC3551] H. Schulzrinne, S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control" IETF <u>RFC 3551</u>, July 2003.

[RFC3711] Baugher, et al., "The Secure Real Time Transport Protocol", IETF <u>RFC 3711</u>, March 2004.

[RFC4855] Casner, S., "Media Type Registration of RTP Payload Formats", <u>RFC 4855</u>, February 2007.

[RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback(RTP/SAVPF)", <u>RFC 5124</u>, February 2008.

[RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration Procedures", <u>BCP 13</u>, <u>RFC 6838</u>, January 2013.

[RFC7201] Westerlund, M. and C. Perkins, "Options for Securing RTP Sessions", <u>RFC 7201</u>, April 2014.

[RFC7202] Perkins, C. and M. Westerlund, "Securing the RTP Framework: Why RTP Does Not Mandate a Single Media Security Solution", <u>RFC 7202</u>, April 2014.

<u>10.2</u> Informative References

[MELP] Department of Defense Telecommunications Standard, "Analog-to-Digital Conversion of Voice by 2,400 Bit/Second Mixed Excitation Linear Prediction (MELP)", MIL-STD-3005, December 1999.

[MELPE] North Atlantic Treaty Organization (NATO), "The 600 Bit/S,

Demjanenko, Satterlee Expires March 25, 2016 [Page 25]

INTERNET DRAFT RTP Payload Format for the MELPe CodecSeptember 22, 2015
1200 Bit/S and 2400 Bit/S NATO Interoperable Narrow Band Voice
Coder", STANAG No. 4591, January 2006.
[SCIP210] National Security Agency, "SCIP Signaling Plan", SCIP-210,
December 2007.

Authors' Addresses

Victor Demjanenko, Ph.D. VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 USA Phone: +1 716 688 4675 Email: victor.demjanenko@vocal.com

David Satterlee VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 USA Phone: +1 716 688 4675 Email: david.satterlee@vocal.com Demjanenko, Satterlee Expires March 25, 2016 [Page 26]