
Delay Tolerant Networking Research Group                       M. Demmer
                                                             UC Berkeley
Internet-Draft                                                    J. Ott
Intended status: Experimental          Helsinki University of Technology
Expires: April 19, 2007                                 October 16, 2006

Delay Tolerant Networking TCP Convergence Layer Protocol
draft-demmer-dtnrg-tcp-clayer-00.txt

Status of this Memo

   By submitting this Internet-Draft, each author represents that any
   applicable patent or other IPR claims of which he or she is aware
   have been or will be disclosed, and any of which he or she becomes
   aware will be disclosed, in accordance with Section 6 of BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   This Internet-Draft will expire on April 19, 2007.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   This document describes the protocol for the TCP-based Convergence
   Layer for Delay Tolerant Networking (DTN).

Demmer & Ott             Expires April 19, 2007                 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


Internet-Draft          DTN TCP Convergence Layer           October 2006

Table of Contents

1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  3
2.  Definitions  . . . . . . . . . . . . . . . . . . . . . . . . .  4
2.1.  Definitions Relating to the Bundle Protocol  . . . . . . .  4
2.2.  Definitions specific to the TCPCL Protocol . . . . . . . .  5

3.  General Protocol Description . . . . . . . . . . . . . . . . .  6
3.1.  Example message exchange . . . . . . . . . . . . . . . . .  7

4.  Connection Establishment . . . . . . . . . . . . . . . . . . .  8
4.1.  Contact Header . . . . . . . . . . . . . . . . . . . . . .  9
4.2.  Validation and parameter negotiation . . . . . . . . . . . 11

5.  Established Connection Operation . . . . . . . . . . . . . . . 12
5.1.  Message Type Codes . . . . . . . . . . . . . . . . . . . . 12
5.2.  Bundle Data Transmission . . . . . . . . . . . . . . . . . 13
5.3.  Bundle Acknowledgements  . . . . . . . . . . . . . . . . . 14
5.4.  Bundle Refusal . . . . . . . . . . . . . . . . . . . . . . 15
5.5.  Keepalive Messages . . . . . . . . . . . . . . . . . . . . 15

6.  Connection Termination . . . . . . . . . . . . . . . . . . . . 16
6.1.  Shutdown Message . . . . . . . . . . . . . . . . . . . . . 16
6.2.  Idle Connection Shutdown . . . . . . . . . . . . . . . . . 17

7.  Requirements notation  . . . . . . . . . . . . . . . . . . . . 18
8.  Security Considerations  . . . . . . . . . . . . . . . . . . . 18
9.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . . 18
10. References . . . . . . . . . . . . . . . . . . . . . . . . . . 19

   Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 19
   Intellectual Property and Copyright Statements . . . . . . . . . . 20



Demmer & Ott             Expires April 19, 2007                 [Page 2]



Internet-Draft          DTN TCP Convergence Layer           October 2006

1.  Introduction

   This document describes the TCP-based convergence layer protocol for
   Delay Tolerant Networking (TCPCL).  Delay Tolerant Networking is an
   end-to-end architecture providing communications in and/or through
   highly stressed environments, including those with intermittent
   connectivity, long and/or variable delays, and high bit error rates.
   More detailed descriptions of the rationale and capabilities of these
   networks can be found in the Delay-Tolerant Network Architecture [2]
   Internet Draft.

   An important goal of the DTN architecture is to accomodate a wide
   range of networking technologies and environments.  The protocol used
   for DTN communications is the Bundling Protocol (BP) [3], an
   application-layer protocol that is used to construct a store-and-
   forward overlay network.  As described in the bundle protocol
   specification, BP requires the services of a "convergence layer
   adapter" (CLA) to send and receive bundles using an underlying
   internet protocol.  This document describes one such convergence
   layer adapter that uses the well-known Transmission Control Protocol
   (TCP).

   The locations of the TCPCL and BP in the Internet model protocol
   stack are shown in Figure Figure 1.  In particular, both the BP and
   the TCPCL reside above the transport layer, i.e., at the application
   layer.

      +-------------------------+
      |     DTN Application     | -\
      +-------------------------|   |
      |  Bundle Protocol (BP)   |   -> Application Layer
      +-------------------------+   |
      | TCP Conv. Layer (TCPCL) | -/
      +-------------------------+
      |          TCP            | ---> Transport Layer
      +-------------------------+
      |           IP            | ---> Network Layer
      +-------------------------+
      |   Link-Layer Protocol   | ---> Link Layer
      +-------------------------+
      |    Physical Medium      | ---> Physical Layer
      +-------------------------+

        Figure 1: The locations of the bundle protocol and the TCP
         convergence layer protocol in the Internet protocol stack

   This document describes the format of the protocol data units passed
   between entities participating in TCPCL communications.  This



Demmer & Ott             Expires April 19, 2007                 [Page 3]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   document does not address:

        The format of protocol data units of the bundling protocol, as
        those are defined elsewhere [3].

        Mechanisms for locating or identifying other bundle nodes within
        an internet.

        Operational logic or procedures used to implement this protocol.

   Note that this document describes version 3 of the protocol.
   Versions 0, 1, and 2 were never specified in any Internet Draft, RFC,
   or any other public document.  These prior versions of the protocol
   were, however, implemented in the DTN reference implementation [5],
   in prior releases, hence the current version number reflects the
   existence of those prior versions.

2.  Definitions

2.1.  Definitions Relating to the Bundle Protocol

   The following set of definitions are abbreviated versions of those
   which appear in the Bundle Protocol Specification [3].  To the extent
   in which terms appear in both documents, they are intended to have
   the same meaning.

   Bundle --  A bundle is a protocol data unit of the DTN bundle
        protocol.

   Bundle payload --  A bundle payload (or simply "payload") is the
        application data whose conveyance to the bundle's destination is
        the purpose for the transmission of a given bundle.

   Fragment --  A fragment is a bundle whose payload contains a range of
        bytes from another bundle's payload.

   Bundle node --  A bundle node (or simply a "node") is any entity that
        can send and/or receive bundles.  The particular instantiation
        of this entity is deliberately unconstrained, allowing for
        implementations in software libraries, long-running processes,
        or even hardware.  One component of the bundle node is the
        implementation of a convergence layer adapter.



Demmer & Ott             Expires April 19, 2007                 [Page 4]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   Convergence layer adapter --  A convergence layer adapter (CLA) sends
        and receives bundles utilizing the services of some 'native'
        internet protocol.  This document describes the manner in which
        a CLA sends and receives bundles when using the TCP protocol for
        inter-node communication.

   Self Describing Numeric Value --  A self describing numeric value
        (SDNV) is a variable length encoding for integer values, defined
        in the bundle protocol specification.

2.2.  Definitions specific to the TCPCL Protocol

   This section contains definitions that are interpreted to be specific
   to the operation of the TCPCL protocol, as described below.

   TCP Connection --  A TCP connection refers to a transport connection
        using TCP as the transport protocol.

   TCPCL Connection --  A TCPCL connection (as opposed to a TCP
        connection) is a TCPCL communication relationship between two
        bundle nodes.  The lifetime of a TCPCL connection is one-to-one
        with the lifetime of an underlying TCP connection.  Therefore a
        TCPCL connection is initiated when a bundle node initiates a TCP
        connection to be established for the purposes of bundle
        communication.  A TCPCL connection is terminated when the TCP
        connection ends, due either to one or both nodes actively
        terminating the TCP connection or due to network errors causing
        a failure of the TCP connection.  For the remainder of this
        document, the term "connection" without the prefix "TCPCL" shall
        refer to a TCPCL connection.

   Connection parameters --  The connection parameters are a set of
        values used to affect the operation of the TCPCL for a given
        connection.  The manner in which these parameters are conveyed
        to the bundle node and thereby to the TCPCL is implementation-
        dependent.  However, the mechanism by which two bundle nodes
        exchange and negotiate the values to be used for a given session
        is described in Section Section 4.2.

   Connection initiator --  The connection initiator is the bundle node
        that causes the establishment of a new connection by creating a
        new TCP connection (for example, by using the connect() call in
        the BSD sockets API) and then following the procedures described
        in Section 4.



Demmer & Ott             Expires April 19, 2007                 [Page 5]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   Connection acceptor --  The connection acceptor is the bundle node
        that establishes a connection in response to an active
        connection attempt by another bundle node (for example, by using
        the listen() and accept() calls of the BSD sockets API) and then
        following the procedures described in Section 4.

   Transmission --  Transmission refers to the procedures and mechanisms
        (described below) for conveyance of a bundle from one node to
        another.

3.  General Protocol Description

   This protocol provides bundle conveyance over a TCP connection and
   specifies the encapsulation of bundles as well as procedures for TCP
   connection and teardown.  The general operation of the protocol is as
   follows:

   First one node establishes a connection to the other by initiating a
   TCP connection.  At the beginning of the connection, an initial
   contact header is exchanged in both directions to set parameters of
   the connection and exchange a singleton endpoint identifier for each
   node, to denote the bundle-layer identity of each DTN node.

   Once the connection is established, bundles can be transmitted in
   either direction.  Each bundle is transmitted in one or more logical
   segments of formatted bundle data.  Each logical data segment
   consists of a DATA_SEGMENT message header, an SDNV containing the
   length of the segment, and finally the byte range of the bundle data.
   The choice of the length to use for segments is an implementation
   manner.  The first segment for a bundle must set the 'start' flag and
   the last must set the 'end' flag in the DATA_SEGMENT message header.

   An optional feature of the protocol is for the receiving node to send
   acknowledgements as bundle data segments arrive (ACK_SEGMENT).  The
   rationale behind these acknowledgements is to enable the sender node
   to determine how much of the bundle has been received, so that in
   case the connection is interrupted, it can perform reactive
   fragmentation to avoid re-sending the already transmitted part of the
   bundle.

   When acknowledgements are enabled, then for each data segment that is
   received, the receiving node sends an ACK_SEGMENT code followed by an
   SDNV containing the cumulative length of the bundle that has been
   received.  Note that in the case of concurrent bidirectional



Demmer & Ott             Expires April 19, 2007                 [Page 6]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   transmission, then ack segments may be interleaved with data
   segments.

   Another optional feature is that a receiver may interrupt the
   transmission of a bundle at any point in time by replying with a
   negative acknowledgement (REFUSE_BUNDLE) which causes the sender to
   stop transmission of the current bundle, after completing
   transmission of all partially sent data segments.  Note: This allows
   a receiver that detects it already has received a certain bundle to
   interrupt transmission as early as possible and thus save
   transmission capacity for other bundles.

   For connections that are idle, a KEEPALIVE message may optionally be
   sent at a negotiated interval.  This is used to convey liveness
   information.

   Finally, before connections close, a SHUTDOWN message is sent on the
   channel.  After sending a SHUTDOWN message, the sender of this
   message may send further acknowledgements (ACK_SEGMENT or
   REFUSE_BUNDLE) but no further data messages (DATA_SEGMENT).  A
   SHUTDOWN message may also be used to refuse a connection setup by a
   peer.

3.1.  Example message exchange

   The following figure visually depicts the protocol exchange for a
   simple session, showing the connection establishment, and the
   transmission of a single bundle split into three data segments (of
   lengths L1, L2, and L3) from Node A to Node B.

   Note that the sending node may transmit multiple DATA_SEGMENT
   messages without necessarily waiting for the corresponding
   ACK_SEGMENT responses.  This enables pipelining of messages on a
   channel.  Although this example only demonstrates a single bundle
   transmission, it is also possible to pipeline multiple DATA_SEGMENT
   messages for different bundles without necessarily waiting for
   ACK_SEGMENT messages to be returned for each one.

   No errors or rejections are shown in this example.



Demmer & Ott             Expires April 19, 2007                 [Page 7]



Internet-Draft          DTN TCP Convergence Layer           October 2006

                Node A                              Node B
                ======                              ======

      +-------------------------+         +-------------------------+
      |     Contact Header      | ->   <- |     Contact Header      |
      +-------------------------+         +-------------------------+

      +-------------------------+
      |   DATA_SEGMENT (start)  | ->
      |    SDNV length [L1]     | ->
      |    Bundle Data 0..L1    | ->
      +-------------------------+
      +-------------------------+         +-------------------------+
      |     DATA_SEGMENT        | ->   <- |       ACK_SEGMENT       |
      |    SDNV length [L2]     | ->   <- |     SDNV length [L1]    |
      |    Bundle Data L1..L2   | ->      +-------------------------+
      +-------------------------+
      +-------------------------+         +-------------------------+
      |    DATA_SEGMENT (end)   | ->   <- |       ACK_SEGMENT       |
      |     SDNV length [L3]    | ->   <- |   SDNV length [L1+L2]   |
      |    Bundle Data L2..L3   | ->      +-------------------------+
      +-------------------------+
                                          +-------------------------+
                                       <- |       ACK_SEGMENT       |
                                       <- |  SDNV length [L1+L2+L3] |
                                          +-------------------------+

      +-------------------------+         +-------------------------+
      |       SHUTDOWN          | ->   <- |         SHUTDOWN        |
      +-------------------------+         +-------------------------+

   Figure 2: A simple visual example of the flow of protocol messages on
             a single TCP session between two nodes (A and B)

4.  Connection Establishment

   For bundle transmissions to occur using the TCPCL, a connection must
   first be established between communicating nodes.  The manner in
   which a bundle node makes the decision to establish such a connection
   is implementation dependant.  For example, some connections may be
   opened proactively and maintained for as long as is possible given
   the network conditions, while other connections may be opened only
   when there is a bundle that is queued for transmission and the
   routing algorithm selects a certain next hop node.

   To establish a TCPCL connection, a node must first establish a TCP



Demmer & Ott             Expires April 19, 2007                 [Page 8]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   connection with the intended peer node, typically by using the
   services provided by the operating system.  If the node is unable to
   establish a TCP connection for any reason, then it is an
   implementation manner to determine how to handle the failed
   connection.  For example, a node may decide to re-attempt to
   establish the connection, perhaps after some delay or it may attempt
   to find an alternate route for bundle data.

   Note: If a node re-attempts a connection establishment, it SHOULD
   ensure that it does not overwhelm its target with repeated connection
   setup attempts and SHOULD use a (binary) exponential backoff to
   determine the timeout after which to retry.

   Once a TCP connection is established, the connection initiator MUST
   immediately transmit a contact header over the TCP connection.  The
   connection acceptor MUST also immediately transmit a contact header
   over the TCP connection.  The format of the contact header is
   described in Section 4.1).

   Upon receipt of the contact header, both nodes perform the validation
   and negotiation procedures defined in Section 4.2

   After receiving the contact header from the other node, either node
   MAY also refuse the connection by sending a SHUTDOWN message.  If
   connection setup is refused a reason MUST be included in the SHUTDOWN
   message.

4.1.  Contact Header

   Once a TCP connection is established, both parties exchange a contact
   header.  This section describes the format of the contact header and
   the meaning of its fields.

   The format for the Contact Header is as follows:

                        1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+---------------+---------------+
   |                          magic='dtn!'                         |
   +---------------+---------------+---------------+---------------+
   |     version   |     flags     |      keepalive_interval       |
   +---------------+---------------+---------------+---------------+
   |                     local eid length (SDNV)                   |
   +---------------+---------------+---------------+---------------+
   |                      local eid (variable)                     |
   +---------------+---------------+---------------+---------------+

                      Figure 3: Contact Header Format



Demmer & Ott             Expires April 19, 2007                 [Page 9]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   The fields of the contact header are:

   magic:  A four byte field that always contains the byte sequence 0x64
        0x76 0x6e 0x21, i.e. the ASCII string "dtn!".

   version:  A one byte field value containing the current version of
        the protocol.

   flags:  A one byte field containing optional connection flags.  The
        first five bits are unused and must be set to zero.  The last
        three bits are interpreted as follows:

   keepalive_interval:  A two byte integer field containing the number
        of seconds between exchanges of keepalive messages on the
        connection (see Section 5.5).  This value is in network byte
        order, as are all other multi-byte fields described in this
        protocol.

   local eid length:  A variable length SDNV field containing the length
        of the endpoint identifier (EID) for some singleton endpoint in
        which the sending node is a member.  A four byte SDNV is
        depicted for clarity of the figure.

   local eid:  An octet string containing the EID of some singleton
        endpoint in which the sending node is a member, in the canonical
        format of <scheme name>:<scheme-specific part>.  A four byte EID
        is shown the clarity of the figure.

   +----------+--------------------------------------------------------+
   |   Value  | Meaning                                                |
   +----------+--------------------------------------------------------+
   | 00000001 | Request acknowledgement of bundle segments.            |
   | 00000010 | Request enabling of reactive fragmentation.            |
   | 00000100 | Indicate support for negative acknowledgements.  This  |
   |          | flags MUST NOT be used unless support for              |
   |          | acknowledgements is also indicated.                    |
   +----------+--------------------------------------------------------+

                       Table 1: Contact Header Flags

   The manner in which values are configured and chosen for the various
   flags and parameters in the contact header is implementation
   dependent.



Demmer & Ott             Expires April 19, 2007                [Page 10]



Internet-Draft          DTN TCP Convergence Layer           October 2006

4.2.  Validation and parameter negotiation

   Upon reception of the contact header, both the connection initiator
   and the connection acceptor follow the following procedures for
   ensuring the validity of the connection and to negotiate values for
   the connection parameters.

   If the magic string is not present or is not valid, the connection
   MUST be terminated.  The intent of the magic string is to provide a
   some protection against an inadvertent TCP connection by a different
   protocol than the one described in this document.  To prevent a flood
   of repeated connections from a misconfigured application, a node MAY
   elect to hold an invalid connection open and idle for some time
   before closing it.

   If a node receives a contact header containing a version that is
   greater than the current version of the protocol that the node
   implements, then the node SHOULD interpret all fields and messages as
   it would normally.  If a node receives a contact header with a
   version that is lower than the version of the protocol that the node
   implements, the node may either terminate the connection due to the
   version mismatch, or may adapt its operation to conform to the older
   version of the protocol.  This decision is an implementation manner.

   A node calculates the parameters for a connection by negotiating the
   values from its own preferences (conveyed by the contact header it
   sent) with the preferences of the peer node (expressed in the contact
   header that it received).  This negotiation should proceed in the
   following manner:

        The segment acknowledgements enabled parameter is set to true
        iff the corresponding flag is set in both contact headers.

        The reactive fragmentation enabled parameter is set to true iff
        the corresponding flag is set in both contact headers.

        Negative acknowledgements to interrupt transmission (actually:
        refuse reception) of a bundle may only be used iff both peers
        indicate support for negative acknowledements in their contact
        header.

        The keealive_interval parameter should be set to the minimum
        value from both contact headers.  If one or both contact headers
        contains the value zero, then the keepalive feature (described
        in Section 5.5) is disabled.



Demmer & Ott             Expires April 19, 2007                [Page 11]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   Once this process of parameter negotiation is completed, the protocol
   defines no additional mechanism to change the parameters of an
   established connection; to effect such a change, the connection MUST
   be terminated and a new connection established.

5.  Established Connection Operation

   This section describes the protocol operation for the duration of an
   established connection, including the mechanisms for transmitting
   bundles over the connection.

5.1.  Message Type Codes

   After the initial exchange of a contact header, all messages
   transmitted over the connection are denoted by a one octet header
   with the following structure:

       0 1 2 3 4 5 6 7
      +-+-+-+-+-+-+-+-+
      | type  | flags |
      +-+-+-+-+-+-+-+-+

   type:  Indicates the type of the message as per Table 2 below

   flags:  Optional flags defined on a per message type basis.

   The types and values for the message type code are as follows.

   +----------------+------+-------------------------------------------+
   |      Type      | Code | Comment                                   |
   +----------------+------+-------------------------------------------+
   |  DATA_SEGMENT  | 0x1  | Indicates the transmission of a segment   |
   |                |      | of bundle data, described in Section 5.2. |
   |                |      |                                           |
   |   ACK_SEGMENT  | 0x2  | Acknowledges reception of a data segment, |
   |                |      | described in Section 5.3                  |
   |                |      |                                           |
   |  REFUSE_BUNDLE | 0x3  | Indicates that the transmission of the    |
   |                |      | current bundle shall be stopped,          |
   |                |      | decscribed in Section 5.4.                |
   |                |      |                                           |
   |    KEEPALIVE   | 0x4  | Keepalive message for the connection,     |
   |                |      | described in Section 5.5.                 |
   |                |      |                                           |



Demmer & Ott             Expires April 19, 2007                [Page 12]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   |    SHUTDOWN    | 0x5  | Indicates that one of the nodes           |
   |                |      | participating in the connection wishes to |
   |                |      | cleanly terminate the connection,         |
   |                |      | described in Section 6.                   |
   |                |      |                                           |
   +----------------+------+-------------------------------------------+

                        Table 2: TCPCL Header Types

   Open Issue: Currently, the message code implicitly identifies the
   expected message length, possibly in combination with some flags.
   This may limit backwards compatible extensibility: an "old" endpoint
   may not know about a "new" message code or extension flag and hence
   may not be able to skip the unknown (part of the) message, even
   though it would otherwise be perfectly capable of interoperating (at
   reduced functionality).  Therefore, we may want to consider providing
   an explicit length indication if the message length is more than a
   single octet.  Options include: (a) always including a length field,
   (b) using one bit of the flags to indicate whether or not length
   field is present (which then would be the case for all messages of
   more than one byte length), and (c) relying on a new version number
   for all extensions.

5.2.  Bundle Data Transmission

   Each bundle is transmitted in one or more data segments.  The format
   of a data segment message is as follows:

                           1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  0x1  |0|0|S|E|   length ...    |  contents....               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The type portion of the message header contains the value 0x1.

   The flags portion of the message header octet contains two optional
   values in the two low-order bits, denoted 'S' and 'E' above.  The 'S'
   bit MUST be set to one iff it precedes the transmission of the first
   segment of a new bundle.  The 'E' bit MUST be set to one when
   transmitting the last segment of a bundle.

   Determining the segment size is an implementation manner.  In
   particular, a node may, based on local policy or configuration, only
   ever transmit bundle data in a single segment, in which case both the
   'S' and 'E' bits MUST be set to one.  However a node must be able to
   receive a bundle that has been tranmsmitted in any segment size.



Demmer & Ott             Expires April 19, 2007                [Page 13]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   In the bundle protocol specification, a single bundle comprises of a
   primary bundle block, a payload block, and zero or more additional
   bundle blocks.  The relationship between the protocol blocks and the
   convergence layer segments is an implementation-specific decision.
   In particular, a segment may contain more than one protocol block;
   alternatively, a single protocol block (such as the payload) may be
   split into multiple segments.

   Once a transmission of a bundle has commenced, the node MUST only
   send segments containing sequential portions of that bundle until it
   sends a segment with the 'E' bit set.

   Following the message header, the length field is an SDNV containing
   the number of bytes of bundle data that are transmitted in this
   segment.  Following this length is the actual data contents.

5.3.  Bundle Acknowledgements

   Although the TCP transport provides reliable transfer of data between
   hosts, the typical BSD sockets interface provides no means to inform
   a sending application of when the receiving application has processed
   some amount of transmitted data.  Thus after transmitting some data,
   a bundle protocol agent needs an additional mechanism to determine
   whether the receiving agent has successfully received the segment.

   To this end, the TCPCL protocol offers an optional feature whereby a
   receiving node transmits acknowledgements of reception of data
   segments.  This feature is enabled if and only if during the exchange
   of contact headers, both parties set the flag to indicate that
   segment acknowledgements are enabled (see Section 4.1).  If so, then
   the receiver must transmit a bundle acknowledgement header when it
   successfully receives each data segment.

   The format of a bundle acknowledgement is:

                           1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  0x2  |0|0|0|0|   acknowledged length ...                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   To transmit an acknowledgement, a node first transmits a message
   header with the ACK_SEGMENT type code and all flags set to zero, then
   transmits an SDNV containing the cumulative length of the received
   segment(s) of the current bundle.  For example, suppose the sending
   node transmits four segments of bundle data with lengths 100, 200,
   500, and 1000 respectively.  After receiving the first segment, the
   node sends an acknowledgement of length 100.  After the second



Demmer & Ott             Expires April 19, 2007                [Page 14]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   segment is received, the node sends an acknowledgement of length 300.
   The third and fourth acknowledgements are of length 800 and 1800
   respectively.

5.4.  Bundle Refusal

   As bundles may be large, the TCPCL supports an optional mechanisms by
   which a receiving node may indicate to the sender that it does not
   want to receive the corresponding bundle.

   To do so, upon receiving a DATA_SEGMENT message, the node may
   transmit a REFUSE_BUNDLE message.  As data segments and
   acknowledgements may cross on the wire, the data segment (and thus
   the bundle) that is being refused is implicitly identified by the
   sequence in which positive and negative acknowledgements are
   received.

   The receiver MUST have acknowledged (positively or negatively) all
   other received DATA_SEGMENTs before the one to be refused so that the
   sender can identify the bundles accepted and refused by means of a
   simple FIFO list of segments and acknowledgments.

   The bundle refusal MAY be sent before the entire data segment is
   received.  If a sender receives a REFUSE_BUNDLE message, the sender
   MUST complete the transmission of any partially-sent DATA_SEGMENT
   message (so that the receiver stays in sync).  The sender MUST NOT
   commence transmission of any further segments of the rejected bundle
   subsequently.  Note, however, that this requirement does not ensure
   that a node will not receive another DATA_SEGMENT for the same bundle
   after transmitting a REFUSE_BUNDLE message since messages may cross
   on the wire; if this happens, subsequent segments of the bundle
   SHOULD be refused with a REFUSE_BUNDLE message, too.

5.5.  Keepalive Messages

   The protocol includes a provision for transmission of keepalive
   messages over the TCP connection to help determine if the connection
   has been disrupted.

   As described in Section 4.1, one of the parameters in the contact
   header is the keepalive_interval.  Both sides populate this field
   with their requested intervals (in seconds) between keepalive
   messages.

   The format of a keepalive message is a one byte message type code of
   KEEPALIVE (as described in Table 2, with no additional data.  Both
   sides should send a keepalive message whenever the negotiated
   interval has elapsed with no transmission of any message (keepalive



Demmer & Ott             Expires April 19, 2007                [Page 15]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   or other).

   If no message (keepalive or other) has been received for at least
   twice the keepalive interval, then either party may terminate the
   session by transmitting a one byte message type code of SHUTDOWN (as
   described in Table 2) and closing the TCP connection.

6.  Connection Termination

   This section describes the procedures for ending a TCPCL connection.

6.1.  Shutdown Message

   To cleanly shut down a connection, a SHUTDOWN message can be
   transmitted by either the initiator or the acceptor at any point
   following complete transmission of any other message.  In case
   acknowledgements have been negotiated, it is advisable to acknowledge
   all received data segments first and then shut down the connection.

   The format of the shutdown message is as follows:

                           1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  0x3  |0|0|R|D| reason (opt)  | reconnection delay (opt)      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   It is possible for a node to convey additional information regarding
   the reason for connection termination.  To do so, the node sets the
   'R' bit in the message header flags, and transmits a one-byte reason
   code immediately following the message header.  The specified values
   of the reason code are:

   +------+-------------------+----------------------------------------+
   | Code | Meaning           | Comment                                |
   +------+-------------------+----------------------------------------+
   | 0x00 | Idle timeout      | The connection is being closed due to  |
   |      |                   | idleness.                              |
   |      |                   |                                        |
   | 0x01 | Version mismatch  | The node cannot conform to the         |
   |      |                   | specified TCPCL protocol version.      |
   |      |                   |                                        |
   | 0x02 | Busy              | The node is too busy to handle the     |
   |      |                   | current connection.                    |
   +------+-------------------+----------------------------------------+



Demmer & Ott             Expires April 19, 2007                [Page 16]



Internet-Draft          DTN TCP Convergence Layer           October 2006

                      Table 3: Shutdown Reason Codes

   It is also possible to convey a requested reconnection delay to
   indicate how long the other node must wait before attempting
   connection re-establishment.  To do so, the node sets the 'D' bit in
   the message header flags, then transmits an SDNV specifying the
   requested delay, in seconds, following the message header (and
   optionally the shutdown reason code).  The value 0 shall be
   interpreted as an infinite delay, i.e. that the node should not ever
   re-establish the connection.  In contrast, if the node does not wish
   to request a delay, it should omit the delay field (and set the 'D'
   bit to zero).  Note that in the figure above, a two octet SDNV is
   shown for convenience in representation.

   A connection shutdown MAY occur immediately after TCP connection
   establishment or reception of a contact header (and prior to any
   further data exchange).  This may, for example, be used to notify a
   the initiator that the node is currenly not capable of or willing to
   communicate.  Note, however, that a node MUST always send the contact
   header to its peer first.

   If either node terminates a connection prematurely in this manner, it
   SHOULD send a SHUTDOWN message and MUST indicate a reason code unless
   the incoming connection did not include the magic string.  If a node
   does not want its peer to re-open the connection immediately, it
   SHOULD set the 'D' bit in the flags and include a reconnection delay
   to indicate when the peer is allowed to attempt another connection
   setup.

   If a connection is terminated before another protocol message has
   completed, then the node must not transmit the SHUTDOWN message but
   still should close the TCP connection.  In particular, if the
   connection is interrupted while a node is in the process of
   transmitting a bundle data segment, then the node may identify that
   the connection should be terminated before it has completed the
   transmission of the data segment.  Thus were the node to transmit the
   SHUTDOWN message, the receiving node might erroneously interpret the
   SHUTDOWN message to be part of the data segment.

6.2.  Idle Connection Shutdown

   The protocol includes a provision for clean shutdown of idle TCP
   connections.  Determining the length of time to wait before closing
   idle connections, if they are to be closed at all, is an
   implementation and configuration matter.

   If there is a configured time to close idle links, then if no bundle
   data (other than keepalive messages) has been received for at least



Demmer & Ott             Expires April 19, 2007                [Page 17]



Internet-Draft          DTN TCP Convergence Layer           October 2006

   that amount of time, then either node may terminate the connection by
   transmitting a SHUTDOWN message indicating the reason code of 'idle
   timeout' (as described above).  After receiving a SHUTDOWN message in
   response, both sides may close the TCP connection.

7.  Requirements notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [1].

8.  Security Considerations

   One security consideration for this protocol relates to the fact that
   nodes present their endpoint identifier as part of the connection
   header exchange.  It would be possible for a node to fake this value
   and present the identity of a singleton endpoint in which the node is
   not a member, essentially masquerading as another DTN node.  If this
   identifier is used without further verification as a means to
   determine which bundles are transmitted over the connection, then the
   node that has falsified its identity may be able to obtain bundles
   that it should not have.

   These concerns may be mitigated through the use of the Bundle
   Security Protocols [4].  In particular, the Bundle Authentication
   Header defines mechanism for secure exchange of bundles between DTN
   nodes.  Thus an implementation could delay trusting the presented
   endpoint identifier until the node can securely validate that its
   peer is in fact the only member of the given singleton endpoint.

   Another consideration for this protocol relates to denial of service
   attacks.  A node may send a large amount of data over a TCP
   connection, requiring the receiving node to either handle the data,
   attempt to stop the flood of data by sending a REFUSE_BUNDLE message,
   or forcibly terminate the connection.  This burden could cause denial
   of service on other, well-behaving connections.  There is also
   nothing to prevent a malicious node from continually establishing
   connections and repeatedly trying to send copious amounts of bundle
   data.

9.  IANA Considerations

   There should be a well-known TCP port assignment for this protocol.



Demmer & Ott             Expires April 19, 2007                [Page 18]



Internet-Draft          DTN TCP Convergence Layer           October 2006

10.  References

   [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", RFC 2119, March 1997.

   [2]  Cerf et al, V., "Delay-Tolerant Network Architecture", work in
        progress, Internet Draft draft-irtf-dtnrg-arch-06.txt,
        September 2006.

   [3]  Scott, K. and S. Burleigh, "Bundle Protocol Specification", work
        in progress, Internet Draft

draft-irtf-dtnrg-bundle-security-02.txt, August 2006.

   [4]  Symington, S., Farrell, S., and H. Weiss, "Bundle Security
        Protocol Specification", work in progress, Internet
        Draft draft-irtf-dtnrg-bundle-security-02.txt, October 2006.

   [5]  DTNRG, "Delay Tolerant Networking Reference Implementation",
        <http://www.dtnrg.org/Code>.

Authors' Addresses

   Michael J. Demmer
   University of California, Berkeley
   Computer Science Division
   445 Soda Hall
   Berkeley, CA  94720-1776
   US

   Email: demmer@cs.berkeley.edu

   Joerg Ott
   Helsinki University of Technology
   Networking Laboratory
   PO Box 3000
   TKK  02015
   Finland

   Email: jo@netlab.tkk.fi

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-arch-06.txt
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-bundle-security-02.txt
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-bundle-security-02.txt
http://www.dtnrg.org/Code


Demmer & Ott             Expires April 19, 2007                [Page 19]



Internet-Draft          DTN TCP Convergence Layer           October 2006

Full Copyright Statement

   Copyright (C) The Internet Society (2006).

   This document is subject to the rights, licenses and restrictions
   contained in BCP 78, and except as set forth therein, the authors
   retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at
   ietf-ipr@ietf.org.

Acknowledgment

   Funding for the RFC Editor function is provided by the IETF
   Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr


Demmer & Ott             Expires April 19, 2007                [Page 20]


