
Internet Engineering Task Force D. DeVault
Internet-Draft SourceHut
Intended status: Informational 20 November 2020
Expires: 24 May 2021

Binary Application Record Encoding (BARE)
draft-devault-bare-01

Abstract

 The Binary Application Record Encoding (BARE) is a data format used
 to represent application records for storage or transmission between
 programs. BARE messages are concise and have a well-defined schema,
 and implementations may be simple and broadly compatible. A schema
 language is also provided to express message schemas out-of-band.

Comments

 Comments are solicited and should be addressed to the mailing list at
 ~sircmpwn/public-inbox@lists.sr.ht and/or the author(s).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 May 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights

DeVault Expires 24 May 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft BARE November 2020

 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3
1.2. Use-cases . 3

2. Specification of the BARE Message Encoding 3
2.1. Primitive Types . 4
2.2. Aggregate Types . 6
2.3. User-Defined Types 7
2.4. Invariants . 7

3. BARE Schema Language Specification 8
3.1. Lexical Analysis . 8
3.2. ABNF Grammar . 8
3.3. Semantic Elements . 9

4. Application Considerations 10
5. Future Considerations . 10
6. IANA Considerations . 11
7. Security Considerations 11
8. Normative References . 11
Appendix A. Example message schema 12
Appendix B. Example Messages 14

 Author's Address . 15

1. Introduction

 The purpose of the BARE message encoding, like hundreds of others, is
 to encode application messages. The goals of such encodings vary
 (leading to their proliferation); BARE's goals are the following:

 * Concise messages

 * A well-defined message schema

 * Broad compatibility with programming environments

 * Simplicity of implementation

 This document specifies the BARE message encoding, as well as a
 schema language which may be used to describe the layout of a BARE
 message. The schema of a message must be agreed upon in advance by
 each party exchanging a BARE message; message structure is not
 encoded into the representation. The schema language is useful for
 this purpose, but not required.

https://trustee.ietf.org/license-info

DeVault Expires 24 May 2021 [Page 2]

Internet-Draft BARE November 2020

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Use-cases

 The goals of a concise, binary, strongly-typed, and broadly-
 compatible structured message encoding format support a broad number
 of use-cases. Examples include:

 * Self-describing authentication tokens for web services

 * Opaque messages for transmitting arbitrary state between unrelated
 internet services

 * A representation for packets in an internet protocol

 * A structured data format for encrypted or signed application
 messages

 * A structured data format for storing data in persistent storage

 The conciseness of a BARE-encoded message enables representing
 structured data under strict limitations on message length in a large
 variety of contexts. The simple binary format may also be easily
 paired with additional tools, such as plain-text encodings,
 compression, or cryptography algorithms, as demanded by the
 application's needs, without increasing the complexity of the message
 encoding. A BARE message has a comparible size and entropy to the
 underlying state it represents.

 The BARE schema language also provides a means of describing the
 format of BARE messages without implementation-specific details.
 This encourages applications which utilize BARE to describe their
 state in a manner which other programmers can easily utilize for
 application inter-operation. The conservative set of primitives
 offered by BARE aids in making such new implementations easy to
 write.

2. Specification of the BARE Message Encoding

 A BARE message is a single value of a pre-defined type, which may be
 of an aggregate type enclosing multiple values. Unless otherwise
 specified there is no additional container or structure around the
 value; it is encoded plainly.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

DeVault Expires 24 May 2021 [Page 3]

Internet-Draft BARE November 2020

 A BARE message does not necessarily have a fixed length, but the
 schema author may make a deliberate choice to constrain themselves to
 types of well-defined lengths if this is desired.

 The names for each type are provided to establish a vocabulary for
 describing a BARE message schema out-of-band, by parties who plan to
 exchange BARE messages. The type names used here are provided for
 this informative purpose, but are more rigourously specified by the
 schema language specification in Section 3.

2.1. Primitive Types

 Primitive types represent exactly one value.

 uint
 An unsigned integer with a variable-length encoding. Each
 octet of the encoded value has the most-significant bit set,
 except for the last octet. The remaining bits are the
 integer value in 7-bit groups, least-significant first.

 The maximum precision of such a number is 64-bits. The
 maximum length of an encoded uint is therefore 10 octets.

 Numbers which require all ten octets will have 6 bits in the
 final octet which do not have meaning, between the least- and
 most-significant bits. The implementation MUST set these to
 zero.

 int
 A signed integer with a variable-length encoding. Signed
 integers are represented as uint using a "zig-zag" encoding:
 positive values x are written as 2x + 0, negative values are
 written as 2(^x) + 1. In other words, negative numbers are
 complemented and whether to complement is encoded in bit 0.

 The maximum precision of such a number is 64-bits. The
 maximum length of an encoded int is therefore 10 octets.

 Numbers which require all ten octets will have 6 bits in the
 final octet which do not have meaning, between the least- and
 most-significant bits. The implementation MUST set these to
 zero.

 u8, u16, u32, u64
 Unsigned integers of a fixed precision, respectively 8, 16,
 32, and 64 bits. They are encoded in little-endian (least
 significant octet first).

DeVault Expires 24 May 2021 [Page 4]

Internet-Draft BARE November 2020

 i8, i16, i32, i64
 Signed integers of a fixed precision, respectively 8, 16, 32,
 and 64 bits. They are encoded in little-endian (least
 significant octet first), with two's compliment notation.

 f32, f64
 Floating-point numbers represented with the IEEE 754
 [IEEE.754.1985] binary32 and binary64 floating point number
 formats.

 The encoder MUST NOT encode NaN into a BARE message, and the
 decoder SHOULD raise an error if it encounters such a value.

 bool
 A boolean value, either true or false, encoded as a u8 type
 with a value of one or zero, respectively representing true
 or false.

 If a value other than one or zero is found in the u8
 representation of the bool, the message is considered
 invalid, and the decoder SHOULD raise an error if it
 encounters such a value.

 enum
 An unsigned integer value from a set of possible values
 agreed upon in advance, encoded with the uint type.

 An enum whose uint value is not a member of the values agreed
 upon in advance is considered invalid, and the decoder SHOULD
 raise an error if it encounters such a value.

 Note that this makes the enum type unsuitable for
 representing a several enum values which have been combined
 with a bitwise OR operation.

 string
 A string of text. The length of the text in octets is
 encoded first as a uint, followed by the text data
 represented with the UTF-8 encoding [RFC3629].

 If the data is found to contain invalid UTF-8 sequences, it
 is considered invalid, and the decoder SHOULD raise an error
 if it encounters such a value.

https://datatracker.ietf.org/doc/html/rfc3629

DeVault Expires 24 May 2021 [Page 5]

Internet-Draft BARE November 2020

 data<length>
 Arbitrary data with a fixed "length" in octets, e.g.
 data<16>. The data is encoded literally in the message, and
 MUST NOT be greater than 18,446,744,073,709,551,615 octets in
 length (the maximum value of a u64).

 data
 Arbitrary data of a variable length in octets. The length is
 encoded first as a uint, followed by the data itself encoded
 literally.

 void
 A type with zero length. It is not encoded into BARE
 messages.

2.2. Aggregate Types

 Aggregate types may store zero or more primitive or aggregate values.

 optional<type>
 A value of "type" which may or may not be present, e.g.
 optional<u32>. Represented as either a u8 with a value of
 zero, indicating that the optional value is unset; or a u8
 with a value of one, followed by the encoded data of the
 optional type.

 An optional value whose initial u8 is set to a number other
 than zero or one is considered invalid, and the decoder
 SHOULD raise an error if it encounters such a value.

 [length]type
 A list of "length" values of "type", e.g. [10]uint. The
 length is not encoded into the message. The encoded values
 of each member of the list are concatenated to form the
 encoded list.

 []type
 A variable-length list of values of "type", e.g. []string.
 The length of the list (in values) is encoded as a uint,
 followed by the encoded values of each member of the list
 concatenated.

 map[type A]type B

DeVault Expires 24 May 2021 [Page 6]

Internet-Draft BARE November 2020

 An mapping of values of type B keyed by values of type A,
 e.g. map[u32]string. The encoded representation of a map
 begins with the number of key/value pairs as a uint, followed
 by the encoded key/value pairs concatenated. Each key/value
 pair is encoded as the encoded key concatenated with the
 encoded value.

 A message with repeated keys is considered invalid, and the
 decoder SHOULD raise an error if it encounters such a value.

 (type | type | ...)
 A tagged union whose value may be one of any type from a set
 of types, e.g. (int | uint | string). Each type in the set
 is assigned a numeric identifier. The value is encoded as
 the selected type's identifier represented with the uint
 encoding, followed by the encoded value of that type.

 A union with a tag value that does not have a corresponding
 type assigned is considered invalid, and the decoder SHOULD
 raise an error if it encounters such a value.

 struct
 A set of values of arbitrary types, concatenated in an order
 agreed upon in advance. Each value is referred to as a
 "field", and field has a name and type.

2.3. User-Defined Types

 A user-defined type gives a name to another type. This creates a
 distinct type whose representation is equivalent to the named type.
 An arbitrary number of user-defined types may be used for the same
 underlying type; each is distinct from the other.

2.4. Invariants

 The following invariants are specified:

 * Any type which is ultimately a void type (either directly or via a
 user-defined type) MUST NOT be used as an optional type, struct
 member, list member, map key, or map value. Void types may only
 be used as members of the set of types in a tagged union.

 * The lengths of fixed-length arrays and data types MUST be at least
 one.

 * Structs MUST have at least one field.

DeVault Expires 24 May 2021 [Page 7]

Internet-Draft BARE November 2020

 * Unions MUST have at least one type, and each type MUST NOT be
 repeated.

 * Map keys MUST be of a primitive type which is not data or
 data<length>.

 * Each named value of an enum type MUST have a unique value.

3. BARE Schema Language Specification

 The use of the schema language is optional. Implementations SHOULD
 support decoding arbitrary BARE messages without a schema document,
 by defining the schema in a manner which utilizes more native tools
 available from the programming environment.

 However, it may be useful to have a schema document for use with code
 generation, documentation, or interoperability. A domain-specific
 language is provided for this purpose.

3.1. Lexical Analysis

 During lexical analysis, "#" is used for comments; if encountered,
 the "#" character and any subsequent characters are discarded until a
 line feed (%x0A) is found.

3.2. ABNF Grammar

 The syntax of the schema language is provided here in Augmented
 Backus-Naur form [RFC5234]. However, this grammar differs from
 [RFC5234] in that strings are case-sensitive (e.g. "type" does not
 match TypE).

 schema = [WS] user-types [WS]

 user-type = "type" WS user-type-name WS non-enum-type
 user-type =/ "enum" WS user-type-name WS enum-type
 user-types = user-type / (user-types WS user-type)

 type = non-enum-type / enum-type
 non-enum-type = primitive-type / aggregate-type / user-type-name

 user-type-name = UPPER *(ALPHA / DIGIT) ; First letter is uppercase

 primitive-type = "int" / "i8" / "i16" / "i32" / "i64"
 primitive-type =/ "uint" / "u8" / "u16" / "u32" / "u64"
 primitive-type =/ "f32" / "f64"
 primitive-type =/ "bool"
 primitive-type =/ "string"

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

DeVault Expires 24 May 2021 [Page 8]

Internet-Draft BARE November 2020

 primitive-type =/ "data" / ("data<" integer ">")
 primitive-type =/ "void"

 enum-type = "{" [WS] enum-values [WS] "}"
 enum-values = enum-value / (enum-values WS enum-value)
 enum-value = enum-value-name
 enum-value =/ (enum-value-name [WS] "=" [WS] integer)
 enum-value-name = UPPER *(UPPER / DIGIT / "_")

 aggregate-type = optional-type
 aggregate-type =/ array-type
 aggregate-type =/ map-type
 aggregate-type =/ union-type
 aggregate-type =/ struct-type

 optional-type = "optional<" type ">"

 array-type = "[" [integer] "]" type
 integer = 1*DIGIT

 map-type = "map[" type "]" type

 union-type = "(" union-members ")"
 union-members = union-member
 union-members =/ (union-members [WS] "|" [WS] union-member)
 union-member = type [[WS] "=" [WS] integer]

 struct-type = "{" [WS] fields [WS] "}"
 fields = field / (fields WS field)
 field = 1*ALPHA [WS] ":" [WS] type

 UPPER = %x41-5A ; uppercase ASCII letters
 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
 DIGIT = %x30-39 ; 0-9

 WS = 1*(%x0A / %x09 / " ") ; whitespace

 See Appendix A for an example schema written in this language.

3.3. Semantic Elements

 The names of fields and user-defined types are informational: they
 are not represented in BARE messages. They may be used by code
 generation tools to inform the generation of field and type names in
 the native programming environment.

DeVault Expires 24 May 2021 [Page 9]

Internet-Draft BARE November 2020

 Enum values are also informational. Values without an integer token
 are assigned automatically in the order that they appear, starting
 from zero and incrementing for each subsequent unassigned value. If
 a value is explicitly specified, automatic assignment continues from
 that value plus one for subsequent enum values.

 Union type members are assigned a tag in the order that they appear,
 starting from zero and incrementing for each subsequent type. If a
 tag value is explicitly specified, automatic assignment continues
 from that value plus one for subsequent values.

4. Application Considerations

 Message authors who wish to design a schema which is backwards- and
 forwards-compatible with future messages are encouraged to use union
 types for this purpose. New types may be appended to the members of
 a union type while retaining backwards compatibility with older
 message types. The choice to do this must be made from the first
 message version-- moving a struct into a union _does not_ produce a
 backwards-compatible message.

 The following schema provides an example:

 type Message (MessageV1 | MessageV2 | MessageV3)

 type MessageV1 ...

 type MessageV2 ...

 type MessageV3 ...

 An updated schema which adds a MessageV4 type would still be able to
 decode versions 1, 2, and 3.

 If a message version is later deprecated, it may be removed in a
 manner compatible with future versions 2 and 3 if the initial tag is
 specified explicitly.

 type Message (MessageV2 = 1 | MessageV3)

5. Future Considerations

 To ensure message compatibility between implementations and
 backwards- and forwards-compatibility of messages, constraints on
 vendor extensions are required. This specification is final, and new
 types or extensions will not be added in the future. Implementors
 MUST NOT define extensions to this specification.

DeVault Expires 24 May 2021 [Page 10]

Internet-Draft BARE November 2020

 To support the encoding of novel data structures, the implementor
 SHOULD make use of user-defined types in combination with the data or
 data<length> types.

6. IANA Considerations

 This memo includes no request to IANA.

7. Security Considerations

 Message parsers are common vectors for security vulnerabilities.
 BARE addresses this by making the message format as simple as
 possible. However, the parser MUST be prepared to handle a number of
 error cases when decoding untrusted messages, such as a union type
 with an invalid tag, or an enum with an invalid value. Such errors
 may also arise by mistake, for example when attempting to decode a
 message with the wrong schema.

 Support for data types of an arbitrary, message-defined length
 (lists, maps, strings, etc) is commonly exploited to cause the
 implementation to exhaust its resources while decoding a message.
 However, legitimate use-cases for extremely large data types
 (possibly larger than the system has the resources to store all at
 once) do exist. The decoder MUST manage its resources accordingly,
 and SHOULD provide the application a means of providing their own
 decoder implementation for values which are expected to be large.

 There is only one valid interpretation of a BARE message for a given
 schema, and different decoders and encoders should be expected to
 provide that interpretation. If an implementation has limitations
 imposed from the programming environment (such as limits on numeric
 precision), the implementor MUST document these limitations, and
 prevent conflicting interpretations from causing undesired behavior.

8. Normative References

 [IEEE.754.1985]
 Institute of Electrical and Electronics Engineers,
 "Standard for Binary Floating-Point Arithmetic",
 IEEE Standard 754, August 1985.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

DeVault Expires 24 May 2021 [Page 11]

Internet-Draft BARE November 2020

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

Appendix A. Example message schema

 The following is an example of a schema written in the BARE schema
 language.

https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234

DeVault Expires 24 May 2021 [Page 12]

Internet-Draft BARE November 2020

 type PublicKey data<128>
 type Time string # ISO 8601

 enum Department {
 ACCOUNTING
 ADMINISTRATION
 CUSTOMER_SERVICE
 DEVELOPMENT

 # Reserved for the CEO
 JSMITH = 99
 }

 type Customer {
 name: string
 email: string
 address: Address
 orders: []{
 orderId: i64
 quantity: i32
 }
 metadata: map[string]data
 }

 type Employee {
 name: string
 email: string
 address: Address
 department: Department
 hireDate: Time
 publicKey: optional<PublicKey>
 metadata: map[string]data
 }

 type TerminatedEmployee void

 type Person (Customer | Employee | TerminatedEmployee)

 type Address {
 address: [4]string
 city: string
 state: string
 country: string
 }

DeVault Expires 24 May 2021 [Page 13]

Internet-Draft BARE November 2020

Appendix B. Example Messages

 Some basic example messages in hexadecimal are provided for the
 schema specified in Appendix A.

 A "Person" value of type "Customer" with the following values:

 name James Smith

 email jsmith@example.org

 address 123 Main Street; Philadelphia; PA; United States

 orders (1) orderId: 4242424242; quantity: 5

 metadata (unset)

 Encoded BARE message:

 00 0b 4a 61 6d 65 73 20 53 6d 69 74 68 12 6a 73
 6d 69 74 68 40 65 78 61 6d 70 6c 65 2e 6f 72 67
 0b 31 32 33 20 4d 61 69 6e 20 53 74 00 00 00 0c
 50 68 69 6c 61 64 65 6c 70 68 69 61 02 50 41 0d
 55 6e 69 74 65 64 20 53 74 61 74 65 73 01 b2 41
 de fc 00 00 00 00 05 00 00 00 00

 A "Person" value of type "Employee" with the following values:

 name Tiffany Doe

 email tiffanyd@acme.corp

 address 123 Main Street; Philadelphia; PA; United States

 department ADMINISTRATION

 hireDate 2020-06-21T21:18:05Z

 publicKey (unset)

 metadata (unset)

 Encoded BARE message:

DeVault Expires 24 May 2021 [Page 14]

Internet-Draft BARE November 2020

 01 0b 54 69 66 66 61 6e 79 20 44 6f 65 12 74 69
 66 66 61 6e 79 64 40 61 63 6d 65 2e 63 6f 72 70
 0b 31 32 33 20 4d 61 69 6e 20 53 74 00 00 00 0c
 50 68 69 6c 61 64 65 6c 70 68 69 61 02 50 41 0d
 55 6e 69 74 65 64 20 53 74 61 74 65 73 01 19 32
 30 32 30 2d 30 36 2d 32 31 54 32 31 3a 31 38 3a
 30 35 2b 30 30 3a 30 30 00 00

 A "Person" value of type "TerminatedEmployee":

 Encoded BARE message:

 02

Author's Address

 Drew DeVault
 SourceHut
 454 E. Girard Ave #2R
 Philadelphia, PA 19125
 United States of America

 Phone: +1 719 213 5473
 Email: sir@cmpwn.com

DeVault Expires 24 May 2021 [Page 15]

