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Abstract

The Binary Application Record Encoding (BARE) is a data format used

to represent application records for storage or transmission between

programs. BARE messages are concise and have a well-defined schema,

and implementations may be simple and broadly compatible. A schema

language is also provided to express message schemas out-of-band.
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1. Introduction

The purpose of the BARE message encoding, like hundreds of others,

is to encode application messages. The goals of such encodings vary

(leading to their proliferation); BARE's goals are the following:

Concise messages

A well-defined message schema

Broad compatibility with programming environments

Simplicity of implementation

This document specifies the BARE message encoding, as well as a

schema language that may be used to describe the layout of a BARE

message. The schema of a message must be agreed upon in advance by

each party exchanging a BARE message; message structure is not

encoded into the representation. The schema language is useful for

this purpose but not required.
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1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Use-cases

The goals of a concise, binary, strongly-typed, and broadly-

compatible structured message encoding format support a broad number

of use-cases. Examples include:

Self-describing authentication tokens for web services

Opaque messages for transmitting arbitrary state between

unrelated internet services

A representation for packets in an internet protocol

A structured data format for encrypted or signed application

messages

A structured data format for storing data in persistent storage

The conciseness of a BARE-encoded message enables representing

structured data under strict limitations on message length in a

large variety of contexts. The simple binary format may also be

easily paired with additional tools, such as plain-text encodings,

compression, or cryptography algorithms, as demanded by the

application's needs, without increasing the complexity of the

message encoding. A BARE message has a comparable size and entropy

to the underlying state it represents.

The BARE schema language also provides a means of describing the

format of BARE messages without implementation-specific details.

This encourages applications that utilize BARE to describe their

state in a manner that other programmers can easily utilize for

application interoperation. The conservative set of primitives

offered by BARE aids in making such new implementations easy to

write.

2. Specification of the BARE Message Encoding

A BARE message is a single value of a pre-defined type, which may be

of an aggregate type enclosing multiple values. Unless otherwise

specified, there is no additional container or structure around the

value; it is encoded plainly.
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uint

int

A BARE message does not necessarily have a fixed length, but the

schema author may make a deliberate choice to constrain themselves

to types of well-defined lengths if this is desired.

The names for each type are provided to establish a vocabulary for

describing a BARE message schema out-of-band, by parties who plan to

exchange BARE messages. The type names used here are provided for

this informative purpose, but are more rigourously specified by the

schema language specification in Section 3.

2.1. Primitive Types

Primitive types represent exactly one value.

An unsigned integer with a variable-length encoding. Each octet

of the encoded value has the most-significant bit set, except for

the last octet. The remaining bits are the integer value in 7-bit

groups, least-significant group first.

The encoder MUST encode uint using the minimum necessary number

of octets, and the decoder SHOULD raise an error if it encounters

the opposite.

The maximum precision of such a number is 64-bits. The maximum

length of an encoded uint is therefore 10 octets.

Numbers that require all ten octets will have 6 bits in the final

octet that do not have meaning, between the least- and most-

significant bits. The implementation MUST set these to zero.

A signed integer with a variable-length encoding. Signed integers

are represented as uint using a "zig-zag" encoding: positive

values x are written as 2x + 0, negative values are written as

2(^x) + 1. In other words, negative numbers are complemented and

whether to complement is encoded in bit 0.

The encoder MUST encode int using the minimum necessary number of

octets, and the decoder SHOULD raise an error if it encounters

the opposite.

The maximum precision of such a number is 64-bits. The maximum

length of an encoded int is therefore 10 octets.
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u8, u16, u32, u64

i8, i16, i32, i64

f32, f64

bool

str

data

data[length]

Numbers that require all ten octets will have 6 bits in the final

octet that do not have meaning, between the least- and most-

significant bits. The implementation MUST set these to zero.

Unsigned integers of a fixed precision, respectively 8, 16, 32,

and 64 bits. They are encoded in little-endian (least significant

octet first).

Signed integers of a fixed precision, respectively 8, 16, 32, and

64 bits. They are encoded in little-endian (least significant

octet first), with two's complement notation.

Floating-point numbers represented with the IEEE 754 [IEEE.

754.1985] binary32 and binary64 floating point number formats.

The encoder MUST NOT encode NaN into a BARE message, and the

decoder SHOULD raise an error if it encounters such a value.

A boolean value, either true or false, encoded as a u8 type with

a value of one or zero, respectively representing true or false.

If a value other than one or zero is found in the u8

representation of the bool, the message is considered invalid,

and the decoder SHOULD raise an error if it encounters such a

value.

A string of text. The length of the text in octets is encoded

first as a uint, followed by the text data represented with the 

UTF-8 encoding [RFC3629].

If the data is found to contain invalid UTF-8 sequences, it is

considered invalid, and the decoder SHOULD raise an error if it

encounters such a value.

Arbitrary data of a variable length. The length (in octets) is

encoded first as a uint, followed by the data itself encoded

literally.

Arbitrary data of a fixed "length", e.g. data[16]. The length (in

octets) is not encoded into the message. The data is encoded

literally in the message, and MUST NOT be longer than

18,446,744,073,709,551,615 octets (the maximum value of a u64).
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void

enum

optional<type>

list<type>

list<type>[length]

map<type A><type B>

A type with zero length. It is not encoded into BARE messages.

An unsigned integer value from a set of named values agreed upon

in advance, encoded with the uint type.

An enum whose uint value is not a member of the values agreed

upon in advance is considered invalid, and the decoder SHOULD

raise an error if it encounters such a value.

Note that this makes the enum type unsuitable for representing

several enum values that have been combined with a bitwise OR

operation.

Using uint for enum value makes it possible to encode named

values with different number of octets. Constant-length enum can

be achieved when all the enum values are encoded by uints with

the same number of octets.

2.2. Aggregate Types

Aggregate types may store zero or more primitive or aggregate

values.

A value of "type" that may or may not be present, e.g.

optional<u32>. Represented as either a u8 with a value of zero,

indicating that the optional value is unset; or a u8 with a value

of one, followed by the encoded data of the optional type.

An optional value whose initial u8 is set to a number other than

zero or one is considered invalid, and the decoder SHOULD raise

an error if it encounters such a value.

A variable-length list of "type" values, e.g. list<str>. The

length of the list (number of values) is encoded as a uint,

followed by the encoded values of each member of the list

concatenated.

A list of "length" values of "type", e.g. list<uint>[10]. The

length is not encoded into the message. The encoded values of

each member of the list are concatenated to form the encoded

list.

A mapping of "type B" values keyed by "type A" values, e.g.

map<u32><str>. The encoded representation of a map begins with
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union

struct

the number of key/value pairs encoded as a uint, followed by the

encoded key/value pairs concatenated. Each key/value pair is

encoded as the encoded key concatenated with the encoded value.

A message with repeated keys is considered invalid, and the

decoder SHOULD raise an error if it encounters such a value.

A tagged union whose value may be one of any type from a set of

types agreed upon in advance. Each type in the set is assigned a

numeric identifier. The value is encoded as the selected type's

identifier represented with the uint encoding, followed by the

encoded value of that type.

A union with a tag value that does not have a corresponding type

assigned is considered invalid, and the decoder SHOULD raise an

error if it encounters such a value.

A set of values of arbitrary types concatenated in an order

agreed upon in advance. Each value is called "field", and the

field has a name and type.

2.3. User-Defined Types

A user-defined type gives a name to another type. This creates a

distinct type whose representation is equivalent to the named type.

An arbitrary number of user-defined types may be used for the same

underlying type; each is distinct from the other.

2.4. Invariants

The following invariants are specified:

Any type that is ultimately a void type (either directly or via a

user-defined type) MUST NOT be used as an optional type, list

value, map key, map value, or struct field type. Void types may

only be used as members of the set of types in a tagged union.

Enums MUST have at least one named value, and each named value of

an enum MUST be unique.

The lengths of fixed-length list and fixed-length data types MUST

be at least one.

Any map key type (directly or via a user-defined type) MUST be of

a primitive type that is not data, data[length], or void.

Unions MUST have at least one type, and each type of a union MUST

be unique.
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Structs MUST have at least one field, and each field of a struct

MUST have a unique name.

Any user-defined type MUST be defined before used. Any user-

defined type MUST NOT be defined recursively (directly or

indirectly).

3. BARE Schema Language Specification

The use of the schema language is optional. Implementations SHOULD

support decoding arbitrary BARE messages without a schema document,

by defining the schema in a manner that utilizes more native tools

available from the programming environment.

However, it may be useful to have a schema document for use with

code generation, documentation, or interoperability. A domain-

specific language is provided for this purpose.

3.1. Lexical Analysis

During lexical analysis, "#" is used for comments; if encountered,

the "#" character and any subsequent characters are discarded until

a line feed (%x0A) is found.

3.2. ABNF Grammar

The syntax of the schema language is provided here in Augmented

Backus-Naur Form [RFC5234]. However, this grammar differs from 

[RFC5234] in that literal text strings are case-sensitive (e.g.

"type" does not match "TypE").
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schema          =  [WS] user-types [WS]

user-types      =  [user-types WS] user-type

user-type       =  "type" WS user-type-name WS any-type

user-type-name  =  UPPER *(ALPHA / DIGIT) ; first letter is uppercase

any-type        =  non-void-type / "void"

non-void-type   =  non-enum-type / enum-type

non-enum-type   =  base-data-type / aggregate-type / user-type-name

base-data-type  =  base-type / data-type

base-type       =  "uint" / "u8"  / "u16" / "u32" / "u64"

base-type       =/ "int" / "i8"  / "i16" / "i32" / "i64"

base-type       =/ "f32" / "f64"

base-type       =/ "bool"

base-type       =/ "str"

data-type       =  "data" [length]

length          =  "[" integer "]"

integer         =  1*DIGIT

aggregate-type  =  optional-type

aggregate-type  =/ list-type

aggregate-type  =/ map-type

aggregate-type  =/ union-type

aggregate-type  =/ struct-type

optional-type   =  "optional<" non-enum-type ">"

list-type       =  "list<" non-void-type ">" [length]

map-type        =  "map<" map-key-type "><" non-void-type ">"

map-key-type    =  base-type / enum-type / user-type-name

union-type      =  "union" [WS] "{" [WS] union-members [WS] "}"

union-members   =  [union-members [WS] "|" [WS]] union-member

union-member    =  any-type [[WS] "=" [WS] integer]

struct-type     =  "struct" [WS] "{" [WS] struct-fields [WS] "}"

struct-fields   =  [struct-fields WS] struct-field

struct-field    =  1*ALPHA [WS] ":" [WS] non-void-type

enum-type       =  "enum" [WS] "{" [WS] enum-values [WS] "}"

enum-values     =  [enum-values WS] enum-value

enum-value      =  enum-value-name [[WS] "=" [WS] integer]

enum-value-name =  UPPER *(UPPER / DIGIT / "_")

UPPER           =  %x41-5A ; uppercase ASCII letters, i.e. A-Z

ALPHA           =  %x41-5A / %x61-7A ; A-Z / a-z



DIGIT           =  %x30-39 ; 0-9

WS              =  1*(%x0A / %x09 / " ") ; whitespace

¶



See Appendix B.1 for an example schema written in this language.

3.3. Semantic Elements

The names of fields and user-defined types are informational: they

are not represented in BARE messages. They may be used by code

generation tools to inform the generation of field and type names in

the native programming environment.

Enum values are also informational. Values without an integer token

are assigned automatically in the order that they appear, starting

from zero and incrementing for each subsequent unassigned value. If

a value is explicitly specified, automatic assignment continues from

that value plus one for subsequent enum values.

Union type members are assigned a tag in the order that they appear,

starting from zero and incrementing for each subsequent type. If a

tag value is explicitly specified, automatic assignment continues

from that value plus one for subsequent values.

4. Application Considerations

Message authors who wish to design a schema that is backwards- and

forwards-compatible with future messages are encouraged to use union

types for this purpose. New types may be appended to the members of

a union type while retaining backwards compatibility with older

message types. The choice to do this must be made from the first

message version -- moving a struct into a union does not produce a

backwards-compatible message.

The following schema provides an example:

An updated schema that adds a MessageV4 type would still be able to

decode versions 1, 2, and 3.

If a message version is later deprecated, it may be removed in a

manner compatible with future versions 2 and 3 if the initial tag is

specified explicitly.
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¶

type Message union {MessageV1 | MessageV2 | MessageV3}

type MessageV1 ...

type MessageV2 ...

type MessageV3 ...

¶

¶

¶

type Message union {MessageV2 = 1 | MessageV3}¶



[RFC2119]

5. Future Considerations

To ensure message compatibility between implementations and

backwards- and forwards-compatibility of messages, constraints on

vendor extensions are required. This specification is final, and new

types or extensions will not be added in the future. Implementors

MUST NOT define extensions to this specification.

To support the encoding of novel data structures, the implementor

SHOULD make use of user-defined types in combination with the data

or data[length] types.

6. IANA Considerations

This memo includes no request to IANA.

7. Security Considerations

Message decoders are common vectors for security vulnerabilities.

BARE addresses this by making the message format as simple as

possible. However, the decoder MUST be prepared to handle a number

of error cases when decoding untrusted messages, such as a union

type with an invalid tag, or an enum with an invalid value. Such

errors may also arise by mistake, for example when attempting to

decode a message with the wrong schema.

Support for data types of an arbitrary, message-defined length

(lists, maps, strings, etc) is commonly exploited to cause the

implementation to exhaust its resources while decoding a message.

However, legitimate use-cases for extremely large data types

(possibly larger than the system has the resources to store all at

once) do exist. The decoder MUST manage its resources accordingly,

and SHOULD provide the application a means of providing their own

decoder implementation for values that are expected to be large.

There is only one valid interpretation of a BARE message for a given

schema, and different decoders and encoders should be expected to

provide that interpretation. If an implementation has limitations

imposed from the programming environment (such as limits on numeric

precision), the implementor MUST document these limitations, and

prevent conflicting interpretations from causing undesired behavior.
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Appendix A. Example Values

This section lists example values in decimal, as string, or as named

value (left or top), and their encoded representation in hexadecimal

(right or bottom).¶

0                  00

1                  01

255                FF 01

¶

0                  00

1                  02

-1                 01

255                FE 03

-255               FD 03

¶

0                  00 00 00 00

1                  01 00 00 00

255                FF 00 00 00

¶

0                  00 00

1                  01 00

-1                 FF FF

255                FF 00

-255               01 FF

¶

https://www.rfc-editor.org/info/rfc2119
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f64

bool

str

data

data[16]

void

enum {FOO BAR = 255 BUZZ}

optional<u32>

list<str>

list<uint>[10]

Example value is in hexadecimal.

Example value is in hexadecimal.

Not encoded.

0.0                00 00 00 00 00 00 00 00

1.0                00 00 00 00 00 00 f0 3f

2.55               66 66 66 66 66 66 04 40

-25.5              00 00 00 00 00 80 39 C0

¶

true               01

false              00

¶

"BARE"             04 42 41 52 45¶

¶

aa ee ff ee dd cc bb aa ee dd cc bb ee dd cc bb¶

10 aa ee ff ee dd cc bb aa ee dd cc bb ee dd cc

bb

¶

¶

aa ee ff ee dd cc bb aa ee dd cc bb ee dd cc bb¶

aa ee ff ee dd cc bb aa ee dd cc bb ee dd cc bb¶

¶

FOO                00

BAR                FF 01

BUZZ               80 02

¶

(unset)            00

0                  01 00 00 00 00

1                  01 01 00 00 00

255                01 FF 00 00 00

¶

"foo" "bar" "buzz"¶

03 03 66 6f 6f 03 62 61 72 04 62 75 7A 7A¶

0 1 254 255 256 257 126 127 128 129¶



map<u32><str>

union {int | uint = 255 | str}

struct {foo : uint bar : int buzz : str}

Appendix B. Example Company

An example company that uses BARE to encode data about customers and

employees.

B.1. Message Schema

The following is an example of a schema written in the BARE schema

language.

00 01 FE 01 FF 01 80 02 81 02 7E 7F 80 01 81 01¶

0 => "zero"

1 => "one"

255 => "two hundreds and fifty five"

¶

03 00 00 00 00 04 7A 65 72 6F 01 00 00 00 03 6F

6E 65 FF 00 00 00 1B 74 77 6F 20 68 75 6E 64 72

65 64 73 20 61 6E 64 20 66 69 66 74 79 20 66 69

76 65

¶

0                  00 00

1                  00 02

1                  FF 01 01

-1                 00 01

255                00 FE 03

255                FF 01 FF 01

-255               00 FD 03

"BARE"             80 02 04 42 41 52 45

¶

foo => 255

bar => -255

buzz => "BARE"

¶

FF 01 FD 03 04 42 41 52 45¶

¶

¶



B.2. Encoded Messages

Some basic example messages in hexadecimal are provided for the

schema specified in Appendix B.1.

type PublicKey data[128]

type Time str # ISO 8601

type Department enum {

  ACCOUNTING

  ADMINISTRATION

  CUSTOMER_SERVICE

  DEVELOPMENT

  # Reserved for the CEO

  JSMITH = 99

}

type Address struct {

  address: list<str>[4]

  city: str

  state: str

  country: str

}

type Customer struct {

  name: str

  email: str

  address: Address

  orders: list<struct {

    orderId: i64

    quantity: i32

  }>

  metadata: map<str><data>

}

type Employee struct {

  name: str

  email: str

  address: Address

  department: Department

  hireDate: Time

  publicKey: optional<PublicKey>

  metadata: map<str><data>

}

type TerminatedEmployee void

type Person union {Customer | Employee | TerminatedEmployee}

¶

¶



name

email

address

orders (1)

metadata

name

email

address

department

hireDate

publicKey

metadata

A "Person" value of type "Customer" with the following values:

James Smith

jsmith@example.org

123 Main St; Philadelphia; PA; United States

orderId: 4242424242; quantity: 5

(unset)

Encoded BARE message:

A "Person" value of type "Employee" with the following values:

Tiffany Doe

tiffanyd@acme.corp

123 Main St; Philadelphia; PA; United States

ADMINISTRATION

2020-06-21T21:18:05Z

(unset)

(unset)

Encoded BARE message:

A "Person" value of type "TerminatedEmployee".

Encoded BARE message:

¶

¶

¶

¶

¶

¶

¶

00 0b 4a 61 6d 65 73 20 53 6d 69 74 68 12 6a 73

6d 69 74 68 40 65 78 61 6d 70 6c 65 2e 6f 72 67

0b 31 32 33 20 4d 61 69 6e 20 53 74 0c 50 68 69

6c 61 64 65 6c 70 68 69 61 02 50 41 0d 55 6e 69

74 65 64 20 53 74 61 74 65 73 01 b2 41 de fc 00

00 00 00 05 00 00 00 00

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

01 0b 54 69 66 66 61 6e 79 20 44 6f 65 12 74 69

66 66 61 6e 79 64 40 61 63 6d 65 2e 63 6f 72 70

0b 31 32 33 20 4d 61 69 6e 20 53 74 0c 50 68 69

6c 61 64 65 6c 70 68 69 61 02 50 41 0d 55 6e 69

74 65 64 20 53 74 61 74 65 73 01 14 32 30 32 30

2d 30 36 2d 32 31 54 32 31 3a 31 38 3a 30 35 5a

00 00

¶

¶

¶
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