
Workgroup: WG Working Group

Internet-Draft:

draft-dew-cfrg-signature-key-blinding-02

Published: 3 May 2022

Intended Status: Informational

Expires: 4 November 2022

Authors: F. Denis

Fastly Inc.

E. Eaton

University of Waterloo

C. A. Wood

Cloudflare, Inc.

Key Blinding for Signature Schemes

Abstract

This document describes extensions to existing digital signature

schemes for key blinding. The core property of signing with key

blinding is that a blinded public key and all signatures produced

using the blinded key pair are independent of the unblinded key

pair. Moreover, signatures produced using blinded key pairs are

indistinguishable from signatures produced using unblinded key

pairs. This functionality has a variety of applications, including

Tor onion services and privacy-preserving airdrop for bootstrapping

cryptocurrency systems.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://chris-

wood.github.io/draft-dew-cfrg-signature-key-blinding/draft-dew-cfrg-

signature-key-blinding.html. Status information for this document

may be found at https://datatracker.ietf.org/doc/draft-dew-cfrg-

signature-key-blinding/.

Discussion of this document takes place on the CFRG Working Group

mailing list (mailto:cfrg@irtf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/cfrg/.

Source for this draft and an issue tracker can be found at https://

github.com/chris-wood/draft-dew-cfrg-signature-key-blinding.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

¶

https://chris-wood.github.io/draft-dew-cfrg-signature-key-blinding/draft-dew-cfrg-signature-key-blinding.html
https://chris-wood.github.io/draft-dew-cfrg-signature-key-blinding/draft-dew-cfrg-signature-key-blinding.html
https://chris-wood.github.io/draft-dew-cfrg-signature-key-blinding/draft-dew-cfrg-signature-key-blinding.html
https://datatracker.ietf.org/doc/draft-dew-cfrg-signature-key-blinding/
https://datatracker.ietf.org/doc/draft-dew-cfrg-signature-key-blinding/
mailto:cfrg@irtf.org
https://mailarchive.ietf.org/arch/browse/cfrg/
https://mailarchive.ietf.org/arch/browse/cfrg/
https://github.com/chris-wood/draft-dew-cfrg-signature-key-blinding
https://github.com/chris-wood/draft-dew-cfrg-signature-key-blinding

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. DISCLAIMER

2. Conventions and Definitions

3. Key Blinding

4. Ed25519ph, Ed25519ctx, and Ed25519

4.1. BlindPublicKey and UnblindPublicKey

4.2. BlindKeySign

5. Ed448ph and Ed448

5.1. BlindPublicKey and UnblindPublicKey

5.2. BlindKeySign

6. ECDSA

6.1. BlindPublicKey and UnblindPublicKey

6.2. BlindKeySign

7. Security Considerations

8. IANA Considerations

9. Test Vectors

9.1. Ed25519 Test Vectors

9.2. ECDSA(P-384, SHA-384) Test Vectors

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Authors' Addresses

1. Introduction

Digital signature schemes allow a signer to sign a message using a

private signing key and produce a digital signature such that anyone

can verify the digital signature over the message with the public

verification key corresponding to the signing key. Digital signature

schemes typically consist of three functions:

KeyGen: A function for generating a private signing key skS and

the corresponding public verification key pkS.

Sign(skS, msg): A function for signing an input message msg using

a private signing key skS, producing a digital signature sig.

Verify(pkS, msg, sig): A function for verifying the digital

signature sig over input message msg against a public

verification key pkS, yielding true if the signature is valid and

false otherwise.

In some applications, it's useful for a signer to produce digital

signatures using the same long-term private signing key such that a

verifier cannot link any two signatures to the same signer. In other

words, the signature produced is independent of the long-term

private-signing key, and the public verification key for verifying

the signature is independent of the long-term public verification

key. This type of functionality has a number of practical

applications, including, for example, in the Tor onion services

protocol [TORDIRECTORY] and privacy-preserving airdrop for

bootstrapping cryptocurrency systems [AIRDROP]. It is also necessary

for a variant of the Privacy Pass issuance protocol [RATELIMITED].

One way to accomplish this is by signing with a private key which is

a function of the long-term private signing key and a freshly chosen

blinding key, and similarly by producing a public verification key

which is a function of the long-term public verification key and

same blinding key. A signature scheme with this functionality is

referred to as signing with key blinding. A signature scheme with

key blinding extends a basic digital scheme with four new functions:

BlindKeyGen: A function for generating a private blind key.

BlindPublicKey(pkS, bk): Blind the public verification key pkS

using the private blinding key bk, yielding a blinded public key

pkR.

UnblindPublicKey(pkR, bk): Unblind the public verification key

pkR using the private blinding key bk.

¶

*

¶

*

¶

*

¶

¶

¶

* ¶

*

¶

*

¶

BlindKeySign(skS, bk, msg): Sign a message msg using the private

signing key skS with the private blind key bk.

A signature scheme with key blinding aims to achieve unforgeability

and unlinkability. Informally, unforgeability means that one cannot

produce a valid (message, signature) pair for any blinding key

without access to the private signing key. Similarly, unlinkability

means that one cannot distinguish between two signatures produced

from two separate key signing keys, and two signatures produced from

the same signing key but with different blinding keys.

This document describes extensions to EdDSA [RFC8032] and ECDSA

[ECDSA] to enable signing with key blinding. Security analysis of

these extensions is currently underway; see Section 7 for more

details.

This functionality is also possible with other signature schemes,

including some post-quantum signature schemes [ESS21], though such

extensions are not specified here.

1.1. DISCLAIMER

This document is a work in progress and is still undergoing security

analysis. As such, it MUST NOT be used for real world applications.

See Section 7 for additional information.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used throughout this document to describe

the blinding modification.

G: The standard base point.

sk: A signature scheme private key. For EdDSA, this is a a

randomly generated private seed of length 32 bytes or 57 bytes

according to [RFC8032], Section 5.1.5 or

[RFC8032], Section 5.2.5, respectively. For [ECDSA], sk is a

random scalar in the prime-order elliptic curve group.

pk(sk): The public key corresponding to the private key sk.

concat(x0, ..., xN): Concatenation of byte strings. concat(0x01,

0x0203, 0x040506) = 0x010203040506.

*

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

*

¶

https://rfc-editor.org/rfc/rfc8032#section-5.1.5
https://rfc-editor.org/rfc/rfc8032#section-5.2.5

ScalarMult(pk, k): Multiply the public key pk by scalar k,

producing a new public key as a result.

ModInverse(x, L): Compute the multiplicative inverse of x modulo

L.

In pseudocode descriptions below, integer multiplication of two

scalar values is denoted by the * operator. For example, the product

of two scalars x and y is denoted as x * y.

3. Key Blinding

At a high level, a signature scheme with key blinding allows signers

to blind their private signing key such that any signature produced

with a private signing key and blinding key is independent of the

private signing key. Similar to the signing key, the blinding key is

also a private key that remains secret. For example, the blind is a

32-byte or 57-byte random seed for Ed25519 or Ed448 variants,

respectively, whereas the blind for ECDSA over P-256 is a random

scalar in the P-256 group. Key blinding introduces four new

functionalities for the signature scheme:

BlindKeyGen: A function for generating a private blind key.

BlindPublicKey(pkS, bk): Blind the public verification key pkS

using the private blinding key bk, yielding a blinded public key

pkR.

UnblindPublicKey(pkR, bk): Unblind the public verification key

pkR using the private blinding key bk.

BlindKeySign(skS, bk, msg): Sign a message msg using the private

signing key skS with the private blind key bk.

For a given bk produced from BlindKeyGen, correctness requires the

following equivalence to hold:

Security requires that signatures produced using BlindKeySign are

unlinkable from signatures produced using the standard signature

generation function with the same private key.

4. Ed25519ph, Ed25519ctx, and Ed25519

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as modifications of routines in

[RFC8032], Section 5.1. BlindKeyGen invokes the key generation

routine specified in [RFC8032], Section 5.1.5 and outputs only the

private key.

*

¶

*

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

UnblindPublicKey(BlindPublicKey(pkS, bk), bk) = pkS¶

¶

¶

https://rfc-editor.org/rfc/rfc8032#section-5.1
https://rfc-editor.org/rfc/rfc8032#section-5.1.5

4.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey transforms a private blind bk into a scalar for the

edwards25519 group and then multiplies the target key by this

scalar. UnblindPublicKey performs essentially the same steps except

that it multiplies the target public key by the multiplicative

inverse of the scalar, where the inverse is computed using the order

of the group L, described in [RFC8032], Section 5.1.

More specifically, BlindPublicKey(pk, bk) works as follows.

Hash the 32-byte private key bk using SHA-512, storing the

digest in a 64-octet large buffer, denoted b. Interpret the

lower 32 bytes buffer as a little-endian integer, forming a

secret scalar s. Note that this explicitly skips the buffer

pruning step in [RFC8032], Section 5.1.

Perform a scalar multiplication ScalarMult(pk, s), and output

the encoding of the resulting point as the public key.

UnblindPublicKey(pkR, bk) works as follows.

Compute the secret scalar s from bk as in BlindPublicKey.

Compute the sInv = ModInverse(s, L), where L is as defined in

[RFC8032], Section 5.1.

Perform a scalar multiplication ScalarMult(pk, sInv), and

output the encoding of the resulting point as the public key.

4.2. BlindKeySign

BlindKeySign transforms a private key bk into a scalar for the

edwards25519 group and a message prefix to blind both the signing

scalar and the prefix of the message used in the signature

generation routine.

More specifically, BlindKeySign(skS, bk, msg) works as follows:

Hash the private key skS, 32 octets, using SHA-512. Let h

denote the resulting digest. Construct the secret scalar s1

from the first half of the digest, and the corresponding public

key A1, as described in [RFC8032], Section 5.1.5. Let prefix1

denote the second half of the hash digest, h[32],...,h[63].

Hash the 32-byte private key bk using SHA-512, storing the

digest in a 64-octet large buffer, denoted b. Interpret the

lower 32 bytes buffer as a little-endian integer, forming a

secret scalar s2. Let prefix2 denote the second half of the

hash digest, b[32],...,b[63].

¶

¶

1.

¶

2.

¶

¶

1. ¶

2.

¶

3.

¶

¶

¶

1.

¶

2.

¶

https://rfc-editor.org/rfc/rfc8032#section-5.1
https://rfc-editor.org/rfc/rfc8032#section-5.1
https://rfc-editor.org/rfc/rfc8032#section-5.1
https://rfc-editor.org/rfc/rfc8032#section-5.1.5

Compute the signing scalar s = s1 * s2 (mod L) and the signing

public key A = ScalarMult(G, s).

Compute the signing prefix as concat(prefix1, prefix2).

Run the rest of the Sign procedure in [RFC8032], Section 5.1.6

from step (2) onwards using the modified scalar s, public key

A, and string prefix.

5. Ed448ph and Ed448

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as modifications of routines in

[RFC8032], Section 5.2. BlindKeyGen invokes the key generation

routine specified in [RFC8032], Section 5.1.5 and outputs only the

private key.

5.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey and UnblindPublicKey for Ed448ph and Ed448 are

implemented just as these routines are for Ed25519ph, Ed25519ctx,

and Ed25519, except that SHAKE256 is used instead of SHA-512 for

hashing the secret blind to a 114-byte buffer (and using the lower

57-bytes for the secret), and the order of the edwards448 group L is

as defined in [RFC8032], Section 5.2.1.

5.2. BlindKeySign

BlindKeySign for Ed448ph and Ed448 is implemented just as this

routine for Ed25519ph, Ed25519ctx, and Ed25519, except in how the

scalars (s1, s2), public keys (A1, A2), and message strings

(prefix1, prefix2) are computed. More specifically,

BlindKeySign(skS, bk, msg) works as follows:

Hash the private key skS, 57 octets, using SHAKE256(skS, 117).

Let h denote the resulting digest. Construct the secret scalar

s1 from the first half of the digest, and the corresponding

public key A1, as described in [RFC8032], Section 5.2.5. Let

prefix1 denote the second half of the hash digest,

h[57],...,h[113].

Perform the same routine to transform the secret blind bk into

a secret scalar s2, public key A2, and prefix2.

Compute the signing scalar s = s1 * s2 (mod L) and the signing

public key A = ScalarMult(A1, s2).

Compute the signing prefix as concat(prefix1, prefix2).

3.

¶

4. ¶

5.

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. ¶

https://rfc-editor.org/rfc/rfc8032#section-5.1.6
https://rfc-editor.org/rfc/rfc8032#section-5.2
https://rfc-editor.org/rfc/rfc8032#section-5.1.5
https://rfc-editor.org/rfc/rfc8032#section-5.2.1
https://rfc-editor.org/rfc/rfc8032#section-5.2.5

Run the rest of the Sign procedure in [RFC8032], Section 5.2.6

from step (2) onwards using the modified scalar s, public key

A, and string prefix.

6. ECDSA

[[DISCLAIMER: Multiplicative blinding for ECDSA is known to be NOT

be SUF-CMA-secure in the presence of an adversary that controls the

blinding value. [MSMHI15] describes this in the context of related-

key attacks. This variant may likely be removed in followup versions

of this document based on further analysis.]]

This section describes implementations of BlindPublicKey,

UnblindPublicKey, and BlindKeySign as functions implemented on top

of an existing [ECDSA] implementation. BlindKeyGen invokes the key

generation routine specified in [ECDSA] and outputs only the private

key. In the descriptions below, let p be the order of the

corresponding elliptic curve group used for ECDSA. For example, for

P-256, p =

11579208921035624876269744694940757352999695522413576034242225906106

8512044369.

6.1. BlindPublicKey and UnblindPublicKey

BlindPublicKey multiplies the public key pkS by an augmented private

key bk yielding a new public key pkR. UnblindPublicKey inverts this

process by multiplying the input public key by the multiplicative

inverse of the augmented bk. Augmentation here maps the private key

bk to another scalar using hash_to_field as defined in Section 5 of

[H2C], with DST set to "ECDSA Key Blind", L set to the value

corresponding to the target curve, e.g., 48 for P-256 and 72 for

P-384, expand_message_xmd with a hash function matching that used

for the corresponding digital signature algorithm, and prime modulus

equal to the order p of the corresponding curve. Letting

HashToScalar denote this augmentation process, BlindPublicKey and

UnblindPublicKey are then implemented as follows:

6.2. BlindKeySign

BlindKeySign transforms the signing key skS by the private key bk

into a new signing key, skR, and then invokes the existing ECDSA

signing procedure. More specifically, skR = skS * HashToScalar(bk)

(mod p).

5.

¶

¶

¶

¶

BlindPublicKey(pk, bk) = ScalarMult(pk, HashToScalar(bk))

UnblindPublicKey(pk, bk) = ScalarMult(pk, ModInverse(HashToScalar(bk), p))

¶

¶

https://rfc-editor.org/rfc/rfc8032#section-5.2.6
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14#section-5

7. Security Considerations

The signature scheme extensions in this document aim to achieve

unforgeability and unlinkability. Informally, unforgeability means

that one cannot produce a valid (message, signature) pair for any

blinding key without access to the private signing key. Similarly,

unlinkability means that one cannot distinguish between two

signatures produced from two separate key signing keys, and two

signatures produced from the same signing key but with different

blinds. Security analysis of the extensions in this document with

respect to these two properties is currently underway.

Preliminary analysis has been done for a variant of these extensions

used for identity key blinding routine used in Tor's Hidden Service

feature [TORBLINDING]. For EdDSA, further analysis is needed to

ensure this is compliant with the signature algorithm described in

[RFC8032].

The constructions in this document assume that both the signing and

blinding keys are private, and, as such, not controlled by an

attacker. [MSMHI15] demonstrate that ECDSA with attacker-controlled

multiplicative blinding for producing related keys can be abused to

produce forgeries. In particular, if an attacker can control the

private blinding key used in BlindKeySign, they can construct a

forgery over a different message that validates under a different

public key. One mitigation to this problem is to change BlindKeySign

such that the signature is computed over the input message as well

as the blind public key. However, this would require verifiers to

treat both the blind public key and message as input to their

verification interface. The construction in Section 6 does not

require this change. However, further analysis is needed to

determine whether or not this construction is safe.

8. IANA Considerations

This document has no IANA actions.

9. Test Vectors

This section contains test vectors for a subset of the signature

schemes covered in this document.

9.1. Ed25519 Test Vectors

This section contains test vectors for Ed25519 as described in

[RFC8032]. Each test vector lists the private key and blind seeds,

denoted skS and bk and encoded as hexadecimal strings, along with

the public key pkS corresponding to skS encoded has hexadecimal

strings according to [RFC8032], Section 5.1.2. Each test vector also

includes the blinded public key pkR computed from skS and bk,

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8032#section-5.1.2

denoted pkR and encoded has a hexadecimal string. Finally, each

vector includes the message and signature values, each encoded as

hexadecimal strings.

9.2. ECDSA(P-384, SHA-384) Test Vectors

This section contains test vectors for ECDSA with P-384 and SHA-384,

as described in [ECDSA]. Each test vector lists the signing and

blinding keys, denoted skS and bk, each serialized as a big-endian

integers and encoded as hexadecimal strings. Each test vector also

blinded public key pkR, encoded as compressed elliptic curve points

according to [ECDSA]. Finally, each vector lists message and

signature values, where the message is encoded as a hexadecimal

string, and the signature value is serialized as the concatenation

of scalars (r, s) and encoded as a hexadecimal string.

¶

// Randomly generated private key and blind seed

skS: 875532ab039b0a154161c284e19c74afa28d5bf5454e99284bbcffaa71eebf45

pkS: 3b5983605b277cd44918410eb246bb52d83adfc806ccaa91a60b5b2011bc5973

bk: c461e8595f0ac41d374f878613206704978115a226f60470ffd566e9e6ae73bf

pkR: e52bbb204e72a816854ac82c7e244e13a8fcc3217cfdeb90c8a5a927e741a20f

message: 68656c6c6f20776f726c64

signature: f35d2027f14250c07b3b353359362ec31e13076a547c749a981d0135fce06

7a361ad6522849e6ed9f61d93b0f76428129b9eb3f9c3cd0bfa1bc2a086a5eebd09

¶

// Randomly generated private key seed and zero blind seed

skS: f3348942e77a83943a6330d372e7531bb52203c2163a728038388ea110d1c871

pkS: ada4f42be4b8fa93ddc7b41ca434239a940b4b18d314fe04d5be0b317a861ddf

bk: 00

pkR: 7b8dcabbdfce4f8ad57f38f014abc4a51ac051a4b77b345da45ee2725d9327d0

message: 68656c6c6f20776f726c64

signature: b38b9d67cb4182e91a86b2eb0591e04c10471c1866202dd1b3b076fb86a61

c7c4ab5d626e5c5d547a584ca85d44839c13f6c976ece0dcba53d82601e6737a400

¶

¶

// Randomly generated signing and blind private keys

skS: 0e1e4fcc2726e36c5a24be3d30dc6f52d61e6614f5c57a1ec7b829d8adb7c85f456

c30c652d9cd1653cef4ce4da9008d

pkS: 03c66e61f5e12c35568928d9a0ffbc145ee9679e17afea3fba899ed3f878f9e82a8

859ce784d9ff43fea2bc8e726468dd3

bk: 865b6b7fc146d0f488854932c93128c3ab3572b7137c4682cb28a2d55f7598df467

e890984a687b22c8bc60a986f6a28

pkR: 038defb9b698b91ee7f3985e54b57b519be237ced2f6f79408558ff7485bf2d60a2

4dc986b9145e422ea765b56de7c5956

message: 68656c6c6f20776f726c64

signature: 5e5643a8c22b274ec5f776e63ed23ff182c8c87642e35bd5a5f7455ae1a19

a9956795df33e2f8b30150904ef6ba5e7ee4f18cef026f594b4d21fc157552ce3cf6d7ef

c3226b8d8194fc93df1c7f5facafc96daab7c5a0d840fbd3b9342f2ddad

¶

[ECDSA]

[RFC2119]

[RFC8032]

[RFC8174]

[AIRDROP]

[ESS21]

[H2C]

[MSMHI15]

[RATELIMITED]

10. References

10.1. Normative References

American National Standards Institute, "Public Key

Cryptography for the Financial Services Industry - The

Elliptic Curve Digital Signature Algorithm (ECDSA)", ANSI

ANS X9.62-2005, November 2005.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/rfc/

rfc8032>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

10.2. Informative References

Wahby, R. S., Boneh, D., Jeffrey, C., and J. Poon, "An

airdrop that preserves recipient privacy", n.d.,

<https://eprint.iacr.org/2020/676.pdf>.

Eaton, E., Stebila, D., and R. Stracovsky, "Post-Quantum

Key-Blinding for Authentication in Anonymity Networks",

2021, <https://eprint.iacr.org/2021/963>.

Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R. S.,

and C. A. Wood, "Hashing to Elliptic Curves", Work in

Progress, Internet-Draft, draft-irtf-cfrg-hash-to-

curve-14, 18 February 2022, <https://

datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-

curve-14>.

Morita, H., Schuldt, J., Matsuda, T., Hanaoka, G., and T.

Iwata, "On the Security of the Schnorr Signature Scheme

and DSA Against Related-Key Attacks", Information

Security and Cryptology - ICISC 2015 pp. 20-35, DOI

10.1007/978-3-319-30840-1_2, 2016, <https://doi.org/

10.1007/978-3-319-30840-1_2>.

Hendrickson, S., Iyengar, J., Pauly, T., Valdez, S.,

and C. A. Wood, "Rate-Limited Token Issuance Protocol",

Work in Progress, Internet-Draft, draft-privacypass-rate-

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8174
https://eprint.iacr.org/2020/676.pdf
https://eprint.iacr.org/2021/963
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-14
https://doi.org/10.1007/978-3-319-30840-1_2
https://doi.org/10.1007/978-3-319-30840-1_2

[TORBLINDING]

[TORDIRECTORY]

limit-tokens-02, 2 May 2022, <https://

datatracker.ietf.org/doc/html/draft-privacypass-rate-

limit-tokens-02>.

Hopper, N., "Proving Security of Tor’s Hidden Service

Identity Blinding Protocol", 2013, <https://www-

users.cse.umn.edu/~hoppernj/basic-proof.pdf>.

"Tor directory protocol, version 3", n.d., <https://

gitweb.torproject.org/torspec.git/tree/dir-spec.txt>.

Acknowledgments

The authors would like to thank Dennis Jackson for helpful

discussions that informed the development of this draft.

Authors' Addresses

Frank Denis

Fastly Inc.

475 Brannan St

San Francisco,

United States of America

Email: fde@00f.net

Edward Eaton

University of Waterloo

200 University Av West

Waterloo

Canada

Email: ted@eeaton.ca

Christopher A. Wood

Cloudflare, Inc.

101 Townsend St

San Francisco,

United States of America

Email: caw@heapingbits.net

¶

https://datatracker.ietf.org/doc/html/draft-privacypass-rate-limit-tokens-02
https://datatracker.ietf.org/doc/html/draft-privacypass-rate-limit-tokens-02
https://datatracker.ietf.org/doc/html/draft-privacypass-rate-limit-tokens-02
https://www-users.cse.umn.edu/~hoppernj/basic-proof.pdf
https://www-users.cse.umn.edu/~hoppernj/basic-proof.pdf
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
mailto:fde@00f.net
mailto:ted@eeaton.ca
mailto:caw@heapingbits.net

	Key Blinding for Signature Schemes
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. DISCLAIMER

	2. Conventions and Definitions
	3. Key Blinding
	4. Ed25519ph, Ed25519ctx, and Ed25519
	4.1. BlindPublicKey and UnblindPublicKey
	4.2. BlindKeySign

	5. Ed448ph and Ed448
	5.1. BlindPublicKey and UnblindPublicKey
	5.2. BlindKeySign

	6. ECDSA
	6.1. BlindPublicKey and UnblindPublicKey
	6.2. BlindKeySign

	7. Security Considerations
	8. IANA Considerations
	9. Test Vectors
	9.1. Ed25519 Test Vectors
	9.2. ECDSA(P-384, SHA-384) Test Vectors

	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Authors' Addresses

