
Network Working Group D. Franke
Internet-Draft Akamai
Intended status: Standards Track October 7, 2016
Expires: April 10, 2017

Network Time Security
draft-dfranke-nts-00

Abstract

 This memo specifies Network Time Security (NTS), a mechanism for
 using Datagram TLS to provide cryptographic security for the Network
 Time Protocol or other network time synchronization protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 10, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Franke Expires April 10, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Network Time Security October 2016

Table of Contents

1. Introduction . 2
2. Requirements Language . 4
3. DTLS profile for Network Time Security 4
4. Transport mechanisms for DTLS records 4
4.1. Transport via NTS port 5
4.2. Transport via NTP extension field 5

5. The NTS-encapsulated NTPv4 protocol 7
6. The NTS Key Establishment protocol 7
6.1. NTS-KE record types 9
6.1.1. End of Message 9
6.1.2. NTS Next Protocol Negotiation 9
6.1.3. Error . 9
6.1.4. Warning . 10
6.1.5. AEAD Algorithm Negotiation 10
6.1.6. New Cookie for NTPv4 11

6.2. Key Extraction (generally) 11
7. NTS Extensions for NTPv4 11
7.1. Key Extraction (for NTPv4) 11
7.2. Packet structure overview 12
7.3. The Unique Identifier extension 13
7.4. The NTS Cookie extension 13
7.5. The NTS Cookie Placeholder extension 14

 7.6. The NTS Authenticator and Encrypted Extensions extension 14
7.7. Protocol details . 15

8. Recommended format for NTS cookies 17
9. Security Considerations 18
10. IANA Considerations . 19
11. References . 23
11.1. Normative References 23
11.2. Informative References 24

Appendix A. Acknowledgements 25
 Author's Address . 25

1. Introduction

 [[SEE https://github.com/dfoxfranke/nts FOR AN UP-TO-MINUTE DRAFT OF
 THIS MEMO, AND https://github.com/dfoxfranke/nts/issues FOR A LIST OF
 OUTSTANDING ISSUES.]]

 This memo specifies Network Time Security (NTS), a mechanism for
 using Datagram Transport Layer Security [RFC6347] (DTLS) to provide
 cryptographic security for network time synchronization. A complete
 specification is provided for applying NTS to the Network Time
 Protocol [RFC5905]. Certain sections, however, are not inherently
 NTP-specific and include guidance on how future work may apply them

https://github.com/dfoxfranke/nts
https://github.com/dfoxfranke/nts/issues
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5905

Franke Expires April 10, 2017 [Page 2]

Internet-Draft Network Time Security October 2016

 to other time synchronization protocols such as the Precision Time
 Protocol [IEC.61588_2009].

 The Network Time Protocol includes many different operating modes to
 support various network topologies. In addition to its best-known
 and most-widely-used client/server mode, it also includes modes for
 synchronization between symmetric peers, a broadcast mode, and a
 control mode for server monitoring and administration. These various
 modes have differing and contradictory requirements for security and
 performance. Symmetric and control modes demand mutual
 authentication and mutual replay protection, and for certain message
 types control mode may require confidentiality as well as
 authentication. Client/server mode places more stringent
 requirements on resource utilization than other modes, because
 servers may have vast number of clients and be unable to afford to
 maintain per-client state. However, client/server mode also has more
 relaxed security needs, because only the client requires replay
 protection: it is harmless for servers to process replayed packets.

 The security demands of symmetric and control modes are in conflict
 with the resource-utilization demands of client/server mode any
 scheme which provides replay protection inherently involves
 maintaining some state to keep track of what messages have already
 been seen. Since therefore no single approach can simultaneously
 satisfy the needs of all modes, Network Time Security consists of not
 one protocol but a suite of them:

 The "NTS-encapsulated NTPv4" protocol is little more than "NTP
 over DTLS": the two endpoints perform a DTLS handshake and then
 exchange NTP packets encapsulated as DTLS Application Data. It is
 suitable for symmetric and control modes, and is also secure for
 client/server mode but relatively wasteful of server resources.

 The "NTS Key Establishment" protocol (NTS-KE) uses DTLS to
 establish key material and negotiate some additional protocol
 options, but then quickly closes the DTLS channel and does not use
 it for the exchange of time packets. NTS-KE is designed to be
 extensible, and might be extended to support key establishment for
 other protocols such as PTP.

 The "NTS extensions for NTPv4" are a collection of NTP extension
 fields for cryptographically securing NTPv4 using key material
 previously negotiated using NTS-KE. They are suitable for
 securing client/server mode because the server can implement them
 without retaining per-client state, but on the other hand are
 suitable *only* for client/server mode because only the client,
 and not the server, is protected from replay.

Franke Expires April 10, 2017 [Page 3]

Internet-Draft Network Time Security October 2016

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. DTLS profile for Network Time Security

 Since securing time protocols is (as of 2016) a novel application of
 DTLS, no backward-compatibility concerns exist to justify using
 obsolete, insecure, or otherwise broken DTLS features or versions.
 We therefore put forward the following requirements and guidelines,
 roughly representing 2016's best practices.

 Implementations MUST NOT negotiate DTLS versions earlier than 1.2.

 Implementations willing to negotiate more than one possible version
 of DTLS SHOULD NOT respond to handshake failures by retrying with a
 downgraded protocol version. If they do, they MUST implement
 [RFC7507].

 DTLS clients MUST NOT offer, and DTLS servers MUST not select, RC4
 cipher suites. [RFC7465]

 DTLS clients SHOULD offer, and DTLS servers SHOULD accept, the TLS
 Renegotiation Indication Extension [RFC5746]. Regardless, they MUST
 NOT initiate or permit insecure renegotiation. (*)

 DTLS clients SHOULD offer, and DTLS servers SHOULD accept, the TLS
 Session Hash and Extended Master Secret Extension [RFC7627]. (*)

 Use of the Application-Layer Protocol Negotation Extension [RFC7301]
 is integral to NTS and support for it is REQUIRED for
 interoperability.

 (*): Note that DTLS 1.3 or beyond may render the indicated
 recommendations inapplicable.

4. Transport mechanisms for DTLS records

 This section specifies two mechanisms, one REQUIRED and one OPTIONAL,
 for exchanging NTS-related DTLS records. It is intended that the
 choice of transport mechanism be orthogonal to any concerns at the
 application layer: DTLS records SHOULD receive identical disposition
 regardless of which mechanism they arrive by.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7507
https://datatracker.ietf.org/doc/html/rfc7465
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc7301

Franke Expires April 10, 2017 [Page 4]

Internet-Draft Network Time Security October 2016

4.1. Transport via NTS port

 In this transport mechanism, DTLS records, formatted according to RFC
6347 [RFC6347] or a subsequent revision thereof, are exchanged

 directly on UDP port [[TBD]], with one DTLS record per UDP packet and
 no additional layer of encapsulation between the UDP header and the
 DTLS record. Servers which implement NTS MUST support this
 mechanism.

4.2. Transport via NTP extension field

 In this transport mechanism, DTLS records are exchanged within
 extension fields of specially-formed NTP packets, which are
 themselves exchanged via the usual NTP service port (123/udp). NTP
 packets conveying DTLS records SHALL be formatted as in Figure 1.
 They MUST NOT contain any other extensions or a legacy MAC field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 . .
 . NTP Header (48 octets) .
 . .
 | |
 +-+
 | Extension Type | Extension Length |
 +-+
 | |
 . .
 . DTLS Record (variable) .
 . .
 | |
 + +-+
 | | |
 +-+-+-+-+-+-+-+-+ +
 | |
 . .
 . Padding (1-24 octets) .
 . .
 | |
 +-+

 Figure 1: Format of NTP packets conveying DTLS records

 Within the NTP header,

 The Leap Indicator field SHALL be set to 3 (unsynchronized).

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347

Franke Expires April 10, 2017 [Page 5]

Internet-Draft Network Time Security October 2016

 The Version Number field SHALL be set to 4.

 DTLS clients SHALL set the Mode field to 3, and DTLS servers SHALL
 set the Mode field to 4, even if the DTLS record is being used (in
 the full-encapsulation protocol) to protect some NTP mode other
 than client/server.

 The Stratum field SHALL be set to 0 (unspecified or invalid).

 The Reference ID field (conveying a kiss code) SHALL be set to
 "DTLS"

 DTLS servers SHALL set the origin timestamp field from the
 transmit timestamp field of the packet most recently received from
 the client.

 All other header fields MUST be ignored by the receiver, and MAY
 contain arbitrary or bogus values.

 The Extension Type field SHALL be set to [[TBD]]. The Extension
 Length field SHALL be computed and set as per RFC 7822 [RFC7822].

 The DTLS Record field SHALL contain a DTLS Record formatted as per
RFC 6347 [RFC6347] or a subsequent revision thereof.

 The Padding field SHALL contain between 1 and 24 octets of padding,
 with every octet set to the number of padding octets included, e.g.,
 "01", "02 02", or "03 03 03". The number of padding bytes should be
 chosen in order to comply with the RFC 7822 [RFC7822] requirement
 that (in the absence of a legacy MAC) extensions have a total length
 in octets (including the four octets for the type and length fields)
 which is at least 28 and divisible by 4. Furthermore, since future
 revisions of DTLS may employ record formats that are not self-
 delimiting, at least one octet of padding MUST be included so that
 receivers can unambiguously determine where the DTLS record ends and
 the padding begins. If the length of the DTLS record is already at
 least 24 and a multiple of 4, then the correct amount of padding to
 include is 4 octets.

 The NTP header values specified above are selected such that NTP
 implementations which do not understand NTS will interpret the packet
 as an innocuous no-op and not attempt to use it for time
 synchronization. To NTS-aware implementations, however, these
 packets are best understood as not being NTP packets at all, but
 simply a means of "smuggling" arbitrary DTLS records across port 123/
 udp. Indeed, these records need not be pertinent to NTP at all --
 for example, they could be NTS-KE messages eventually intended for
 securing PTP traffic.

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822

Franke Expires April 10, 2017 [Page 6]

Internet-Draft Network Time Security October 2016

 This transport mechanism is intended for use as a fallback in
 situations where firewalls or other middleboxes are preventing
 communication on the NTS port. Support for it is OPTIONAL.

5. The NTS-encapsulated NTPv4 protocol

 The NTS-encapsulated NTPv4 protocol proceeds in two parts. First,
 DTLS handshake records are exchanged using one of the two transport
 mechanisms specified in Section 4. The two endpoints carry out a
 DTLS handshake in conformance with Section 3, with the client
 offering (via an ALPN [RFC7301] extension), and the server accepting,
 an application-layer protocol of "ntp/4". Second, once the handshake
 is successfully completed, the two endpoints use the established
 channel to exchange arbitrary NTPv4 packets as DTLS-protected
 Application Data.

 In addition to the requirements specified in Section 3,
 implementations MUST enforce the anti-replay mechanism specified in

Section 4.1.2.6 of RFC 6347 [RFC6347] (or an equivalent mechanism
 specified in a subsequent revision of DTLS). Servers wishing to
 enforce access control SHOULD either demand a client certificate or
 use a PSK-based handshake in order to establish the client's
 identity.

 The NTS-encapsulated NTPv4 protocol is the RECOMMENDED mechanism for
 cryptographically securing mode 1 (symmetric active), 2 (symmetric
 passive), and 6 (control) NTPv4 traffic. It is equally safe for mode
 3/4 (client/server) traffic, but is NOT RECOMMENDED for this purpose
 because it scales poorly compared to using NTS Extensions for NTPv4
 (Section 7).

6. The NTS Key Establishment protocol

 The NTS Key Establishment (NTS-KE) protocol is carried out by
 exchanging DTLS records using one of the two transport mechanisms
 specified in Section 4. The two endpoints carry out a DTLS handshake
 in conformance with Section 3, with the client offering (via an ALPN
 [RFC7301] extension), and the server accepting, an application-layer
 protocol of "ntske/1". Immediately following a successful handshake,
 the client SHALL send a single request (as Application Data
 encapsulated in the DTLS-protected channel), then the server SHALL
 send a single response followed by a "Close notify" alert and then
 discard the channel state.

 The client's request and the server's response each SHALL consist of
 a sequence of records formatted according to Figure 2. The sequence
 SHALL be terminated by a "End of Message" record, which has a Record
 Type of zero and a zero-length body. Furthermore, requests and non-

https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc6347#section-4.1.2.6
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7301

Franke Expires April 10, 2017 [Page 7]

Internet-Draft Network Time Security October 2016

 error responses each SHALL include exactly one NTS Next Protocol
 Negotiation record.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |C| Record Type | Body Length |
 +-+
 | |
 . .
 . Record Body .
 . .
 | |
 +-+

 Figure 2

 [[Ed. Note: this ad-hoc binary format should be fine as long as we
 continue to keep things very simple. However, if we think there's
 any reasonable probability of wanting to include more complex data
 structures, we should consider using some semi-structured data format
 such as JSON, Protocol Buffers, or (ugh) ASN.1]]

 The requirement that all NTS-KE messages be terminated by an End of
 Message record makes them self-delimiting. One DTLS record MAY, and
 typcially will, contain multiple NTS-KE records. NTS-KE records MAY
 be split across DTLS record boundaries. If, likely due to packet
 loss, an incomplete NTS-KE message is received, implementations MUST
 treat this an error, which clients SHOULD handle by restarting with a
 fresh DTLS handshake and trying again.

 The fields of an NTS-KE record are defined as follows:

 C (Critical Bit): Determines the disposition of unrecognized
 Record Types. Implementations which receive a record with an
 unrecognized Record Type MUST ignore the record if the Critical
 Bit is 0, and MUST treat it as an error if the Critical Bit is 1.

 Record Type: A 15-bit integer in network byte order (from most-to-
 least significant, its bits are record bits 7-1 and then 15-8).
 The semantics of record types 0-5 are specified in this memo;
 additional type numbers SHALL be tracked through the IANA Network
 Time Security Key Establishment Record Types registry.

 Body Length: the length of the Record Body field, in octets, as a
 16-bit integer in network byte order. Record bodies may have any
 representable length and need not be aligned to a word boundary.

Franke Expires April 10, 2017 [Page 8]

Internet-Draft Network Time Security October 2016

 Record Body: the syntax and semantics of this field shall be
 determined by the Record Type.

6.1. NTS-KE record types

 The following NTS-KE Record Types are defined.

6.1.1. End of Message

 The End of Message record has a Record Type number of 0 and an zero-
 length body. It MUST occur exactly once as the final record of every
 NTS-KE request and response. The Critical Bit MUST be set.

6.1.2. NTS Next Protocol Negotiation

 The NTS Next Protocol Negotiation record has a record type of 1. It
 MUST occur exactly once in every NTS-KE request and response. Its
 body consists of a sequence of 16-octet strings. Each 16-octet
 string represents a Protocol Name from the IANA Network Time Security
 Next Protocols registry. The Critical Bit MUST be set.

 The Protocol Names listed in the client's NTS Next Protocol
 Negotiation record denote those protocols which the client wishes to
 speak using the key material established through this NTS-KE session.
 The Protocol Names listed in the server's response MUST comprise a
 subset of those listed in the request, and denote those protocols
 which the server is willing and able to speak using the key material
 established through this NTS-KE session. The client MAY proceed with
 one or more of them. The request MUST list at least one protocol,
 but the response MAY be empty.

6.1.3. Error

 The Error record has a Record Type number of 2. Its body is exactly
 two octets long, consisting of an unsigned 16-bit integer in network
 byte order, denoting an error code. The Critical Bit MUST be set.

 Clients MUST NOT include Error records in their request. If clients
 receive a server response which includes an Error record, they MUST
 discard any negotiated key material and MUST NOT proceed to the Next
 Protocol.

 The following error code are defined.

 Error code 0 means "Unrecognized Critical Record". The server
 MUST respond with this error code if the request included a record
 which the server did not understand and which had its Critical Bit

Franke Expires April 10, 2017 [Page 9]

Internet-Draft Network Time Security October 2016

 set. The client SHOULD NOT retry its request without
 modification.

 Error code 1 means "Bad Request". The server MUST respond with
 this error if, upon the expiration of an implementation-defined
 timeout, it has not yet received a complete and syntactically
 well-formed request from the client. This error is likely to be
 the result of a dropped packet, so the client SHOULD start over
 with a new DTLS handshake and retry its request.

6.1.4. Warning

 The Warning record has a Record Type number of 3. Its body is
 exactly two octets long, consisting of an unsigned 16-bit integer in
 network byte order, denoting a warning code. The Critical Bit MUST
 be set.

 Clients MUST NOT include Warning records in their request. If
 clients receive a server response which includes an Warning record,
 they MAY discard any negotiated key material and abort without
 proceeding to the Next Protocol. Unrecognized warning codes MUST be
 treated as errors.

 This memo defines no warning codes.

6.1.5. AEAD Algorithm Negotiation

 The AEAD Algorithm Negotiation record has a Record Type number of 4.
 Its body consists of a sequence of unsigned 16-bit integers in
 network byte order, denoting Numeric Identifiers from the IANA AEAD
 registry [RFC5116]. The Critical Bit MAY be set.

 If the NTS Next Protocol Negotiation record offers "ntp/4",this
 record MUST be included exactly once. Other protocols MAY require it
 as well.

 When included in a request, this record denotes which AEAD algorithms
 the client is willing to use to secure the Next Protocol, in
 decreasing preference order. When included in a response, this
 record denotes which algorithm the server chooses to use, or is empty
 if the server supports none of the algorithms offered.. In requests,
 the list MUST include at least one algorithm. In responses, it MUST
 include at most one. Honoring the client's preference order is
 OPTIONAL: servers may select among any of the client's offered
 choices, even if they are able to support some other algorithm which
 the client prefers more.

https://datatracker.ietf.org/doc/html/rfc5116

Franke Expires April 10, 2017 [Page 10]

Internet-Draft Network Time Security October 2016

 Server implementations of NTS extensions for NTPv4 (Section 7) MUST
 support AEAD_AES_SIV_CMAC_256 [RFC5297] (Numeric Identifier 15).
 That is, if the client includes AEAD_AES_SIV_CMAC_256 in its AEAD
 Algorithm Negotiation record, and the server accepts the "ntp/4"
 protocol in its NTS Next Protocol Negotiation record, then the
 server's AEAD Algorithm Negotation record MUST NOT be empty.

6.1.6. New Cookie for NTPv4

 The New Cookie for NTPv4 record has a Record Type number of 5. The
 contents of its body SHALL be implementation-defined and clients MUST
 NOT attempt to interpret them. See [[TODO]] for a RECOMMENDED
 construction.

 Clients MUST NOT send records of this type. Servers MUST send at
 least one record of this type, and SHOULD send eight of them, if they
 accept "ntp/4" as a Next Protocol. The Critical Bit SHOULD NOT be
 set.

 [[Ed. Note: the purpose of sending eight cookies is to allow the
 client to recover from dropped packets without reusing cookies or
 starting a new handshake. Discussion of cookie management should
 probably be broken out into its own section.]]

6.2. Key Extraction (generally)

 Following a successful run of the NTS-KE protocol, key material SHALL
 be extracted according to RFC 5705 [RFC5705]. Inputs to the exporter
 function are to be constructed in a manner specific to the negotiated
 Next Protocol. However, all protocols which utilize NTS-KE MUST
 conform to the following two rules:

 The disambiguating label string MUST be "EXPORTER-network-time-
 security/1".

 The per-association context value MUST be provided, and MUST begin
 with the 16-octet Protocol Name which was negotiated as a Next
 Protocol.

7. NTS Extensions for NTPv4

7.1. Key Extraction (for NTPv4)

 Following a successful run of the NTS-KE protocol wherein "ntp/4" is
 selected as a Next Protocol, two AEAD keys SHALL be extracted: a
 client-to-server (C2S) key and a server-to-client (S2C) key. These
 keys SHALL be computed according to RFC 5705 [RFC5705], using the
 following inputs.

https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc5705

Franke Expires April 10, 2017 [Page 11]

Internet-Draft Network Time Security October 2016

 The disambiguating label string SHALL be "EXPORTER-network-time-
 security/1".

 The per-association context value SHALL consist of the following
 19 octets:

 The first 16 octets SHALL be (in hexadecimal):

 6E 74 70 2F 34 00 00 00 00 00 00 00 00 00 00 00

 The next two octets SHALL be the Numeric Identifier of the
 negotiated AEAD Algorithm, in network byte order.

 The final octet SHALL be 0x00 for the C2S key and 0x01 for the
 S2C key.

 Implementations wishing to derive additional keys for private or
 experimental use MUST NOT do so by extending the above-specified
 syntax for per-association context values. Instead, they SHOULD use
 their own disambiguating label string. Note that RFC 5705 provides
 that disambiguating label strings beginning with "EXPERIMENTAL" MAY
 be used without IANA registration.

7.2. Packet structure overview

 In general, an NTS-protected NTPv4 packet consists of:

 The usual 48-octet NTP header, which is authenticated but not
 encrypted.

 Some extensions which are authenticated but not encrypted.

 An NTS extension which contains AEAD output (i.e., an
 authentication tag and possible ciphertext). The corresponding
 plaintext, if non-empty, consists of some extensions which benefit
 from both encryption and authentication.

 Possibly, some additional extensions which are neither encrypted
 nor authenticated. These are discarded by the receiver. [[Ed.
 Note: right now there's no good reason for the sender to include
 anything here, but eventually there might be. We've seen Checksum
 Complement [RFC7821] and LAST-EF as two examples of semantically-
 void extensions that are included to satsify constraints imposed
 lower on the protocol stack, and while there's no reason to use
 either of these on NTS-protected packets, I think we could see
 similar examples in the future. So, rejecting packets with
 unauthenticated extensions could cause interoperability problems,
 while accepting and processing those extensions would of course be

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc7821

Franke Expires April 10, 2017 [Page 12]

Internet-Draft Network Time Security October 2016

 a security risk. Thus, I think "allow and discard" is the correct
 policy.]]

 Always included among the authenticated or authenticated-and-
 encrypted extensions are a cookie extension and a unique-identifier
 extension. The purpose of the cookie extension is to enable the
 server to offload storage of session state onto the client. The
 purpose of the unique-identifier extension is to protect the client
 from replay attacks.

7.3. The Unique Identifier extension

 The Unique Identifier extension has a Field Type of [[TBD]]. When
 the extension is included in a client packet (mode 3), its body SHALL
 consist of a string of octets generated uniformly at random. The
 string SHOULD be 32 octets long. When the extension is included in a
 server packet (mode 4), its body SHALL contain the same octet string
 as was provided in the client packet to which the server is
 responding. Its use in modes other than client/server is not
 defined.

 The Unique Identifier extension provides the client with a
 cryptographically strong means of detecting replayed packets. It may
 also be used standalone, without NTS, in which case it provides the
 client with a means of detecting spoofed packets from off-path
 attackers. Historically, NTP's origin timestamp field has played
 both these roles, but for cryptographic purposes this is suboptimal
 because it is only 64 bits long and, depending on implementation
 details, most of those bits may be predictable. In contrast, the
 Unique Identifier extension enables a degree of unpredictability and
 collision-resistance more consistent with cryptographic best
 practice.

 [[TODO: consider using separate extension types for request and
 response, thus allowing for use in symmetric mode. But proper
 handling in the presence of dropped packets needs to be documented
 and involves a lot of subtlety.]]

7.4. The NTS Cookie extension

 The NTS Cookie extension has a Field Type of [[TBD]]. Its purpose is
 to carry information which enables the server to recompute keys and
 other session state without having to store any per-client state.
 The contents of its body SHALL be implementation-defined and clients
 MUST NOT attempt to interpret them. See [[TODO]] for a RECOMMENDED
 construction. The NTS Cookie extension MUST NOT be included in NTP
 packets whose mode is other than 3 (client) or 4 (server).

Franke Expires April 10, 2017 [Page 13]

Internet-Draft Network Time Security October 2016

7.5. The NTS Cookie Placeholder extension

 The NTS Cookie Placeholder extension has a Field Type of [[TBD]].
 When this extension is included in a client packet (mode 3), it
 communicates to the server that the client wishes it to send
 additional cookies in its response. This extension MUST NOT be
 included in NTP packets whose mode is other than 3.

 Whenever an NTS Cookie Placeholder extension is present, it MUST be
 accompanied by an NTS Cookie extension, and the body length of the
 NTS Cookie Placeholder extension MUST be the same as the body length
 of the NTS Cookie Extension. (This length requirement serves to
 ensure that the response will not be larger than the request, in
 order to improve timekeeping precision and prevent DDoS
 amplification). The contents of the NTS Cookie Placeholder
 extension's body are undefined and, aside from checking its length,
 MUST be ignored by the server.

7.6. The NTS Authenticator and Encrypted Extensions extension

 The NTS Authenticator and Encrypted Extensions extension is the
 central cryptographic element of an NTS-protected NTP packet. Its
 Field Type is [[TBD]] and the format of its body SHALL be as follows:

 Nonce length: two octets in network byte order, giving the length
 of the Nonce field.

 Nonce: a nonce as required by the negotiated AEAD Algorithm.

 Ciphertext: the output of the negotiated AEAD Algorithm. The
 structure of this field is determined by the negotiated algorithm,
 but it typically contains an authentication tag in addition to the
 actual ciphertext.

 Padding: between 1 and 24 octets of padding, with every octet set
 to the number of padding octets included, e.g., "01", "02 02", or
 "03 03 03". The number of padding bytes should be chosen in order
 to comply with the RFC 7822 [RFC7822] requirement that (in the
 absence of a legacy MAC) extensions have a total length in octets
 (including the four octets for the type and length fields) which
 is at least 28 and divisible by 4. At least one octet of padding
 MUST be included, so that implementations can unambiguously
 delimit the end of the ciphertext from the start of the padding.

 The Ciphertext field SHALL be formed by providing the following
 inputs to the negotiated AEAD Algorithm:

https://datatracker.ietf.org/doc/html/rfc7822
https://datatracker.ietf.org/doc/html/rfc7822

Franke Expires April 10, 2017 [Page 14]

Internet-Draft Network Time Security October 2016

 K: For packets sent from the client to the server, the C2S key
 SHALL be used. For packets sent from the server to the client,
 the S2C key SHALL be used.

 A: The associated data SHALL consist of the portion of the NTP
 packet beginning from the start of the NTP header and ending at
 the end of the last extension which precedes the NTS Authenticator
 and Encrypted Extensions extension.

 P: The plaintext SHALL consist of all (if any) extensions to be
 encrypted.

 N: The nonce SHALL be formed however required by the negotiated
 AEAD Algorithm.

 The NTS Authenticator and Encrypted Extensions extension MUST NOT be
 included in NTP packets whose mode is other than 3 (client) or 4
 (server).

7.7. Protocol details

 A client sending an NTS-protected request SHALL include the following
 extensions:

 Exactly one Unique Identifier extension, which MUST be
 authenticated and MUST NOT be encrypted [[Ed. Note: so that if
 the server can't decrypt the request, it can still echo back the
 Unique Identifier in the NTS NAK it sends]]. MUST NOT duplicate
 those of any previous request.

 Exactly one NTS Cookie extension, which MUST be authenticated and
 MUST NOT be encrypted. The cookie MUST be one which the server
 previously provided the client; it may have been provided during
 the NTS-KE handshake or in response to a previous NTS-protected
 NTP request. To protect client's privacy, the same cookie SHOULD
 NOT be included in multiple requests. If the client does not have
 any cookies that it has not already sent, it SHOULD re-run the
 NTS-KE protocol before continuing.

 Exactly one NTS Authenticator and Encrypted Extensions extension,
 generated using an AEAD Algorithm and C2S key established through
 NTS-KE.

 The client MAY include one or more NTS Cookie Placeholder extensions,
 which MUST be authenticated and MAY be encrypted. The number of NTS
 Cookie Placeholder extensions that the client includes SHOULD be such
 that if the client includes N placeholders and the server sends back
 N+1 cookies, the number of unused cookies stored by the client will

Franke Expires April 10, 2017 [Page 15]

Internet-Draft Network Time Security October 2016

 come to eight. When both the client and server adhere to all cookie-
 management guidance provided in this memo, the number of placeholder
 extensions will equal the number of dropped packets since the last
 successful volley.

 The client MAY include additional (non-NTS-related) extensions, which
 MAY appear prior to the NTS Authenticator and Encrypted Extensions
 extension (therefore authenticated but not encrypted), within it
 (therefore encrypted and authenticated), or after it (therefore
 neither encrypted nor authenticated). In general, however, the
 server MUST discard any unauthenticated extensions and process the
 packet as though they were not present. Servers MAY implement
 exceptions to this requirement for particular extensions if their
 specification explicitly provides for such.

 Upon receiving an NTS-protected request, the server SHALL (through
 some implementation-defined mechanism) use the cookie to recover the
 AEAD Algorithm, C2S key, and S2C key associated with the request, and
 then use the C2S key to authenticate the packet and decrypt the
 ciphertext. If the cookie is valid and authentication and decryption
 succeed, then the server SHALL include the following extensions in
 its response:

 Exactly one Unique Identifier extension, which MUST be
 authenticated, MUST NOT be encrypted, and whose contents SHALL
 echo those provided by the client.

 Exactly one NTS Authenticator and Encrypted Extensions extension,
 generated using the AEAD algorithm and S2C key recovered from the
 cookie provided by the client.

 One or more NTS Cookie extensions, which MUST be authenticated and
 encrypted. The number of NTS Cookie extensions included SHOULD be
 equal to, and MUST NOT exceed, one plus the number of valid NTS
 Cookie Placeholder extensions included in the request.

 The server MAY include additional (non-NTS-related) extensions, which
 MAY appear prior to the NTS Authenticator and Encrypted Extensions
 extension (therefore authenticated but not encrypted), within it
 (therefore encrypted and authenticated), or after it (therefore
 neither encrypted nor authenticated). In general, however, the
 client MUST discard any unauthenticated extensions and process the
 packet as though they were not present. Clients MAY implement
 exceptions to this requirement for particular extensions if their
 specification explicitly provides for such.

 If the server is unable to validate the cookie or authenticate the
 request, it SHOULD respond with a Kiss-o'-Death packet (see RFC 5905,

https://datatracker.ietf.org/doc/html/rfc5905

Franke Expires April 10, 2017 [Page 16]

Internet-Draft Network Time Security October 2016

Section 7.4) [RFC5905]) with kiss code "NTSN" (meaning "NTS NAK").
 Such a response MUST include exactly one Unique Identifier extension
 whose contents SHALL echo those provided by the client. It MUST NOT
 include any NTS Cookie or NTS Authenticator and Encrypted Extensions
 extension. [[Ed. Note: RFC 5905 already provides the kiss code
 "CRYP" meaning "Cryptographic authentication or identification
 failed" but I think this is meant to be Autokey-specific.]]

 Upon receiving an NTS-protected response, the client MUST verify that
 the Unique Identifier matches that of an outstanding request, and
 that the packet is authentic under the S2C key associated with that
 request. If either of these checks fails, the packet MUST be
 discarded without further processing.

 Upon receiving an NTS NAK, the client MUST verify that the Unique
 Identifier matches that of an outstanding request. If this check
 fails, the packet MUST be discarded without further processing. If
 this check passes, the client SHOULD discard all cookies and AEAD
 keys associated with the server which sent the NAK and initiate a
 fresh NTS-KE handshake.

8. Recommended format for NTS cookies

 This section provides a RECOMMENDED way for servers to construct NTS
 cookies. Clients MUST NOT examine the cookie under the assumption
 that it is constructed according to this section.

 The role of cookies in NTS is closely analagous to that of session
 cookies in TLS. Accordingly, the thematic resemblance of this
 section to RFC 5077 [RFC5077] is deliberate, and the reader should
 likewise take heed of its security considerations.

 Servers should select an AEAD algorithm which they will use to
 encrypt and authenticate cookies. The chosen algorithm should be one
 such as AEAD_AES_SIV_CMAC_256 [RFC5297] which resists accidential
 nonce reuse, and it need not be the same as the one that was
 negotiated with the client. Servers should randomly generate and
 store a master AEAD key `K`. Servers should additionally choose a
 non-secret, unique value `I` as key-identifier for `K`.

 Servers should periodically (e.g., once daily) generate a new pair
 (I,K) and immediately switch to using these values for all newly-
 generated cookies. Immediately following each such key rotation,
 servers should securely erase any keys generated two or more rotation
 periods prior. Servers should continue to accept any cookie
 generated using keys that they have not yet erased, even if those
 keys are no longer current. Erasing old keys provides for forward
 secrecy, limiting the scope of what old information can be stolen if

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5077
https://datatracker.ietf.org/doc/html/rfc5297

Franke Expires April 10, 2017 [Page 17]

Internet-Draft Network Time Security October 2016

 a master key is somehow compromised. Holding on to a limited number
 of old keys allows clients to seamlessly transition from one
 generation to the next without having to perform a new NTS-KE
 handshake.

 [[TODO: discuss key management considerations for load-balanced
 servers]]

 To form a cookie, servers should first form a plaintext `P`
 consisting of the following fields:

 The AEAD algorithm negotiated during NTS-KE

 The S2C key

 The C2S key

 Servers should the generate a nonce `N` uniformly at random, and form
 AEAD output `C` by encrypting `P` under key `K` with nonce `N` and no
 associated data.

 The cookie should consist of the tuple `(I,N,C)`.

 [[TODO: explicitly specify how to verify and decrypt a cookie, not
 just how to form one]]

9. Security Considerations

 [[TODO. Outline follows.]]

 Cite RFC 7384 [RFC7384] for general considerations.

 State security goals (authentication (defined in terms of
 agreement), client privacy) and threat model (active network
 adversary).

 Incorporate content from "What Makes NTP Cryptographically
 Exceptional?" of NTS design essay.

 Address strategies for management of AEAD nonces and stress
 importance of avoiding repetition.

 Give recommendations for validating X.509 certificates during the
 DTLS handshake. Discuss what to expect for the CN/SANs, and how
 to deal with verifying the validity period if correct time is not
 yet known.

https://datatracker.ietf.org/doc/html/rfc7384
https://datatracker.ietf.org/doc/html/rfc7384

Franke Expires April 10, 2017 [Page 18]

Internet-Draft Network Time Security October 2016

 Caution that NTS will not prevent an adversary from skewing time
 by up to MAXDIST/2 and discuss why this limitation is fundamental.

 Possibly include informal security proofs.

10. IANA Considerations

 IANA is requested to allocate an entry in the Service Name and
 Transport Protocol Port Number Registry as follows:

 Service Name: nts

 Transport Protocol: udp

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: Network Time Security

 Reference: [[this memo]]

 Port Number: selected by IANA from the user port range

 IANA is requested to allocate the following two entries in the
 Application-Layer Protocol Negotation (ALPN) Protocol IDs registry:

 Protocol: Network Time Security Key Establishment, version 1

 Identification Sequence:
 0x6E 0x74 0x73 0x6B 0x65 0x2F 0x31 ("ntske/1")

 Reference: [[this memo]]

 Protocol: Network Time Protocol, version 4

 Identification Sequence:
 0x6E 0x74 0x70 0x2F 0x34 ("ntp/4")

 Reference: [[this memo]]

 IANA is requested to allocate the following entry in the TLS Exporter
 Label Registry:

Franke Expires April 10, 2017 [Page 19]

Internet-Draft Network Time Security October 2016

 +----------------------------------+---------+---------------+------+
 | Value | DTLS-OK | Reference | Note |
 +----------------------------------+---------+---------------+------+
 | EXPORTER-network-time-security/1 | Y | [[this memo]] | |
 +----------------------------------+---------+---------------+------+

 IANA is requested to allocate the following entries in the registry
 of NTP Kiss-o'-Death codes:

 +------+------------------------------+
 | Code | Meaning |
 +------+------------------------------+
 | DTLS | Packet conveys a DTLS record |
 | | |
 | NTSN | NTS NAK |
 +------+------------------------------+

 IANA is requested to allocate the following entries in the NTP
 Extensions Field Types registry:

 +------------+---------------------------------------+--------------+
 | Field Type | Meaning | Reference |
 +------------+---------------------------------------+--------------+
[[TBD]]	DTLS Record	[[this
		memo]]
[[TBD]]	Unique Identifier	[[this
		memo]]
[[TBD]]	NTS Cookie	[[this
		memo]]
[[TBD]]	NTS Cookie Placeholder	[[this
		memo]]
[[TBD]]	NTS Authenticator and Encrypted	[[this
	Extensions	memo]]
 +------------+---------------------------------------+--------------+

 IANA is requested to create a new registry entitled "Network Time
 Security Key Establishment Record Types". Entries SHALL have the
 following fields:

 Type Number (REQUIRED): An integer in the range 0-32767 inclusive

 Description (REQUIRED): short text description of the purpose of
 the field

Franke Expires April 10, 2017 [Page 20]

Internet-Draft Network Time Security October 2016

 Set Critical Bit (REQUIRED): One of "MUST", "SHOULD", "MAY",
 "SHOULD NOT", or "MUST NOT"

 Reference (REQUIRED): A reference to a document specifying the
 semantics of the record.

 The policy for allocation of new entries in this registry SHALL vary
 by the Type Number, as follows:

 0-1023: Standards Action

 1024-16383: Specification Required

 16384-32767: Private and Experimental Use

 Applications for new entries SHALL specify the contents of the
 Description, Set Critical Bit and Reference fields and which of the
 above ranges the Type Number should be allocated from. Applicants
 MAY request a specific Type Number, and such requests MAY be granted
 at the registrar's discretion.

 The initial contents of this registry SHALL be as follows:

 +-------------+-----------------------------+----------+------------+
 | Field | Description | Critical | Reference |
 | Number | | | |
 +-------------+-----------------------------+----------+------------+
0	End of message	MUST	[[this
			memo]]
1	NTS next protocol	MUST	[[this
	negotiation		memo]]
2	Error	MUST	[[this
			memo]]
3	Warning	MUST	[[this
			memo]]
4	AEAD algorithm negotation	MAY	[[this
			memo]]
5	New cookie for NTPv4	SHOULD	[[this
		NOT	memo]]
16384-32767	Reserved for Private &	MAY	[[this
	Experimental Use		memo]]
 +-------------+-----------------------------+----------+------------+

Franke Expires April 10, 2017 [Page 21]

Internet-Draft Network Time Security October 2016

 IANA is requested to create a new registry entitled "Network Time
 Security Next Protocols". Entries SHALL have the following fields:

 Protocol Name (REQUIRED): a sequence of 16 octets. Shorter
 sequences SHALL implicitly be right-padded with null octets
 (0x00).

 Human-Readable Name (OPTIONAL): if the sequence of octets making
 up the protocol name intentionally represent a valid UTF-8
 [RFC3629] string, this field SHALL consist of that string.

 Reference (RECOMMENDED): a reference to a relevant specification
 document. If no relevant document exists, a point-of-contact for
 questions regarding the entry SHOULD be listed here in lieu.

 Applications for new entries in this registry SHALL specify all
 desired fields, and SHALL be granted on a First Come, First Serve
 basis. Protocol Names beginning with 0x78 0x2D ("x-") SHALL be
 reserved for Private or Experimental Use, and SHALL NOT be
 registered. The reserved entry "ptp/2" may be updated or released by
 a future Standards Action.

 The initial contents of this registry SHALL be as follows:

 +---------------------------+-----------------+---------------------+
 | Protocol Name | Human-Readable | Reference |
 | | Name | |
 +---------------------------+-----------------+---------------------+
0x6E 0x74 0x70 0x2F 0x34	ntp/4	[[this memo]]
0x70 0x74 0x70 0x2F 0x32	ptp/2	Reserved by [[this
		memo]]
 +---------------------------+-----------------+---------------------+

 IANA is requested to create two new registries entitled "Network Time
 Security Error Codes" and "Network Time Security Warning Codes".
 Entries in each SHALL have the following fields:

 Number (REQUIRED): a 16-bit unsigned integer

 Description (REQUIRED): a short text description of the condition.

 Reference (REQUIRED): a reference to a relevant specification
 document.

 The policy for allocation of new entries in these registries SHALL
 vary by their Number, as follows:

https://datatracker.ietf.org/doc/html/rfc3629

Franke Expires April 10, 2017 [Page 22]

Internet-Draft Network Time Security October 2016

 0-1023: Standards Action

 1024-32767: Specification Required

 32768-65535: Private and Experimental Use

 The initial contents of the Network Time Security Error Codes
 Registry SHALL be as follows:

 +--------+---------------------------------+---------------+
 | Number | Description | Reference |
 +--------+---------------------------------+---------------+
 | 0 | Unrecognized Critical Extension | [[this memo]] |
 | | | |
 | 1 | Bad Request | [[this memo]] |
 +--------+---------------------------------+---------------+

 The Network Time Security Warning Codes Registry SHALL initially be
 empty.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, DOI 10.17487/RFC5297, October
 2008, <http://www.rfc-editor.org/info/rfc5297>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc5116
http://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297
http://www.rfc-editor.org/info/rfc5297
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705

Franke Expires April 10, 2017 [Page 23]

Internet-Draft Network Time Security October 2016

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <http://www.rfc-editor.org/info/rfc5746>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <http://www.rfc-editor.org/info/rfc5905>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7465] Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
 DOI 10.17487/RFC7465, February 2015,
 <http://www.rfc-editor.org/info/rfc7465>.

 [RFC7507] Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
 Suite Value (SCSV) for Preventing Protocol Downgrade
 Attacks", RFC 7507, DOI 10.17487/RFC7507, April 2015,
 <http://www.rfc-editor.org/info/rfc7507>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <http://www.rfc-editor.org/info/rfc7627>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7822] Mizrahi, T. and D. Mayer, "Network Time Protocol Version 4
 (NTPv4) Extension Fields", RFC 7822, DOI 10.17487/RFC7822,
 March 2016, <http://www.rfc-editor.org/info/rfc7822>.

11.2. Informative References

 [IEC.61588_2009]
 IEEE/IEC, "Precision clock synchronization protocol for
 networked measurement and control systems",
 IEEE 1588-2008(E), IEC 61588:2009(E),
 DOI 10.1109/IEEESTD.2009.4839002, February 2009,
 <http://ieeexplore.ieee.org/servlet/

opac?punumber=4839000>.

https://datatracker.ietf.org/doc/html/rfc5746
http://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc5905
http://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7465
http://www.rfc-editor.org/info/rfc7465
https://datatracker.ietf.org/doc/html/rfc7507
http://www.rfc-editor.org/info/rfc7507
https://datatracker.ietf.org/doc/html/rfc7627
http://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7822
http://www.rfc-editor.org/info/rfc7822
http://ieeexplore.ieee.org/servlet/opac?punumber=4839000
http://ieeexplore.ieee.org/servlet/opac?punumber=4839000

Franke Expires April 10, 2017 [Page 24]

Internet-Draft Network Time Security October 2016

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
 January 2008, <http://www.rfc-editor.org/info/rfc5077>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <http://www.rfc-editor.org/info/rfc7384>.

 [RFC7821] Mizrahi, T., "UDP Checksum Complement in the Network Time
 Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
 2016, <http://www.rfc-editor.org/info/rfc7821>.

Appendix A. Acknowledgements

 The author gratefully acknowledges the following contributors:
 Richard Barnes, Prof. Sharon Goldberg, Miroslav Lichvar, Aanchal
 Malhotra, Danny Mayer, Karen O'Donoghue, Eric K. Rescorla, Stephen
 Roettger, Kyle Rose, Rich Salz, Dieter Sibold, Brian Sniffen, Susan
 Sons, Douglas Stebila, Harlan Stenn, Kristof Teichel, and Martin
 Thomson.

Author's Address

 Daniel Fox Franke
 Akamai Technologies, Inc.
 150 Broadway
 Cambridge, MA 02142
 United States

 Email: dafranke@akamai.com
 URI: https://www.dfranke.us

https://datatracker.ietf.org/doc/html/rfc5077
http://www.rfc-editor.org/info/rfc5077
https://datatracker.ietf.org/doc/html/rfc7384
http://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/rfc7821
http://www.rfc-editor.org/info/rfc7821
https://www.dfranke.us

Franke Expires April 10, 2017 [Page 25]

