
dnsop B. Dickson
Internet-Draft
Intended status: Standards Track October 15, 2014
Expires: April 18, 2015

System to transport DNS over HTTP using JSON
draft-dickson-dnsop-spartacus-system-00

Abstract

 This is the SPARTACUS DNS gateway system. It is designed to
 facilitate the transport of DNS messages opaquely, across problematic
 sections of the Internet. It uses JSON encoding, and HTTP(S) as the
 protocol for transport.

 The main criteria of SPARTACUS is that it preserve DNS messages
 verbatim, and that only properly formatted DNS messages are passed.

 There are two modes (so far) defined: DNS forwarder (dns clients
 point to a local gateway, which forwards to a remote gateway for
 sending to a DNS resolver); and transparent proxy (DNS packets are
 intercepted, passed to a local gateway, which sends them to the
 remote gateway, with original destination IP address etc. encoded,
 and used by the remote gateway as the destination).

 DNS messages are NAT-friendly, so changes to IP or UDP headers do not
 impact them. Thus, SPARTACUS does not interfere with TSIG, SIG(0),
 or Eastlake Cookies.

 This document describes the system, the components, and behavior,
 with examples.

Author's Note

 Intended Status: Proposed Standard.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

Dickson Expires April 18, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DNS Gateway System October 2014

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 18, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Problem Statement . 3
1.2. Rationale . 4
1.3. Related Work . 5
1.3.1. Comparison . 5

2. Requirements . 6
3. System Overview . 6
3.1. System Elements . 7
3.1.1. Node Types . 7

3.2. System Modes . 7
3.2.1. Details on DNS Forwarder mode 8
3.2.2. Details on Transparent Proxy mode 9

3.3. Interoperability . 11
3.3.1. In-scope and out-of-scope 11

4. Interactions and Behavior 12
4.1. DNS Gateway Encodings 13
4.2. UDP Packet Loss . 13
4.3. Malformed UDP response 13
4.4. DNSSEC Validation Failure 14

5. Client-Server Selection and Topology Examples 14
5.1. Mixed Traffic Walk-Through 16

6. Security Considerations 16
7. IANA Considerations . 16
8. Acknowledgements . 17

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Dickson Expires April 18, 2015 [Page 2]

Internet-Draft DNS Gateway System October 2014

9. References . 17
9.1. Normative References 17
9.2. Informative References 18

Appendix A. DNS Message Encoding Examples 18
A.1. Simple Query/Answer, No EDNS or DNS Server 19
A.2. Simple Query/Answer, EDNS, no DNS Server 21
A.3. Simple Query/Answer, no EDNS, with DNS Server 24
A.4. Simple Query/Answer, with EDNS and DNS Server 28

Appendix B. Server Gateway HTML code 32
Appendix C. Server Gateway HTTP POST Handler Pseudo-code 32
Appendix D. Client Gateway Pseudo-code 33

 Author's Address . 34

1. Introduction

 DNS (The Domain Name System) has been deployed since the 1980's
 [RFC1033][RFC1034][RFC1035]. Since that time, some of the original
 Resource Record types have been made officially obsolete [RFC3425].
 Some elements have been clarified [RFC2181][RFC2308]. New Resource
 Records have been added [RFC2136][RFC2845][RFC2930][RFC6891]. New
 definitions of bits in the header have arisen, in part due to
 DNSSEC's AD and CD bits [RFC4033][RFC4034][RFC4035][RFC5155].

 This has resulted in now-outdated implementations of stateful devices
 (e.g. devices doing either NAT or packet inspection) interfering with
 end-to-end communication between DNS speakers. Old devices or
 implementations reject DNS packets that include these newer
 capabilities, features, or format changes.

 At the same time, there has arisen a variety of other devices and
 systems whose deliberate function is to block, capture, or modify DNS
 traffic, for profit or for ideological reasons. Examples include
 hotel wifi systems, ISPs, and state actors.

 Owing to the stateless nature of DNS over UDP, it is not possible to
 distinguish between deliberate and accidental sources of DNS
 interference.

1.1. Problem Statement

 There is a need to provide ways of supporting incremental deployment
 of new DNS features, in such a way as to prevent deliberate and/or
 accidental interference in the communication between DNS speakers.

 For example, DNS speakers could communicate over protected channels
 and with data integrity validation via DNSSEC. The foremost
 limitation is that the communication be over any other port/protocol
 combination than UDP port 53. Ideally, the choice should be an

https://datatracker.ietf.org/doc/html/rfc1033
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc3425
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2930
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4035

Dickson Expires April 18, 2015 [Page 3]

Internet-Draft DNS Gateway System October 2014

 encoding that is compatible with whatever port/protocol combination
 is selected (versus overloading the port/protocol with incompatible
 payloads).

 There is a further need for the communications channel(s) to be
 standardized, and to not introduce further interoperability problems
 at the DNS protocol level. Independent implementations need to
 interoperate completely, to avoid merely pushing the compatibility
 problem around.

 In order to solve these problems (individually and/or collectively),
 the SPARTACUS system has been developed.

1.2. Rationale

 SPARTACUS (Secure, Private Aparatus for Resolution Transported Across
 Constraining and/or Unmaintained Systems), is a system for encoding
 and decoding DNS messages (the DNS payload of UDP or TCP packet
 streams).

 The SPARTACUS system consists of bidirectional DNS gateways for
 transporting DNS over HTTP(S) using a JSON encoding scheme. This is
 intended to create "bridges" between DNS speakers; perhaps a better
 analogy would be "ferries", as there is no requirement for a tightly
 bound relationship between individual Client nodes and Server nodes.

 Standardizing the JSON encoding used by SPARTACUS, is intended to
 ensure a greater likelihood of compatible, interoprable
 implementations.

 The goal is to transport DNS messages from any Client implementation
 to any Server implementation.

 Each gateway must be liberal in what it accepts (any valid DNS
 message conforming to the relevant RFCs, regardless of DNS
 implementation) and conservative in what it sends (all packets must
 parse correctly as DNS messages). In order to ensure forward
 compatibility, unknown Types and (in the case of OPT) sub-types, MUST
 be accepted and transported.

 DNS messages MUST traverse the encode/decode process unaltered. The
 round-trip is designed to, and MUST be implemented to, preserve the
 entire DNS message's fidelity. This means a 1:1 binary match between
 input, encoding, decoding, and output. The lengths MUST match, and
 messages MUST be identical, bit for bit.

 A secondary objective of the encoding in JSON is the use of the same
 names for data elements and structures as in the DNS RFCs. The idea

Dickson Expires April 18, 2015 [Page 4]

Internet-Draft DNS Gateway System October 2014

 is to provide human-readable JSON encodings, for easier diagnostics
 during development, and when investigating operational issues.

1.3. Related Work

 A variety of other work exists, and provided inspiration for the
 SPARTACUS work. This includes web/JSON DNS portals, for providing
 DNS query responses in JSON format, often with a "looking glass"
 functionality. FIXME format this list appropriately and decorate
 with words. END FIXME

 o Multi-location DNS Looking Glass - Tool for performing DNS queries
 via RESTful interface in multiple locations, returning results in
 JSON format

 o DNS Looking Glass - Tool for performing DNS queries via RESTful
 interface, returning results in JSON format

 o DNS JSON - Source code project from circa 2009, partially
 developed but incomplete/abandoned

 o DNSSEC-trigger[trigger] - embedded control function in NLnetlabs'
 Unbound resolver, for attempting DNS queries over TCP port 80 when
 DNSSEC problems are encountered

 o Various other web-based DNS lookup tools

1.3.1. Comparison

 There has been at least one previous effort to develop code for a
 DNS-JSON encoding, which appears to have been abandoned after one-way
 encoding was done, circa 2009. The project focused on presenting
 results to DNS queries in JSON format, with an intention to create a
 client gateway, which never materialized. The project can be found
 in two places ([JPF_jsondns] and [jsondns.org]). One major
 difference is that DNS query response status is converted to HTTP
 error codes, rather than being embedded in the JSON answer. This
 makes it unsuitable for bidirectional use. Only a few DNS type codes
 were implemented.

 Another DNS JSON tool [fileformat.info], similarly focuses only on
 answers, with a limited number of type codes.

 Yet another tool for looking up DNS via HTTP with JSON responses is
 the "dnsrest" [restdns.net]. It too focuses only on answer values,
 and is similarly not able to fully produce results that can be turned
 back into DNS answer packets.

Dickson Expires April 18, 2015 [Page 5]

Internet-Draft DNS Gateway System October 2014

 The "DNS Looking Glass" [bortzmeyer.org], is primarily designed for
 returning DNS answer data. As such, it lacks encoding suitable for a
 bidirectional scheme. It is primarily focused on XML output, with
 JSON output organized around DNS resolution meta-data, plus answer
 data in a generic schema. (The schema itself is described in
 [draft-bortzmeyer-dns-json].)

 The "Multilocation DNS Looking Glass" [dns-lg.com], uses a RESTful
 query mechanism of "node/qname/qtypename" to request the looking
 glass (LG) to perform a DNS lookup for the qname and qtype, and
 returns the response in a JSON format. The JSON format is generic,
 encapsulating all types as string data in presentation format, with a
 generic label of "rdata". This does not facilitate decoding easily,
 as the JSON scheme provides no information for parsing the rdata
 field. The type (qtype for the query, or type for answer/authority/
 additional) is in string (symbolic) form, and the elements are
 objects and thus in unordered lists. The JSON scheme is fine for
 one-way encoding for human readability, but not suitable for two-way
 conversion back into DNS.

 DNSSEC-trigger[trigger] can only be used in environments that use
 NLnetlabs' Unbound resolver, or where Unbound can be deployed as a
 replacement for existing recursive resolvers and/or stub resolvers.

 A variety of other web lookup tools exist, predominantly producing
 DNS validation (zone structure and hierarchy), maps, meta-data, or
 literal output from the 'dig' tool, in formats as varied as the
 purposes of the tools. Dig output, while being reasonably
 deterministic, is not sufficiently well-formed as to facilitate
 "screen scraping" as a parsing method.

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. System Overview

 The SPARTACUS system is designed to improve the reliability and
 security of the DNS system, by providing the means to transport DNS
 traffic across segments of the Internet. The goal is to bypass
 problem areas which interfere with DNS communications, regardless of
 root cause of the interference.

 Some familiarity with the DNS protocol is assumed.

https://datatracker.ietf.org/doc/html/draft-bortzmeyer-dns-json
https://datatracker.ietf.org/doc/html/rfc2119

Dickson Expires April 18, 2015 [Page 6]

Internet-Draft DNS Gateway System October 2014

3.1. System Elements

 The particular system elements used will differ, based on the mode of
 operation of the Client. Clients may request the use of particular
 resolvers via additional intra-element signalling.

3.1.1. Node Types

 Base node types are the following:

 o Standalone SPARTACUS Client forwarder

 o Transparent SPARTACUS proxy Client

 o Standalone SPARTACUS Server

 o Apache module-based SPARTACUS Server

 o Stub resolver

 o External recursive resolver

 o Client-side recursive resolver

 o External authority server

 Future node types are expected to include:

 o Browser-integrated SPARTACUS client and stub resolver

 o Mobile-device SPARTACUS client and stub resolver (with exposed
 getdns API)

 o SMTP-integrated SPARTACUS client and stub resolver

3.2. System Modes

 The system has two modes of operation:

 o DNS Forwarder - an opaque mode of operation, the Client/Server
 pair act collectively as a single DNS forwarder.

 o Transparent Proxy - In this mode, regular DNS traffic is diverted
 by unspecified means to the SPARTACUS Client.

 Additional intra-element signalling facilitates Clients requesting
 particular resolvers' (recursive or authoritative) use.

Dickson Expires April 18, 2015 [Page 7]

Internet-Draft DNS Gateway System October 2014

3.2.1. Details on DNS Forwarder mode

 The Server is configured to use a particular DNS recursive resolver,
 with the optional ability to support Client-requested resolver(s) via
 in-band signaling. If present, the Client-requested resolver IP
 address is passed as an EDNS OPT value. The Server, if it is
 configured to honor requested resolvers, uses this IP address instead
 of the default.

 Example: Problem caused by firewalls that do not support DNSSEC:

 +------+ +--------------+ +----------+
			Blocked	
Stub +-->	Old Firewall +----+X+--->	Resolver		
		(no DNSSEC)	Packets	
 +------+ +--------------+ +----------+

 Figure 1

 Example: How the stub client sees the SPARTACUS Client/Server pair,
 in the opaque forwarder configuration:

 +------+ +----------------------------------+ +----------+
Stub +-->	Forwarder +---->	Resolver		
		with DNSSEC		
	<--+	<----+		
 +------+ +----------------------------------+ +----------+

 Figure 2

 Example: How the Client/Server pair actually operates:

 +------+ +--------+ +--------+ +----------+
Stub +--->	Client +------------->	Server +---->	Resolver			
	DNS		JSON/HTTP(S)		DNS	
	<---+	<-------------+	<----+			
 +------+ +--------+ +--------+ +----------+

 Figure 3

Dickson Expires April 18, 2015 [Page 8]

Internet-Draft DNS Gateway System October 2014

 Example: How the Client/Server bypass the old firewall:

 +------+ +--------+ +--------------+ +--------+ +----------+
				Old Firewall				
Stub +->	Client +------------------>	Server +->	Resolver					
				(bypassed)				
	<-+	<------------------+	<-+					
 +------+ +--------+ +--------------+ +--------+ +----------+

 Figure 4

3.2.2. Details on Transparent Proxy mode

 Transparent Proxy mode supports transport of stub to recursive
 traffic (all with the same destination IP address).

 Transparent Proxy mode also supports use by a recursive resolver, to
 handle recursive-to-authoritative traffic (with different destination
 IP addresses per query).

 From the perspective of the DNS client (stub or recursive), it
 appears that the DNS query packet went to some IP address, and the
 reply came back directly.

 +----------+ +--------------+
+------------------------------------>		
Stub		Recursive
src=SR	DNS UDP/53 SR<->RR	dst=RR
	<------------------------------------+	
 +----------+ +--------------+

 Figure 5

Dickson Expires April 18, 2015 [Page 9]

Internet-Draft DNS Gateway System October 2014

 +-----------+
 | +-----------------------------------> +--------------+
 | | | Authority #1 |
 | | <-----------------------------------+ dst=AR_1 |
 | | +--------------+
 | +-----------------------------------> +--------------+
 | Recursive | | Authority #2 |
 | src=RR | <-----------------------------------+ dst=AR_2 |
 | | +--------------+
 | | ...
 | +-----------------------------------> +--------------+
 | | | Authority #N |
 | | <-----------------------------------+ dst=AR_N |
 +-----------+ +--------------+
 DNS UDP/53 RR<->AR_N (N=1,2,...)

 Figure 6

 In both use cases, the original IP destination is encoded as an EDNS
 OPT value, and the DNS message (encoded as JSON) is sent to the
 SPARTACUS Server. The Server sends the DNS message to the original
 IP destination, with the SPARTACUS Server's IP address as the source.
 The resulting answer DNS message is sent to the Client, which changes
 the reply source IP address to the original destination IP address.

 +-----------+ +-------+ +---------+ +---------------+
+---------->	Trans.		Server +->	Authoritative		
		Proxy		Gateway		Resolver #1
	<----------+ TP		SG	<-+ AR_1		
	+-----+-+ +------+--+ +---------------+					
	DNS UDP/53		DNS UDP/53			
Recursive	RR <-> AR_1 ^ v ^	SG <-> AR_1				
Resolver						
RR	+---+-----+					
		Client +----+	TCP/80 (or /443)			
		Gateway		JSON (EDNS: dst=AR_1)		
		CG	<-----+ CG <-> SG			
 +-----------+ +---------+

 Figure 7

 The only practical difference is that some intermediate devices see
 JSON/HTTP(S) instead of DNS/UDP traffic. For some of those devices,
 this is in fact the purpose of SPARTACUS - preventing those devices
 from inspecting the DNS traffic in a problematic manner.

Dickson Expires April 18, 2015 [Page 10]

Internet-Draft DNS Gateway System October 2014

3.3. Interoperability

 The purpose of this document is to ensure that independent
 implementations of Client(s) and Server(s) can interoperate, so long
 as each is permitted to interoprate with the other.

 It is not required that Servers be operated in a completely "open"
 manner. However, the more open Servers there are, the greater the
 benefit. Like any web-based service, care should be given towards
 managing available resources on a Server. In all likelihood, this
 resource management may be most effectively handled via the web
 server's own service management system.

3.3.1. In-scope and out-of-scope

 The following items are out-of-scope, from an interoperability
 standpoint.

 This means that individual implementations may make independent
 design decisions, without impacting interoperability.

 o Choice(s) of default resolver (on Server)

 o Server-side DNS retry and time-out values

 o How Client(s) select Servers

 The following items are in-scope, from an interoperability
 standpoint.

 o JSON encoding

 o How to signal non-support of requested resolver(s)

 o How to signal "no response" (timeout) on Server-resolver traffic

 o Signalling/encoding of default,requested, and actually-used
 resolvers

 o Stripping of EDNS OPT private values

 o Stripping of synthesized EDNS OPT record

 The following items are optional, from an interoperability
 standpoint.

 o Whether and how to do edns-client-subnet (on Client)

Dickson Expires April 18, 2015 [Page 11]

Internet-Draft DNS Gateway System October 2014

 o Whether to use TLS (HTTPS) on Client-Server traffic

 o Whether to honor requested resolvers (on Server)

 o Whether to support Transparent Proxy mode (on the Client)

 o Whether to do DNSSEC validation

 o Whether to do PKI validation of SSL certificates (if HTTPS is used
 and CA-issued certs used)

 o Whether to do DANE validation of SSL certificates (if HTTPS is
 used and TLSA records exist)

 o Whether IPv4 or IPv6 is supported

4. Interactions and Behavior

 The Client Gateway needs to make informed decisions about Server
 Gateways to use. Client Gateways may use pre-configured (static)
 gateways, or may employ any number of strategies for selection of
 Server Gateways.

 In order to enble Client-controlled Server Selection, each Server
 Gateway needs to advise the Client about default and actual DNS
 Servers used. The Client optionally requests DNS Server(s) that the
 Server should use. If present, the Server includes that in the
 response.

 The SPARTACUS client/server interaction occurs over TCP rather than
 UDP. As such, other than TCP-based failures (RST aka "reset" for
 example), every query MUST get a response (owing to the HTTP POST
 standards).

 Since the Server Gateway is performing DNS resolution using UDP
 transport, it is possible that network packet loss may occur,
 resulting in unanswered queries.

 Also, there are reasons other than network-based packet loss that can
 result in unanswered queries. DNS resolvers must attempt to infer
 what causes queries to not be answered.

 It is also possible that various other failure modes could occur,
 which need to be handled on the basis of the nature of the failure.

 Each of these is addressed in separate sections below.

Dickson Expires April 18, 2015 [Page 12]

Internet-Draft DNS Gateway System October 2014

4.1. DNS Gateway Encodings

 The three DNS Server values (default, requested, actual) are
 communicated via EDNS OPT type-length-value (TLV) tuples, using three
 distinct types. Pre-standard experimental values are presently being
 used. IANA will need to assign permanent OPT Type values for these
 three type codes.

 In order to ensure that the EDNS OPT record is only returned to the
 original DNS client if it existing in the query, it is necessary to
 identify cases where the DNS Server value encoding resulted in a
 "new" OPT record, rather than being added to an existing record. In
 such cases, an additional OPT TLV type is required, and is added to
 the OPT record. A fourth OPT Type value needs to be assigned by IANA
 for this purpose.

 The new OPT codes are used to enable the Client and Server to
 maintain all communication details inside the DNS message itself.
 This simplifies the design, implementation, and operation of Clients
 and Servers, and ensures forward/backward compatibility. OPT codes
 specific to the Client-Server communication MUST be removed prior to
 forwarding of DNS messages to DNS Clients and Servers. If the EDNS
 OPT RR is synthesized (added to the DNS message), it MUST be removed.

4.2. UDP Packet Loss

 In cases where the Server Gateway did not get a response from the DNS
 Server, it needs to signal this back to the client. It needs to do
 this so that the proper Client state is established. This prevents
 time-out based (undefined) behavior on the Client from being
 triggered. The Server needs to "pass along" packet loss status to
 the Client to trigger well-defined Client behavior.

 The mechanism is to use a Private EDNS OPT type/length/value (TLV),
 with the original Question echoed back (to associate with the Query).
 When receiving this TLV, the Client will treat this as a lost UDP
 packet, and MUST NOT send back any UDP packet. The UDP client is
 responsible for handling this lost UDP packet, per the DNS protocol.

4.3. Malformed UDP response

 The malformed UDP packet may not be legitimate. To be conservative,
 this condition is signaled back to the client, and the (actual)
 received UDP packet is rejected/dropped. This is treated by the DNS
 client as a lost UDP packet.

Dickson Expires April 18, 2015 [Page 13]

Internet-Draft DNS Gateway System October 2014

4.4. DNSSEC Validation Failure

 If DNSSEC validation fails, the presumption needs to be made that the
 failure is deliberate. The DNSSEC standards call for "SRVFAIL"
 responses, so that is what a compliant implementation MUST return to
 the UDP client.

 If the Client and/or Server does DNSSEC Validation, it MUST correctly
 implement Validation signalling via the AD and CD bits.

 In other words, it MUST return the answer regardless of Validation if
 the CD bit is set, and it MUST set the AD bit if Validation succeeds,
 regardless of the presence and/or state of EDNS bit DO.

5. Client-Server Selection and Topology Examples

 +-----------+
 | |
 +--> | Server +--+
 +-----------+ | | Gateway 1 | |
 | Client | | +-----------+ | +-----------+
Gateway +--+ +-----------+ +-->				
				Recursive
Selects +----->	Server +----->	DNS		
Random		Gateway 2		Server
Server +--+ +-----------+ +-->				
Gateway		+-----------+	+-----------+	
 +-----------+ | | | |
 +--> | Server +--+
 | Gateway 3 |
 +-----------+

 Figure 8

 Figure 8 shows the same Recursive DNS Server being used, via multiple
 Server Gateways. There are several benefits to doing this; they
 include distributing load among multiple Server Gateways, and
 reducing the amount of DNS traffic going via any single Server
 Gateway. This limits the impact of the compromise of any single
 Server Gateway, or of any single Server Certificate compromise.

Dickson Expires April 18, 2015 [Page 14]

Internet-Draft DNS Gateway System October 2014

 +--------+
 | |
 +-----> | Server |
 +-----------+ | | GW 1 | +-----------+
Client	+---+----+ +------+-+ +--------+						
Gateway							
		Server	<--+ +--->	Server +-->			
Selects		GW 2			GW 4		DNS
Random	+--------+ +-+------+ +--------+	Server					
Server							
Gateway		Server					
+------------>	GW 3						
 +-----------+ +--------+ +-----------+

 Figure 9

 Figure 9 illustrates a path where more than one Server Gateway is
 traversed during resolution. The objective here is to disassociate
 the IDENTITY of the client from the CONTENT of the query/answer. The
 association is only made directly on the first Server Gateway (and
 only with respect to the Client Gateway). The actual association of
 the source UDP client is only done on the Client Gateway itself,
 which may or may not provide further privacy. Since there is more
 than one Server-Server hop, this significantly reduces the ability to
 infer associations between Query/Response and Client Gateways.

 It should be noted that this looks very much like TOR (The Onion
 Router), applied to JSON-encoded UDP DNS traffic. There is a
 proposal for DNS privacy enhancements that applies a similar
 techique, directly on UDP-based DNS queries/answers. FIXME add xref
 here to reference to the appropriate Internet Draft. END FIXME

 +---------------+ +--------+ +--------+ +------------+ +----------+
Client		WWW/GW		WWW/GW				
Gateway		Server		Server		Web Server		
		GW 3		GW 4				
Selects	+--------+ +--------+ +----------+		DNS					
Among		Gateway			Server			
Most Recent	DNS traffic mingled	Server						
Web Server	with web traffic	Module +--->						
Gateways +--------------------->	GW 2							
 +---------------+ (or encrypted) +----------+-+ +----------+

 Figure 10

 Figure 10 illustrates one query/response when the client is
 attempting to use something similar to steganography to preserve
 privacy. In this context, the privacy against passive monitoring is

Dickson Expires April 18, 2015 [Page 15]

Internet-Draft DNS Gateway System October 2014

 achieved by using un-blocked web servers which are also Server
 Gateways. A MitM adversary cannot easily block this traffic without
 blocking the entire site, or by inspecting every flow to/from the
 site. A passive observer would similarly need to inspect all flows
 to find the embedded, encoded DNS traffic. The DNS traffic would be
 nearly indistinguishable from regular HTTP traffic.

 Note that the use of TLS to protect the Client-Server traffic would
 make it impossible to distinguish the DNS traffic from the other web
 trafficin this situation. Combining this "tag-along" with TLS
 provides both strong privacy and strong security.

5.1. Mixed Traffic Walk-Through

 Suppose a client were to visit web sites "a" through "j"
 sequentially, i.e. a,b,c,d,e,f,g,h,i,j. Suppose some of those were
 also Server Gateways, represented by upper case (vs lower case for
 web sites without Server Gateway capabilities). Thus the sequence
 would be A,b,C,D,e,f,g,H,I,j. If the Client Gateway chose a Server
 Gateway randomly from among the last four web sites visited, the
 sequence of events after visiting A through D, would look like:

 o Select Server from set {A,C,D}, look up "e". Visit "e".

 o Select Server from set {C,D}, look up "f". Visit "f".

 o Select Server from set {C,D}, look up "g". Visit "g".

 o Select Server from set {D}, look up "h". Visit "h".

 o Select Server from set {D,H}, look up "i". Visit "i".

 o Select Server from set {H,I}, look up "j". Visit "j".

 An observer close to the Client would see traffic within a given time
 window, only to the same set of Web servers. An observer close to
 any of the Web servers would only see traffic from a given client,
 for a small interval of time after the first visit.

6. Security Considerations

 (None per se.) Need to list considerations etc.

7. IANA Considerations

 This document will eventually contain IANA-specific material.

Dickson Expires April 18, 2015 [Page 16]

Internet-Draft DNS Gateway System October 2014

8. Acknowledgements

 To be added later.

9. References

9.1. Normative References

 [RFC1033] Lottor, M., "Domain administrators operations guide", RFC
1033, November 1987.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, November 1987.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, April 1997.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, March 1998.

 [RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, May 2000.

 [RFC2930] Eastlake, D., "Secret Key Establishment for DNS (TKEY
 RR)", RFC 2930, September 2000.

 [RFC3425] Lawrence, D., "Obsoleting IQUERY", RFC 3425, November
 2002.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC

4033, March 2005.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, March 2005.

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, March 2005.

https://datatracker.ietf.org/doc/html/rfc1033
https://datatracker.ietf.org/doc/html/rfc1033
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2308
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2930
https://datatracker.ietf.org/doc/html/rfc3425
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035

Dickson Expires April 18, 2015 [Page 17]

Internet-Draft DNS Gateway System October 2014

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, March 2008.

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891, April 2013.

9.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [JPF_jsondns]
 "DNS over HTTP", <http://github.com/jpf/jsondns>.

 [jsondns.org]
 Franusic, J., "Query DNS via REST", <http://jsondns.org/>.

 [fileformat.info]
 Marcuse, A., "DNS in client-side JavaScript",
 <http://www.fileformat.info/tool/rest/dns-json.htm>.

 [restdns.net]
 "REST-DNS", <http://restdns.net/>.

 [bortzmeyer.org]
 Bortzmeyer, S., "DNS Looking Glass",
 <http://www.bortzmeyer.org/dns-lg.html>.

 [draft-bortzmeyer-dns-json]
 Bortzmeyer, S., "DNS in JSON",
 <http://tools.ietf.org/html/draft-bortzmeyer-dns-json-01>.

 [dns-lg.com]
 Cambus, F., "Multilocation DNS Looking Glass",
 <http://www.dns-lg.com/>.

 [trigger] NLnet Labs, "Dnssec-Trigger",
 <http://www.nlnetlabs.nl/projects/dnssec-trigger/>.

Appendix A. DNS Message Encoding Examples

 The entire encoding of pairs of DNS messages follows. For each
 pair,the first is the query, and the second is the response.

https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://github.com/jpf/jsondns
http://jsondns.org/
http://www.fileformat.info/tool/rest/dns-json.htm
http://restdns.net/
http://www.bortzmeyer.org/dns-lg.html
https://datatracker.ietf.org/doc/html/draft-bortzmeyer-dns-json
http://tools.ietf.org/html/draft-bortzmeyer-dns-json-01
http://www.dns-lg.com/
http://www.nlnetlabs.nl/projects/dnssec-trigger/

Dickson Expires April 18, 2015 [Page 18]

Internet-Draft DNS Gateway System October 2014

A.1. Simple Query/Answer, No EDNS or DNS Server

 Query encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 26,
 "DICTIONARY" : [
 "example",
 "com",
 ""
],
 "DSIZE2" : 26,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : false,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : false,
 "Z" : false,
 "AD" : false,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 0,
 "NSCOUNT" : 0,
 "ARCOUNT" : 0
],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
]
]

 Response encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 33,
 "DICTIONARY" : [

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 19]

Internet-Draft DNS Gateway System October 2014

 "example",
 "com",
 "",
 "@0"
],
 "DSIZE2" : 33,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : true,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : true,
 "Z" : false,
 "AD" : false,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 1,
 "NSCOUNT" : 0,
 "ARCOUNT" : 0
],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Answer" : [
 "RR" : [
 "NAME" : ["example.com." : 0],
 "TYPE" : ["A" : 1],
 "CLASS" : ["IN" : 1],
 "TTL" : 5218,
 "RDLENGTH" : 4,
 "RDATA" : [
 "A" : [
 "Address" : "93.184.216.119"
]
]
]
]
]

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 20]

Internet-Draft DNS Gateway System October 2014

A.2. Simple Query/Answer, EDNS, no DNS Server

 Query encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 31,
 "DICTIONARY" : [
 "example",
 "com",
 "",
 ""
],
 "DSIZE2" : 31,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : false,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : false,
 "Z" : false,
 "AD" : false,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 0,
 "NSCOUNT" : 0,
 "ARCOUNT" : 1
],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Additional" : [
 "RR" : [
 "NAME" : ["." : 3],
 "TYPE" : ["OPT" : 41],
 "Field3" : [
 "UDPSIZEFIELD" : [
 "UDPSIZE" : 1500

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 21]

Internet-Draft DNS Gateway System October 2014

]
],
 "Field4" : [
 "Extended_RCode_Flags" : [
 "ERCFlagbits" : [
 "RCode" : 0,
 "Version" : 0,
 "DO" : false,
 "Resv" : 0

]
]
],
 "RDLENGTH" : 0,
 "RDATA" : [
 "OPT (RFC 6891)" : [
 "TLV_LIST" : [

]
]
]
]
]
]

 Response encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 38,
 "DICTIONARY" : [
 "example",
 "com",
 "",
 "@0",
 ""
],
 "DSIZE2" : 38,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : true,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : true,
 "Z" : false,

https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 22]

Internet-Draft DNS Gateway System October 2014

 "AD" : false,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 1,
 "NSCOUNT" : 0,
 "ARCOUNT" : 1
],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Answer" : [
 "RR" : [
 "NAME" : ["example.com." : 0],
 "TYPE" : ["A" : 1],
 "CLASS" : ["IN" : 1],
 "TTL" : 4865,
 "RDLENGTH" : 4,
 "RDATA" : [
 "A" : [
 "Address" : "93.184.216.119"
]
]
]
],
 "Additional" : [
 "RR" : [
 "NAME" : ["." : 4],
 "TYPE" : ["OPT" : 41],
 "Field3" : [
 "UDPSIZEFIELD" : [
 "UDPSIZE" : 4000
]
],
 "Field4" : [
 "Extended_RCode_Flags" : [
 "ERCFlagbits" : [
 "RCode" : 0,
 "Version" : 0,
 "DO" : false,
 "Resv" : 0

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 23]

Internet-Draft DNS Gateway System October 2014

]
]
],
 "RDLENGTH" : 0,
 "RDATA" : [
 "OPT (RFC 6891)" : [
 "TLV_LIST" : [

]
]
]
]
]
]

A.3. Simple Query/Answer, no EDNS, with DNS Server

 Query encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 31,
 "DICTIONARY" : [
 "example",
 "com",
 "",
 ""
],
 "DSIZE2" : 31,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : false,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : false,
 "Z" : false,
 "AD" : false,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 0,
 "NSCOUNT" : 0,
 "ARCOUNT" : 1

https://datatracker.ietf.org/doc/html/rfc6891
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 24]

Internet-Draft DNS Gateway System October 2014

],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Additional" : [
 "RR" : [
 "NAME" : ["." : 3],
 "TYPE" : ["OPT" : 41],
 "Field3" : [
 "UDPSIZEFIELD" : [
 "UDPSIZE" : 1500
]
],
 "Field4" : [
 "Extended_RCode_Flags" : [
 "ERCFlagbits" : [
 "RCode" : 0,
 "Version" : 0,
 "DO" : false,
 "Resv" : 0

]
]
],
 "RDLENGTH" : 19,
 "RDATA" : [
 "OPT (RFC 6891)" : [
 "TLV_LIST" : [
 "TLV" : [
 "TYPE" : ["PrivateType65500" : 65500],
 "Len" : 13,
 "Data" : [
 "PrivateType65500" : [
 "GW_NAME" : ["10:10" , "198.41.1.1"]

]
]
],
 "TLV" : [
 "TYPE" : ["PrivateType65510" : 65510],
 "Len" : 0,
 "Data" : [
]
],

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc6891

Dickson Expires April 18, 2015 [Page 25]

Internet-Draft DNS Gateway System October 2014

]
]
]
]
]
]

 Response encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 38,
 "DICTIONARY" : [
 "example",
 "com",
 "",
 "@0",
 ""
],
 "DSIZE2" : 38,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : true,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : true,
 "Z" : false,
 "AD" : true,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 1,
 "NSCOUNT" : 0,
 "ARCOUNT" : 1
],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Answer" : [

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 26]

Internet-Draft DNS Gateway System October 2014

 "RR" : [
 "NAME" : ["example.com." : 0],
 "TYPE" : ["A" : 1],
 "CLASS" : ["IN" : 1],
 "TTL" : 4084,
 "RDLENGTH" : 4,
 "RDATA" : [
 "A" : [
 "Address" : "93.184.216.119"
]
]
]
],
 "Additional" : [
 "RR" : [
 "NAME" : ["." : 4],
 "TYPE" : ["OPT" : 41],
 "Field3" : [
 "UDPSIZEFIELD" : [
 "UDPSIZE" : 512
]
],
 "Field4" : [
 "Extended_RCode_Flags" : [
 "ERCFlagbits" : [
 "RCode" : 0,
 "Version" : 0,
 "DO" : false,
 "Resv" : 0

]
]
],
 "RDLENGTH" : 19,
 "RDATA" : [
 "OPT (RFC 6891)" : [
 "TLV_LIST" : [
 "TLV" : [
 "TYPE" : ["PrivateType65500" : 65500],
 "Len" : 13,
 "Data" : [
 "PrivateType65500" : [
 "GW_NAME" : ["10:10" , "198.41.1.1"]

]
]
],
 "TLV" : [

https://datatracker.ietf.org/doc/html/rfc6891

Dickson Expires April 18, 2015 [Page 27]

Internet-Draft DNS Gateway System October 2014

 "TYPE" : ["PrivateType65510" : 65510],
 "Len" : 0,
 "Data" : [
]
],

]
]
]
]
]
]

A.4. Simple Query/Answer, with EDNS and DNS Server

 Query encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 31,
 "DICTIONARY" : [
 "example",
 "com",
 "",
 ""
],
 "DSIZE2" : 31,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : false,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : false,
 "Z" : false,
 "AD" : false,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 0,
 "NSCOUNT" : 0,
 "ARCOUNT" : 1
],
 "Question" : [

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 28]

Internet-Draft DNS Gateway System October 2014

 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Additional" : [
 "RR" : [
 "NAME" : ["." : 3],
 "TYPE" : ["OPT" : 41],
 "Field3" : [
 "UDPSIZEFIELD" : [
 "UDPSIZE" : 1500
]
],
 "Field4" : [
 "Extended_RCode_Flags" : [
 "ERCFlagbits" : [
 "RCode" : 0,
 "Version" : 0,
 "DO" : false,
 "Resv" : 0

]
]
],
 "RDLENGTH" : 15,
 "RDATA" : [
 "OPT (RFC 6891)" : [
 "TLV_LIST" : [
 "TLV" : [
 "TYPE" : ["PrivateType65500" : 65500],
 "Len" : 13,
 "Data" : [
 "PrivateType65500" : [
 "GW_NAME" : ["10:10" , "198.41.1.1"]

]
]
],

]
]
]
]
]
]

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc6891

Dickson Expires April 18, 2015 [Page 29]

Internet-Draft DNS Gateway System October 2014

 Response encoded in JSON:

 "PACKET (RFC 1035)" : [
 "ROLE" : "client",
 "DSIZE" : 38,
 "DICTIONARY" : [
 "example",
 "com",
 "",
 "@0",
 ""
],
 "DSIZE2" : 38,
 "Header" : [
 "ID" : 42,
 "HFlags" : [
 "QR" : true,
 "Opcode" : ["Query" : 0],
 "AA" : false,
 "TC" : false,
 "RD" : true,
 "RA" : true,
 "Z" : false,
 "AD" : true,
 "CD" : false,
 "RCODE" : ["NoError (RFC 1035)" : 0]

],
 "QDCOUNT" : 1,
 "ANCOUNT" : 1,
 "NSCOUNT" : 0,
 "ARCOUNT" : 1
],
 "Question" : [
 "QUESTION (RFC 1035)" : [
 "QNAME" : ["example.com." : 0],
 "QTYPE" : ["A" : 1],
 "QCLASS" : ["IN" : 1]
]
],
 "Answer" : [
 "RR" : [
 "NAME" : ["example.com." : 0],
 "TYPE" : ["A" : 1],
 "CLASS" : ["IN" : 1],
 "TTL" : 4084,
 "RDLENGTH" : 4,
 "RDATA" : [

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

Dickson Expires April 18, 2015 [Page 30]

Internet-Draft DNS Gateway System October 2014

 "A" : [
 "Address" : "93.184.216.119"
]
]
]
],
 "Additional" : [
 "RR" : [
 "NAME" : ["." : 4],
 "TYPE" : ["OPT" : 41],
 "Field3" : [
 "UDPSIZEFIELD" : [
 "UDPSIZE" : 512
]
],
 "Field4" : [
 "Extended_RCode_Flags" : [
 "ERCFlagbits" : [
 "RCode" : 0,
 "Version" : 0,
 "DO" : false,
 "Resv" : 0

]
]
],
 "RDLENGTH" : 15,
 "RDATA" : [
 "OPT (RFC 6891)" : [
 "TLV_LIST" : [
 "TLV" : [
 "TYPE" : ["PrivateType65500" : 65500],
 "Len" : 13,
 "Data" : [
 "PrivateType65500" : [
 "GW_NAME" : ["10:10" , "198.41.1.1"]

]
]
],

]
]
]
]
]
]

https://datatracker.ietf.org/doc/html/rfc6891

Dickson Expires April 18, 2015 [Page 31]

Internet-Draft DNS Gateway System October 2014

Appendix B. Server Gateway HTML code

 The entire HTML document needed on the Server for the Client to send/
 receive JSON-encoded DNS messages follows:

 <html>
 <body>
 <form action="cgi-bin/json-resolver2.pl" method="POST">
 <P>
 <TEXTAREA name="query" rows="20" cols="80">
 </TEXTAREA>
 <INPUT type="submit" value="Send"><INPUT type="reset">
 </P>
 </form>
 </body>
 </html>

 The "action" target needs to exist and be executable, and ideally be
 performance-optimized (e.g. via use of mod_perl).

Appendix C. Server Gateway HTTP POST Handler Pseudo-code

 The following pseudo-code illustrates the high-level behavior of the
 HTML handler for the Server.

 The handler is passed the contents of the TEXTAREA, which will be the
 JSON-encoded DNS message.

Dickson Expires April 18, 2015 [Page 32]

Internet-Draft DNS Gateway System October 2014

 // initialize parser etc.
 // set up socket for UDP query/response to default Resolver
 // set up socket for UDP query/response to client-supplied Resolver
 // extract JSON-encoded DNS message from HTTP POST variable 'query'
 // save original Query-ID, assign new Query-ID (to avoid collisions)
 // decode DNS message (into DNS wire format)
 // if DNS message has OPT Resource Record
 // if OPT has Client-supplied Resolver option
 // extract Resolver value
 // delete Resolver option from OPT
 // endif
 // if OPT was synthesized by Client
 // delete OPT Resource Record
 // endif
 // send DNS message to Client-specified Resolver
 // else
 // send DNS message to default Resolver
 // endif
 // wait for response or timeout
 // if timeout && retry-count < max-retry-count
 // resend DNS message
 // elsif timeout && retry-count >= max-retry-count
 // send "retry-count-exceeded" via OPT (synthesized if necessary)
 // else
 // set DNS answer's Query-ID value to original Query-ID
 // encode DNS answer
 // send JSON-encoded answer to Client
 // endif

Appendix D. Client Gateway Pseudo-code

 The following pseudo-code illustrates the high-level behavior of the
 Client.

 The Client in this example is pre-configured with a single Server
 Gateway's address.

Dickson Expires April 18, 2015 [Page 33]

Internet-Draft DNS Gateway System October 2014

 // initialize parser etc.
 // set up socket for UDP query/response (Listener)
 // set up HTTP connection to Server Gateway
 // do an HTTP "GET" to the predefined URL of the Server HTML code
 // extract HTML elements needed: handler, variable name
 // loop forever:
 // listen for DNS query packet
 // fork (to handle this packet)
 // if child
 // save old DNS Query-ID, set new Query-ID
 // if Use-Supplied-Resolver
 // if exits OPT
 // add client-supplied-resolver to OPT
 // else
 // synthesize OPT and add client-supplied-resolver
 // endif
 // endif
 // encode DNS message (into JSON)
 // write HTTP POST onto socket
 // wait for HTTP response
 // extract JSON-encoded answer from HTTP
 // decode DNS answer (from JSON)
 // if OPT
 // if OPT.option is error condition
 // drop answer and continue loop forever:
 // elsif OPT synthesized
 // delete OPT
 // elsif OPT.option SPARTACUS-specific value
 // delete option
 // endif
 // endif
 // set answer.Query-ID to saved value
 // send answer to sender
 // end-of-loop

Author's Address

 Brian Dickson
 12047B 36th Ave NE
 Seattle, wA 98125

 Email: brian.peter.dickson@gmail.com

Dickson Expires April 18, 2015 [Page 34]

