
Workgroup: Network Working Group

Internet-Draft:

draft-dickson-dprive-adot-auth-06

Published: 9 November 2021

Intended Status: Informational

Expires: 13 May 2022

Authors: B. Dickson

GoDaddy

Authenticated DNS over TLS to Authoritative Servers

Abstract

This Internet Draft proposes a mechanism for DNS resolvers to

discover support for TLS transport to authoritative DNS servers, to

validate this indication of support, and to authenticate the TLS

certificates involved.

This requires that the name server names are in a DNSSEC signed

zone.

This also requires that the delegation of the zone served is

protected by [I-D.dickson-dnsop-ds-hack], since the NS names are the

keys used for discovery of TLS transport support.

Additional recommendations relate to use of various techniques for

efficiency and scalability, and new EDNS options to minimize round

trips and for signaling between clients and resolvers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Background

4. Purpose

4.1. New DNS Elements

5. Requirements, and Limitations

6. DNS Records To Publish for ADoT

6.1. Server DNS Transport Support Signaling

6.1.1. Examples

6.2. DANE TLSA Records for ADoT (TLSADOT)

6.2.1. Example

6.3. Signaling DNS Transport for a Name Server

6.3.1. Examples

6.4. Signaling DNS Transport for a Domain

6.4.1. Examples

7. Validation Using DS Records, DNST Records, TLSADOT Records, and

DNSSEC Validation

7.1. Complete Example

7.1.1. DNS Record Data

7.1.2. Discussion Point - Wildcard-like Records

7.1.3. Resolver Iterative Queries For Final TLS Query

8. Signaling Resolver Support and Client Desire for ADoT

8.1. Server Side Support Signaling

8.2. Client Side Desire Signaling

9. Security Considerations

10. IANA Considerations

11. Normative References

12. Informative References

Appendix A. Acknowledgments

Author's Address

1. Introduction

The Domain Name System (DNS) predates any concerns over privacy,

including the possibility of pervasive surveillance. The original

transports for DNS were UDP and TCP, unencrypted. Additionally, DNS

¶

https://trustee.ietf.org/license-info

did not originally have any form of data integrity protection,

including against active on-path attackers.

DNSSEC (DNS Security extensions) added data integrity protection,

but did not address privacy concerns. The original DNS over TLS

[RFC7858] and DNS over HTTPS [RFC8484] specifications were limited

to client-to-resolver traffic.

The remaining privacy component is recursive-to-authoritative

servers. This Internet Draft is designed to provide a solution to

this problem.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Background

The result is that the parental side of the zone cut has records

needed for DNS resolution which are not signed and not validatable.

4. Purpose

Authoritative DNS over TLS is intended to provide the following for

communications from recursive resolvers to authoritative servers:

Enable discovery of support for ADoT

Validate the name server name

Validate the server's TLS certificate

Provide channel security using TLS

4.1. New DNS Elements

The following are new protocol components, which are either included

in this document, or are in other documents. Some are strictly

required, while others are strongly suggested components to allow

better scalability and performance. Some of the new elements are

aliases to already documented standards, for purposes of these

improvements. DNST refers to [I-D.dickson-dprive-dnst]

Element
New/

Alias/OPT

Format/

Base
Required Description

DNST New Flags Y

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

Element
New/

Alias/OPT

Format/

Base
Required Description

DNS Transport - support for

DoT

TLSADOT Alias TLSA Y TLSA without prefixing

ADOTD New
OPT RR

(flag)
N

Signal desire for ADOT

(client-resolver)

ADOTA New
OPT RR

(flag)
N

Signal availablity of ADOT

(resolver-client)

NSECD New
OPT RR

(flag)
N

Signal desire for NSEC(3)

for [RFC8198]

NSV New
DNSKEY

Alg
Y

Protect NS - see [I-

D.dickson-dnsop-ds-hack]

Table 1

5. Requirements, and Limitations

This protocol depends on correct configuration and operation of the

respective components, and that those are maintained according to

Best Current Practices:

Use of DS records [I-D.dickson-dnsop-ds-hack] for the protection

of the delegation to the authoritative name servers

Use of "glueless" zone(s) for name server names' zone [I-

D.dickson-dnsop-glueless]

DNSSEC signing of the zone serving the authoritative name

servers' names [@RFC4034;@RFC4035;RFC5155]

Proper management of key signing material for DNSSEC

Ongoing management of RRSIGs on a timely basis (avoiding RRSIG

expiry)

Ensuring TLSADOT records are kept synchronized with the TLS

certificates used

Proper management of TLS private keys for TLS certificates used

There are external dependencies that impact the system security of

any DNSSEC zone, which are inherently unavoidable in establishing

this scheme. Specifially, the original DS record enrollment and any

updates to the DS records involved in DNSSEC delegations are

presumed secure and outside of the scope of the DNS protocol per se.

Other risks relate to normal information security practices,

including access controls, role based access, audits, multi-factor

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

¶

authentication, multi-party controls, etc. These are out of scope

for this protocol itself.

6. DNS Records To Publish for ADoT

ADoT is a property of DNS servers. The signaling is done at the

server level, using a DNS record with the same owner name as the

server itself (i.e. where the A and AAAA records for the server are

published).

6.1. Server DNS Transport Support Signaling

In order to support ADoT for a DNS server, it is necessary to

publish a record specifyig explicit DoT support. This record also

indicates other supported transports for the DNS server, e.g. the

standard ports (TCP and UDP port 53).

The record type is "DNST" (DNS Transport), which is a single

resource record consisting of flags for different supported

transport types.

The zone serving the record MUST be DNSSEC signed. The absence of

the DNST RRTYPE is proved by the NSEC(3) record, or else the DNST

RRTYPE plus RRSIG is returned in response to a query for this record

if it exists.

6.1.1. Examples

Suppose the name server ns1.example.net supports only the normal DNS

ports, and the name server ns2.example.net supports both the normal

ports and ADoT. The zone example.net would include the records:

And similarly, if another zone with many name server names wanted to

have a policy of all-ADoT support (i.e. every name server supports

ADoT), they would each be encoded as:

6.2. DANE TLSA Records for ADoT (TLSADOT)

The presence of ADoT requires additionally that a TLSA [RFC6698]

record be provided. A new RRTYPE is to be created for this as an

alias of TLSA, with mnemonic of "TLSADOT" (TLS ADOT Certificate).

This record will be published at the location NSNAME, where NSNAME

¶

¶

¶

¶

¶

¶

 ns1.example.net. IN DNST UDP TCP

 ns2.example.net. IN DNST UDP TCP DOT

¶

¶

 ns1.example2.net DNST UDP TCP DOT

 ns2.example2.net DNST UDP TCP DOT

 ns3.example2.net DNST UDP TCP DOT

 ns4.example2.net DNST UDP TCP DOT

¶

is the name of the name server. Any valid TLSA RDATA is permitted.

The use of Certificate Usage types PKIX-TA and PKIX-EE is NOT

RECOMMENDED since PKIX requires web PKI interactions. DANE types

only require DNSSEC support. The use of Certificate Usage types

DANE-TA records may provide more flexibility in provisioning and

validation. On the other hand, DANE-EE is more secure, with fewer

consequences for private key loss and certificate revocation. Per

[RFC7218][RFC7671] the RECOMMENDED Selector and Matching types for

this are SPKI and SHA2-256, giving the recommended TLSADOT record

type of DANE-TA SPKI SHA2-256.

6.2.1. Example

In the above example, ns2.example.net supports DNS over TLS, and

thus would need to have a TLSADOT record. The zone would include:

If there were another zone containing many DNS server names,

example2.net, it would be relatively simple to replicate otherwise

identical records which use the same signing cert (rather than end-

entity cert) in the TLSADOT record.

This would look like the following:

6.3. Signaling DNS Transport for a Name Server

This transport signaling MUST only be trusted if the name server

names for the domain containing the relevant name servers' names are

protected with [I-D.dickson-dnsop-ds-hack] and validated. The name

servers must also be in a DNSSEC signed zone (i.e. securely

delegated where the delegation has been successfully DNSSEC

validated).

The specific DNS transport that a name server supports is indicated

via use of an RRSet of RRTYPE "DNST".

¶

¶

 ns2.example.net. IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)¶

¶

¶

 ns1.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns2.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns3.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns4.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns1.example2.net IN A IP4_ADDRESS1

 ns2.example2.net IN A IP4_ADDRESS2

 ns3.example2.net IN A IP4_ADDRESS3

 ns4.example2.net IN A IP4_ADDRESS4

 ns1.example2.net IN AAAA IP6_ADDRESS1

 ns2.example2.net IN AAAA IP6_ADDRESS2

 ns3.example2.net IN AAAA IP6_ADDRESS3

 ns4.example2.net IN AAAA IP6_ADDRESS4

¶

¶

¶

6.3.1. Examples

We re-use the same examples from above, indicating whether or not

individual authoritative name servers support DoT:

And similarly, if another zone with many name server names wanted to

have a policy of all-ADoT support (i.e. every name server supports

ADoT), this could be encoded as:

6.4. Signaling DNS Transport for a Domain

A domain inherits the signaled transport for the name servers

serving the domain.

This transport signaling MUST only be trusted for use of ADoT if the

delegated name server names for the domain are protected with [I-

D.dickson-dnsop-ds-hack].

The delegation to NS names "A" and "B", along with the DS record

protecting/encoding "A" and "B", results in the DNS transport that

is signaled for "A" and "B" being applied to the domain being

delegated. This transport will include ADoT IFF the transport for

"A" and "B" has included ADoT via DNS records.

6.4.1. Examples

No additional configuration is needed, beyond use of authority

servers which signal DoT support. The following examples assumes the

previous DNS records are provisioned:

In this example, ns1 does not have ADoT support (since the DNST

record excludes the DOT flag), while ns2 does support ADoT (since it

includes DOT).

¶

 ns1.example.net. IN DNST UDP TCP DOTDNST

 ns2.example.net. IN DNST UDP TCP DOTDNST

¶

¶

 ns1.example2.net DNST UDP TCP DOT

 ns2.example2.net DNST UDP TCP DOT

 ns3.example2.net DNST UDP TCP DOT

 ns4.example2.net DNST UDP TCP DOT

¶

¶

¶

¶

¶

 example.com NS ns1.example.net. // does not support ADoT

 example.com NS ns2.example.net. // supports ADoT

 example2.com NS ns1.example2.net. // all support ADoT

 example2.com NS ns2.example2.net. // all support ADoT

¶

¶

7. Validation Using DS Records, DNST Records, TLSADOT Records, and

DNSSEC Validation

These records are used to validate corresponding delegation records,

DNST records, and TLSADOT records, as follows:

Initial domain NS records are validated using [I-D.dickson-dnsop-

ds-hack]

All DS records implementing [I-D.dickson-dnsop-ds-hack] must be

DNSSEC validated prior to use

Once the NS names have been validated, and the delegations to the

appropriate name servers are validated, the DNST records for the

NS name are obtained to identify the DNS transport methods

supported.

If ADoT is among the supported transports, the TLSADOT record for

the name server is obtained, and used for verification of the TLS

certificate when making the TLS connection.

7.1. Complete Example

7.1.1. DNS Record Data

Suppose a client requests resolution for the IP address of

"sensitive-name.example.com". Suppose the client's resolver has a

"cold" cache without any entries beyond the standard Root Zone and

relevant TLD name server records.

Suppose the following entries are present at their respective TLD

authority servers, delegating to the respective authority servers:

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Suppose the following additional entries are in the respective

authority servers for the ADOT signaling/certs:

 // (Single NS for brevity only, please use 2 NS minimum)

 // Unsigned delegations to various single-operator servers

 example2.com NS ns1.example2.net. // all support ADoT

 example3.com NS ns2.example2.net. // all support ADoT

 example4.com NS ns3.example2.net. // all support ADoT

 example5.com NS ns4.example2.net. // all support ADoT

 // Zone serving NS data for single-operator's servers

 example2.net NS ns1.infra2.example

 example2.net NS ns2.infra2.example

 example2.net DS (DS record data)

 // glueless name servers are used

 // Special zone serving NS data for previous zone

 infra2.example NS ns1-glue.infra2.example

 infra2.example NS ns2-glue.infra2.example

 infra2.example DS (DS record data)

 // Note use of glue for only this zone's delegation

 ns1-glue.infra2.example A (glue A data)

 ns1-glue.infra2.example AAAA (glue AAAA data)

 ns2-glue.infra2.example A (glue A data)

 ns2-glue.infra2.example AAAA (glue AAAA data)

¶

¶

 example2.net SOA (SOA record data)

 // glueless name servers are used

 example2.net NS ns1.infra2.example

 example2.net NS ns2.infra2.example

 //

 // DNS Transport for discovery of support

 ns1.example2.net DNST UDP TCP DOT

 ns2.example2.net DNST UDP TCP DOT

 ns3.example2.net DNST UDP TCP DOT

 ns4.example2.net DNST UDP TCP DOT

 //

 // TLSADOT signing cert

 ns1.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns2.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns3.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 ns4.example2.net IN TLSADOT DANE-TA SPKI SHA2-256 (hash data)

 //

 // Addresses of name servers serving customer zones

 // E.g. example2.com to example5.com served on these

 ns1.example2.net IN A IP4_ADDRESS1

 ns2.example2.net IN A IP4_ADDRESS2

 ns3.example2.net IN A IP4_ADDRESS3

 ns4.example2.net IN A IP4_ADDRESS4

 ns1.example2.net IN AAAA IP6_ADDRESS1

 ns2.example2.net IN AAAA IP6_ADDRESS2

 ns3.example2.net IN AAAA IP6_ADDRESS3

 ns4.example2.net IN AAAA IP6_ADDRESS4

 //

 // plus RRSIGs and NSEC(3) records and their RRSIGs

 infra2.example SOA (SOA record data)

 infra2.example NS ns1-glue.infra2.example

 infra2.example NS ns2-glue.infra2.example

 ns1-glue.infra2.example A (same as glue A data)

 ns1-glue.infra2.example AAAA (same as glue AAAA data)

 ns2-glue.infra2.example A (same as glue A data)

 ns2-glue.infra2.example AAAA (same as glue AAAA data)

 //

 // name server info for example2.net zone

 ns1.infra2.example A (glueless A data)

 ns1.infra2.example AAAA (glueless AAAA data)

 ns2.infra2.example A (glueless A data)

 ns2.infra2.example AAAA (glueless AAAA data)

 //

 // plus RRSIGs and NSEC(3) records and their RRSIGs

¶

7.1.2. Discussion Point - Wildcard-like Records

Wildcards records have RRTYPE(s), but are only instantiated when an

owner name does not exist.

If wildcards were instantiated whenever the 3-tuple (name, class,

type) did not exist, use of wildcard records for DNST and TLSADOT

would be a logical choice.

The discussion point is as follows:

Would it make sense to support a wildcard-like behavior for

covering many owner names which did not have explicit DNST and/or

TLSADOT records of their own?

If so, when/how would that be signalled?

It could be explicit, using a separate RRTYPE to flag the need

to use the parent name (zone apex) for the required RRTYPE.

This would support use of NSEC(3) records to check for the

flag

A resolver could use the flag to optimize cache usage for

the parent record. Once the parent is in the cache, the

flag in the NSEC(3) for the owner name would trigger use of

the cached parent record.

It could be implicit, meaning the absence of the explicit

record type results in the need to search for the record type

at another name (e.g. zone apex).

The lack of explicit record could be detected from NSEC(3)

records

The implicit flag would be handled the same as the explicit

flag case above.

The TLSADOT record at the parent zone would only be viable for

DANE-TA or PKIX-TA types.

7.1.3. Resolver Iterative Queries For Final TLS Query

(In the following, use of wildcard-type records and semantics is

assumed, but not explictly described currently. Literal wildcard

record labels ("*") are used as a placeholder, pending the above

Discussion Point's resolution.)

The following are the necessary queries to various servers necessary

to do a private TLS-protected lookup.

¶

¶

¶

*

¶

* ¶

-

¶

o

¶

o

¶

-

¶

o

¶

o

¶

*

¶

¶

¶

Several examples are provided in order, from a presumed cold cache

state. Root Priming and TLD queries are presumed to already have

been complete.

Query for sensitive-name.example2.com:

Query for NS for example2.com => get NS ns1.example2.net

plus DS => validate the DS and proceed

Query for NS for example2.net => get NS ns1/

ns2.infra2.example plus DS => validate the DS and proceed

Query for NS for infra2.example2.net => get NS ns1-glue/

ns2-glue.infra2.example plus DS plus glue A/AAAA =>

validate the DS and proceed

Query with NSECD for A for ns1/ns2.infra2.example => get A

for ns1/ns2.infra2.example plus RRSIGs plus NSEC(3) plus

RRSIG => validate the RRSIGs and proceed

Query with NSECD for A for ns1.example2.net => get A for

ns1.example2.net plus RRSIG plus NSEC(3) plus RRSIG =>

validate the RRSIGs and proceed

Query with NSECD for DNST for ns1.example2.net => get DNST

for *.example2.net plus RRSIG plus special wildcard

NSEC(3)s plus RRSIGs => validate the RRSIGs and proceed

Query with NSECD for TLSADOT for ns1.example2.net => get

TLSADOT for *.example2.net plus RRSIG plus special

wildcard NSEC(3)s plus RRSIGs => validate the RRSIGs and

proceed

Query over TLS for sensitive-name.example2.com (to

ns1.example2.net, match TLS cert chain against DANE-TA

cert, only query once TLS established)

Query for sensitive-name.example3.com:

Query for NS for example2.com => get NS ns1.example2.net

plus DS => validate the DS and proceed

Query with NSECD for A for ns1.example2.net => get A for

ns1.example2.net plus RRSIG plus NSEC(3) plus RRSIG =>

validate the RRSIGs and proceed

NB: already have wildcards for DNST and TLSADOT plus NSEC3

proving no non-wildcards exist for ns1.example2.net for

those types, synthesize DNST and TLSADOT records)

¶

1. ¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

7.

¶

8.

¶

2. ¶

1.

¶

2.

¶

3.

¶

Query over TLS for sensitive-name.example2.com (to

ns1.example2.net, match TLS cert chain against DANE-TA

cert, only query once TLS established)

Query for sensitive-name.example4.com:

Query for NS for example2.com => get NS ns1.example2.net

plus DS => validate the DS and proceed

Query with NSECD for A for ns1.example2.net => get A for

ns1.example2.net plus RRSIG plus NSEC(3) plus RRSIG =>

validate the RRSIGs and proceed

NB: already have wildcards for DNST and TLSADOT plus NSEC3

proving no non-wildcards exist for ns1.example2.net for

those types, synthesize DNST and TLSADOT records)

Query over TLS for sensitive-name.example2.com (to

ns1.example2.net, match TLS cert chain against DANE-TA

cert, only query once TLS established)

Query for sensitive-name.example5.com:

Query for NS for example2.com => get NS ns1.example2.net

plus DS => validate the DS and proceed

Query with NSECD for A for ns1.example2.net => get A for

ns1.example2.net plus RRSIG plus NSEC(3) plus RRSIG =>

validate the RRSIGs and proceed

NB: already have wildcards for DNST and TLSADOT plus NSEC3

proving no non-wildcards exist for ns1.example2.net for

those types, synthesize DNST and TLSADOT records)

Query over TLS for sensitive-name.example2.com (to

ns1.example2.net, match TLS cert chain against DANE-TA

cert, only query once TLS established)

Query for sensitive-name2.example2.com:

(Already have delegation entry for example2.com in cache.)

(Already have A for ns1.example2.net in cache.)

(Already have all TLS info in the cache.)

Query over TLS for sensitive-name.example2.com (to

ns1.example2.net, match TLS cert chain against DANE-TA

cert, only query once TLS established)

4.

¶

3. ¶

1.

¶

2.

¶

3.

¶

4.

¶

4. ¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

1. ¶

2. ¶

3. ¶

4.

¶

Once the initial query or queries for a name server zone has been

done, if that zone uses wildcards for DNST and TLSADOT, the only

queries needed for a new name server are the A and/or AAAA records.

Once the initial query for a name server has been done, all of the

address and TLS information is available in the cache, and the DOT

query can be made upon receipt of the TLD delegation record. Once

the initial query for a second-level domain has been done, the TLD

delegation and all of the address and TLS information is available

in the cache, and the DOT query can be made immediately.

Once a cache is populated with wildcards from the name server

domain, additional delegation queries require no more trips than

those needed for normal UDP queries:

Query for delegation from TLD, and validate the response

Query for the name server's address(es), and validate the

response

Send the query to the authoritative server for the domain with

the sensitive name (over TLS or over UDP/TCP, depending on

transport supported by the authoritative server)

Once a cache is populated with name server addresses and wildcards,

additional delegation queries require no more trips than those

needed for normal UDP queries:

Query for delegation from TLD, and validate the response

Send the query to the authoritative server for the domain with

the sensitive name (over TLS or over UDP/TCP, depending on

transport supported by the authoritative server)

8. Signaling Resolver Support and Client Desire for ADoT

The following presume some new OPT sub-types, to be added to the

IANA action section or to be split out as separate drafts. The sub-

type mnemonics are "ADOTA" (available) and "ADOTD" (desired), each

with an enumerated set of values and mnemonic codes. Respectively

those are: "Always", "Upon Request", and "Never"; and "Force", "If

Available", and "Never".

8.1. Server Side Support Signaling

A DNS server (e.g. recursive resolver or forwarder) MAY signal to

clients that it offers the use of ADoT. The mechanism used is to set

the EDNS option "ADOTA". The values for this option are "Always",

"Upon Request", and "Never". The value "Always" indicates the server

will always attempt to use ADoT without regards to client requests

for ADoT. The value "Upon Request" indicates that the server will

¶

¶

1. ¶

2.

¶

3.

¶

¶

1. ¶

2.

¶

¶

[RFC6698]

[RFC7218]

ONLY use ADoT for upstream queries if the client requests that ADoT

be used. These values have no effect on answers served from the

resolver's cache. (The "Never" case is unusual, in that it signals

the server understands the option, but does not perform ADoT.

Generally this would be used to allow a client to track changes in

the status, if the client is interested in uses of ADoT.)

8.2. Client Side Desire Signaling

A DNS client (e.g. stub or forwarder) MAY signal the desire to have

the resolver use ADoT. The mechanism used is to set the EDNS option

"ADOTD". The values for this option are "Force", "If Available", and

"Never". The value "Force" indicates the server should attempt to

use ADoT, and return a failure code of XXXX and an EDE value of YYYY

if the authoritative server does not offer ADoT, or any other ADoT

failure occurs. The value "If Available" indicates that the server

should use ADoT for upstream queries if it is availble, but SHOULD

NOT allow any downgrades if the authoritative server signals that

ADoT is available. These values have no effect on answers served

from the resolver's cache. (The "Never" case is unusual, in that it

signals the client understands the option, but does not perform

ADoT. Generally this would be used to allow a server to track

changes in the client base, so the server operator can make informed

decisions about enabling ADoT.)

9. Security Considerations

As outlined above, there could be security issues in various use

cases.

10. IANA Considerations

This document may or many not have any IANA actions. (e.g. if the

RRTYPEs, EDNS subtypes, DNSKEY algorithms, etc., are defined in

other documents, no IANA actions are needed.)

11. Normative References

Hoffman, P. and J. Schlyter, "The DNS-Based

Authentication of Named Entities (DANE) Transport Layer

Security (TLS) Protocol: TLSA", RFC 6698, DOI 10.17487/

RFC6698, August 2012, <https://www.rfc-editor.org/info/

rfc6698>.

Gudmundsson, O., "Adding Acronyms to Simplify

Conversations about DNS-Based Authentication of Named

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6698

[RFC7671]

[RFC7858]

[RFC8174]

[RFC8198]

[RFC8484]

[I-D.dickson-dnsop-ds-hack]

[I-D.dickson-dnsop-glueless]

[I-D.dickson-dprive-dnst]

Entities (DANE)", RFC 7218, DOI 10.17487/RFC7218, April

2014, <https://www.rfc-editor.org/info/rfc7218>.

Dukhovni, V. and W. Hardaker, "The DNS-Based

Authentication of Named Entities (DANE) Protocol: Updates

and Operational Guidance", RFC 7671, DOI 10.17487/

RFC7671, October 2015, <https://www.rfc-editor.org/info/

rfc7671>.

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

and P. Hoffman, "Specification for DNS over Transport

Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858,

May 2016, <https://www.rfc-editor.org/info/rfc7858>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Fujiwara, K., Kato, A., and W. Kumari, "Aggressive Use of

DNSSEC-Validated Cache", RFC 8198, DOI 10.17487/RFC8198,

July 2017, <https://www.rfc-editor.org/info/rfc8198>.

Hoffman, P. and P. McManus, "DNS Queries over HTTPS

(DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

<https://www.rfc-editor.org/info/rfc8484>.

12. Informative References

Dickson, B., "DS Algorithms for Securing NS and Glue",

Work in Progress, Internet-Draft, draft-dickson-dnsop-ds-

hack-02, 19 September 2021, <https://

datatracker.ietf.org/doc/html/draft-dickson-dnsop-ds-

hack-02>.

Dickson, B., "Operating a Glueless DNS Authority Server",

Work in Progress, Internet-Draft, draft-dickson-dnsop-

glueless-02, 22 September 2021, <https://

datatracker.ietf.org/doc/html/draft-dickson-dnsop-

glueless-02>.

Dickson, B., "Resource Record for Signaling Transport for

DNS to Authority Servers", Work in Progress, Internet-

Draft, draft-dickson-dprive-dnst-00, 24 October 2021,

https://www.rfc-editor.org/info/rfc7218
https://www.rfc-editor.org/info/rfc7671
https://www.rfc-editor.org/info/rfc7671
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8198
https://www.rfc-editor.org/info/rfc8484
https://datatracker.ietf.org/doc/html/draft-dickson-dnsop-ds-hack-02
https://datatracker.ietf.org/doc/html/draft-dickson-dnsop-ds-hack-02
https://datatracker.ietf.org/doc/html/draft-dickson-dnsop-ds-hack-02
https://datatracker.ietf.org/doc/html/draft-dickson-dnsop-glueless-02
https://datatracker.ietf.org/doc/html/draft-dickson-dnsop-glueless-02
https://datatracker.ietf.org/doc/html/draft-dickson-dnsop-glueless-02

[RFC2119]

<https://datatracker.ietf.org/doc/html/draft-dickson-

dprive-dnst-00>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Appendix A. Acknowledgments

Thanks to everyone who helped create the tools that let everyone use

Markdown to create Internet Drafts, and the RFC Editor for xml2rfc.

Thanks to Dan York for his Tutorial on using Markdown (specificially

mmark) for writing IETF drafts.

Thanks to YOUR NAME HERE for contributions, reviews, etc.

Author's Address

Brian Dickson

GoDaddy

Email: brian.peter.dickson@gmail.com

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-dickson-dprive-dnst-00
https://datatracker.ietf.org/doc/html/draft-dickson-dprive-dnst-00
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
mailto:brian.peter.dickson@gmail.com

	Authenticated DNS over TLS to Authoritative Servers
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Background
	4. Purpose
	4.1. New DNS Elements

	5. Requirements, and Limitations
	6. DNS Records To Publish for ADoT
	6.1. Server DNS Transport Support Signaling
	6.1.1. Examples

	6.2. DANE TLSA Records for ADoT (TLSADOT)
	6.2.1. Example

	6.3. Signaling DNS Transport for a Name Server
	6.3.1. Examples

	6.4. Signaling DNS Transport for a Domain
	6.4.1. Examples

	7. Validation Using DS Records, DNST Records, TLSADOT Records, and DNSSEC Validation
	7.1. Complete Example
	7.1.1. DNS Record Data
	7.1.2. Discussion Point - Wildcard-like Records
	7.1.3. Resolver Iterative Queries For Final TLS Query

	8. Signaling Resolver Support and Client Desire for ADoT
	8.1. Server Side Support Signaling
	8.2. Client Side Desire Signaling

	9. Security Considerations
	10. IANA Considerations
	11. Normative References
	12. Informative References
	Appendix A. Acknowledgments
	Author's Address

