
dprive D. Gillmor
Internet-Draft ACLU
Updates: 1035, 7230 (if approved) May 17, 2017
Intended status: Informational
Expires: November 18, 2017

Demultiplexing Streamed DNS from HTTP/1.x
draft-dkg-dprive-demux-dns-http-03

Abstract

 DNS over TCP and HTTP/1.x are both stream-oriented, client-speaks-
 first protocols. They can both be run over a stream-based security
 protocol like TLS. A server accepting a stream-based client can
 distinguish between a valid stream of DNS queries and valid stream of
 HTTP/1.x requests by simple observation of the first few octets sent
 by the client. This can be done without any external demultiplexing
 mechanism like TCP port number or ALPN.

 Implicit multiplexing of the two protocols over a single listening
 port can be useful for obscuring the presence of DNS queries from a
 network observer, which makes it relevant for DNS privacy.

 Widespread adoption of the described approach could constrain
 evolution of the stream-based variants of both DNS ([RFC1035]) and
 HTTP/1.x ([RFC7230]) by ossifying existing distinguishing bit
 patterns in early octets sent by the client. However, this draft
 explicitly rules out multiplexing in this form with HTTP/2, so it
 should place no constraints on it or any higher version of HTTP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 18, 2017.

Gillmor Expires November 18, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. Scoping . 4
2.1. Distinguish only at the start of a stream 4
2.2. HTTP/2 is not always client-speaks-first 4
2.3. Avoid multiplexing in the clear 5
2.4. Avoid mixing with other demultiplexing 5
2.5. Heavily-restricted network environments 5
2.6. Why not ALPN? . 5

3. Overview of initial octets 6
3.1. DNS stream initial octets 6
3.2. HTTP/1.x initial octets 7
3.2.1. HTTP/0.9 . 7
3.2.2. HTTP/1.0 and HTTP/1.1 8

4. Specific octets . 9
4.1. octets 0 and 1 . 9
4.2. octets 2 and 3 . 9
4.3. octet 4 . 10
4.4. octet 5 . 10
4.5. octets 6 and 7 . 11
4.6. octets 8 through 11 11
4.7. octets 12 and 13 . 11

5. Combinations of octets 11
 5.1. Proof: a valid DNS message cannot be an HTTP/1.x query . 12

6. Guidance for Demultiplexing Servers 13
6.1. Without supporting HTTP/0.9 13
6.2. Supporting archaic HTTP/0.9 clients 13
6.3. Signaling demultiplexing capacity 14

7. Guidance for DNS clients 15
7.1. Interpreting failure 16

8. Guidance for HTTP clients 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Gillmor Expires November 18, 2017 [Page 2]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

9. Security Considerations 16
10. Privacy Considerations 16
11. IANA Considerations . 17
12. Document Considerations 17
13. References . 17
13.1. Normative References 17
13.2. Informative References 18

 Author's Address . 19

1. Introduction

 DNS and HTTP/1.x are both client-speaks-first protocols capable of
 running over stream-based transport like TCP, or as the payload of a
 typical TLS [RFC5246] session.

 There are some contexts where it is useful for a server to be able to
 decide what protocol is used by an incoming TCP stream, to choose
 dynamically between DNS and HTTP/1.x on the basis of the stream
 itself (rather than a port designation or other explicit
 demultiplexing).

 For example, a TLS terminator listening on port 443 and receiving
 either no ALPN token at all, or the "http/1.1" ALPN token might be
 willing to serve DNS-over-TLS [RFC7858] as well as HTTPS.

 A simple demultiplexing server should do this demuxing based on the
 first few bytes sent by the client on a given stream; once a choice
 has been established, the rest of the stream is committed to one or
 the other interpretation.

 This document provides proof that a demultiplexer can robustly
 distinguish HTTP/1.x from DNS on the basis of the content of the
 first few bytes of the client's stream alone.

 A DNS client that knows it is talking to a server which is this
 position (e.g. trying to do DNS-over-TLS on TCP port 443 with no ALPN
 token, used traditionally only for HTTPS) might also want to be aware
 of network traffic patterns that could confuse such a server. This
 document presents explicit mitigations that such a DNS client MAY
 decide to use.

 This document limits its discussion to HTTP/1.x over TCP or TLS or
 some other classical stream-based protocol (it excludes HTTP over
 QUIC, for example, and HTTP/2 [RFC7540] or later). Likewise, it
 considers only the TCP variant of DNS (and excludes DNS over UDP or
 any other datagram transport).

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7540

Gillmor Expires November 18, 2017 [Page 3]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

2. Scoping

2.1. Distinguish only at the start of a stream

 A server which attempts to distinguish DNS queries from HTTP/1.x
 requests individually might consider using these guidelines in the
 middle of a running stream (e.g. at natural boundaries, like the end
 of an HTTP/1.1 request, or after a DNS message), but this document
 focuses specifically on a heuristic choice for the whole stream,
 based on the initial few octets sent by the client.

 While it's tempting to consider distinguishing at multiple points in
 the stream, the complexities of determining the specific end of an
 HTTP/1.x request body and handling HTTP/1.x error cases make this
 more difficult to implement on the side of a DNS client configured to
 talk to such a server. Interleaving the responses themselves on a
 stream with multiple data elements is also challenging. So do not
 use this technique anywhere but at the beginning of a stream!

 If being able to interleave DNS queries with HTTP requests on a
 single stream is desired, a strategy like
 [I-D.hoffman-dns-over-https] or [I-D.ietf-dnsop-dns-wireformat-http]
 is recommended instead.

2.2. HTTP/2 is not always client-speaks-first

 While this demultiplexing technique functions for HTTP/1.0 and
 HTTP/1.1, it does not work for HTTP/2 [RFC7540] because HTTP/2 is not
 guaranteed to be a client-speaks-first protocol. In particular, many
 HTTP/2 servers prefer to send a SETTINGS frame immediately without
 waiting for data from the client, if they already know they're
 speaking HTTP/2. In the event that HTTP/2 is to be transported over
 TLS, the ALPN token negotiated in the TLS handshake is "h2", which
 allows the server to know as soon as the handshake is complete that
 it can start pushing data to the client.

 A standard DNS-over-TLS client connecting to a server that might be
 multiplexing DNS with HTTP on the same listener MUST NOT indicate an
 intent to speak HTTP/2 that could prompt this unsolicited first
 flight from the server. Concretely, a DNS client connecting over TLS

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7540

Gillmor Expires November 18, 2017 [Page 4]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 on TCP port 443 expecting to speak standard DNS-over-TLS [RFC7858]
 MUST NOT offer or accept the "h2" ALPN token.

 If use of DNS in the same channel as HTTP/2 is deisred, a strategy
 like [I-D.hoffman-dns-over-https] is recommended instead.

2.3. Avoid multiplexing in the clear

 The widespread deployment of transparent HTTP/1.x proxies makes it
 likely that any attempt to do this kind of multiplexing/
 demultiplexing on a cleartext channel that normally carries HTTP/1.x
 (e.g. TCP port 80) will fail or trigger other "interesting"
 behaviors. The approach described in this draft should be done only
 in channels sufficiently obscured that a transparent proxy would not
 try to interpret the resultant stream.

2.4. Avoid mixing with other demultiplexing

 Some other (non-IETF) systems (e.g. [HAPROXY]) take a similar
 approach with multiplexing data on top of HTTP/1.x by taking
 advantage of bitpatterns that are presumed to not be present in
 normal HTTP/1.x requests.

 Use of the approach described in this draft in conjunction with these
 other approaches is not advisable. Doing so safely would require
 explicit and detailed review of all three (or more) protocols
 involved.

2.5. Heavily-restricted network environments

 Some network environments are so tightly constrained that outbound
 connections on standard TCP ports are not accessible. In some of
 these environments, an explicit HTTP proxy is available, and clients
 must use the HTTP CONNECT pseudo-method to make https connections.
 While this multiplexing approach can be used in such a restrictive
 environment, it would be necessary to teach the DNS client how to
 talk to (and through) the HTTP proxy. These details are out of scope
 for this document. A DNS client capable of this additional layer of
 complexity may prefer to pursue a strategy like
 [I-D.hoffman-dns-over-https] instead.

2.6. Why not ALPN?

 If this is done over TLS, a natural question is whether the client
 should simply indicate its preferred protocol in the TLS handshake's
 ALPN [RFC7301] extension (e.g. with some new ALPN token "dns").

https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc7301

Gillmor Expires November 18, 2017 [Page 5]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 However, ALPN tokens requested by the client are visible to a network
 observer (and the ALPN token selected by the server is visible to a
 network observer in TLS 1.2 and earlier), so a network controller
 attempting to confine the user's DNS traffic to a limited set of
 servers could use the ALPN extension as a signal to block DNS-
 specific streams.

 Another alternative could be an ALPN token that indicates
 potentially-multiplexed traffic (e.g. "http/1.1-or-dns"). This has a
 comparable problem when confronted with a network adversary that
 intends to penalize or hamper DNS-over-TLS. Existing HTTP clients
 will not send this token, and even if some start to offer it, it will
 provide less cover for DNS-over-TLS clients.

3. Overview of initial octets

3.1. DNS stream initial octets

 [RFC1035] section 4.2.2 ("TCP Usage") shows that every stream-based
 DNS connection starts with a DNS message, preceded with a 2-octet
 message length field:

 The message is prefixed with a two byte length field which gives
 the message length, excluding the two byte length field.

 [RFC6895] section 2 represents the DNS message header section, which
 is the first part of the DNS message on the wire (after the message
 length).

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| OpCode |AA|TC|RD|RA| Z|AD|CD| RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | QDCOUNT/ZOCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT/PRCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT/UPCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 So in a DNS over TCP stream, the interpretation of the initial 14
 octets are fixed based on information about the first query sent on
 the stream:

Gillmor Expires November 18, 2017 [Page 6]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 o 0,1: length of initial DNS message

 o 2,3: DNS Transaction ID

 o 4,5: DNS opcode, flags, and response code

 o 6,7: Question count (or Zone count in UPDATE)

 o 8,9: Answer count (or Prerequisite count in UPDATE)

 o 10,11: Authority count (or Update count in UPDATE)

 o 12,13: Additional RR count

 All DNS streams sent over TCP start with at least these 14 octets.

3.2. HTTP/1.x initial octets

 In an HTTP stream before HTTP/2, the first octets sent from the
 client are either the so-called "Simple-Request" (for HTTP/0.9) or
 the "Request-Line" (for HTTP/1.0 and HTTP/1.1). The data in this
 initial stream has variable characteristics.

 Most servers may wish to ignore the oldest of these, HTTP/0.9.

3.2.1. HTTP/0.9

 [RFC1945] section 4.1 says that HTTP/0.9 queries (that is, HTTP
 queries from before HTTP/1.0 was formalized) use this form:

 Simple-Request = "GET" SP Request-URI CRLF

 Note that HTTP/0.9 clients send this string and only this string,
 nothing else (no request body, no subsequent requests). The
 "Request-URI" token is guaranteed to start with a printable ASCII
 character, and cannot contain any members of the CTL class (values
 0x00 through 0x1F) but due to loose early specifications, it might
 sometimes contain high-valued octets (those with the most-significant
 bit set - 0x80 or above).

 So the first 5 octets are all constrained to be no less than 0x20
 (SP) and no more than 0x7F (DEL), and all subsequent octets sent from
 the client have a value at least 0x0A (LF).

 The shortest possible HTTP/0.9 client request is:

 char: G E T SP / CR LF
 index: 0 1 2 3 4 5 6

Gillmor Expires November 18, 2017 [Page 7]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 The lowest possible HTTP/0.9 client request (sorted ASCIIbetically)
 is:

 char: G E T SP + : CR LF
 index: 0 1 2 3 4 5 6 7

3.2.2. HTTP/1.0 and HTTP/1.1

 The request line format for HTTP/1.1 matches that of HTTP/1.0
 (HTTP/1.1 adds protocol features like pipelining, but doesn't change
 the request form itself). But unlike HTTP/0.9, the initial verb (the
 "method") can vary.

 [RFC7230] section 3.1.1 says that the first line of an HTTP/1.1
 request is:

 request-line = method SP request-target SP HTTP-version CRLF
 method = token

 and [RFC7230] section 3.2.6 says:

 token = 1*tchar

 tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*"
 / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~"
 / DIGIT / ALPHA
 ; any VCHAR, except delimiters

 and VCHAR is defined in [RFC5234] appendix B.1 as:

 VCHAR = %x21-7E

 "request-target" itself cannot contain 0x20 (SP) or any CTL
 characters, or any characters above the US-ASCII range (> 0x7F).

 And the "HTTP-version" token is either the literal string "HTTP/1.0"
 or the literal string "HTTP/1.1", both of which are constrained to
 the same printable-ASCII range.

 The ASCIIbetically-lowest shortest possible HTTP/1.0 or HTTP/1.1
 request is:

 char: ! SP / SP H T T P / 1 . 0 CR LF CR LF
 index: 0 1 2 3 4 5 6 7 8 9 0 a b c d e

 In any case, no HTTP/1.0 or HTTP/1.1 request line can include any
 values lower than 0x0A (LF) or greater than 0x7F (DEL) in the first
 15 octets.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.6
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1

Gillmor Expires November 18, 2017 [Page 8]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 However, [RFC7230] section 3.1.1 also says:

 In the interest of robustness, a server that is expecting to receive
 and parse a request-line SHOULD ignore at least one empty line (CRLF)
 received prior to the request-line.

 So we should also consider accepting an arbitrary number of repeated
 CRLF sequences before the request-line as a potentially-valid HTTP
 client behavior.

4. Specific octets

 The sections below examine likely values of specific octet positions
 in the stream. All octet indexes are 0-based.

4.1. octets 0 and 1

 Any DNS message less than 3338 octets sent as the initial query over
 TCP can be reliably distinguished from any version of HTTP/1.x by the
 first two octets of the TCP stream alone.

 3338 is 0x0D0A, or the ASCII string CRLF, which some HTTP/1.x clients
 might send before an initial request. No HTTP/1.x client can
 legitimately send anything lower than this.

 Most DNS queries are easily within this range automatically.

4.2. octets 2 and 3

 In a DNS stream, octets 2 and 3 represent the client-chosen message
 ID. The message ID is used to bind messages with responses. Over
 connectionless transports like UDP, this is an important anti-
 spoofing measure, as well as a distinguishing measure for clients
 reusing the same UDP port for multiple outstanding queries. Standard
 DNS clients already explicitly randomize this value.

 For the connection-oriented streaming DNS discussed here, the anti-
 spoofing characteristics are not relevant (the connection itself
 provides anti-spoofing), so the client is free to choose arbitrary
 values.

 With a standard DNS client which fully-randomizes these values, only
 25% of generated queries will have the high bits of both octets set
 to 0. 100% of all HTTP/1.x requests will have the high bits of both
 of these octets cleared. Similarly, some small percentage of
 randomly-generated DNS queries will have values here lower than 0x0A,
 while no HTTP/1.x clients will ever send these low values.

https://datatracker.ietf.org/doc/html/rfc7230#section-3.1.1

Gillmor Expires November 18, 2017 [Page 9]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

4.3. octet 4

 In a DNS stream, octet 4 combines several fields:

 0 1 2 3 4 5 6 7
 +--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|
 +--+--+--+--+--+--+--+--+

 In a standard DNS query sent over a streaming interface, QR, Opcode,
 AA, and TC are all set to 0. The least-significant bit (RD -
 Recursion Desired) is set when a packet is sent from a stub to a
 recursive resolver. The value of such an octet is 0x01. This value
 never occurs in octet 4 of a legitimate HTTP/1.x client.

 But under DNS UPDATE ([RFC2136], Opcode is set to 5 and all the
 option bits are cleared, which means this value would have 0x40
 (ASCII '@'), which could legitimately occur in some HTTP/1.x requests
 at this position.

4.4. octet 5

 In a DNS stream, octet 5 also combines several fields:

 0 1 2 3 4 5 6 7
 +--+--+--+--+--+--+--+--+
 |RA| Z|AD|CD| RCODE |
 +--+--+--+--+--+--+--+--+

 In some DNS messages sent from a client, all these bits are 0.
 However, section 5.7 of [RFC6840] suggests that queries may wish to
 set the AD bit to indicate a desire to learn from a validating
 resolver whether the resolver considers the contents to be Authentic
 Data.

 [RFC6840] also suggests that:

 validating resolvers SHOULD set the CD bit on every upstream query.

 So many queries, particularly from DNSSEC-validating DNS clients, are
 likely to set bits 2 and 3, resulting in a value 0x30 (ASCII '0').
 This is usually a legitimate value for octet 5 in an HTTP/1.x
 request.

https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc6840#section-5.7

Gillmor Expires November 18, 2017 [Page 10]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

4.5. octets 6 and 7

 In DNS, octets 6 and 7 represent the query count. Most DNS clients
 will send one query at a time, which makes this value 0x0001. As
 long as the number of initial queries does not exceed 0x0A0A (2570),
 then at least one of these octets will have a value less than 0x0A.
 No HTTP/1.x client sends an octet less than 0x0A in positions 6 or 7.

 In DNS UPDATE, octets 6 and 7 represent the zone count. Entries in
 the Zone section of the DNS UPDATE message are structured identically
 to entries in the Query section of a standard DNS message.

4.6. octets 8 through 11

 In streaming DNS, octets 8 through 11 represent answer counts and
 authority counts in normal DNS queries, or Prerequisite and Update
 counts in DNS UPDATE. Standard DNS queries will set them both 0.
 DNS UPDATE queries are likely to include some records in these
 sections, so they won't be all zero, but as long as no more than 2570
 Prerequisite records and no more than 2570 Update records are sent,
 at least one octet will have value less than 0x0A. But no HTTP/1.x
 client sends an octet less than 0x0A in these positions.

4.7. octets 12 and 13

 In streaming DNS, octets 12 and 13 represent the number of Additional
 RRs. When a DNS query is sent with EDNS(0), the OPT RR is accounted
 for here. So this is often either 0x0000 or 0x0001. In a Secure DNS
 UPDATE [RFC3007], the SIG(0) or TSIG record is also found in this
 section, which could increase the values of these octets to 0x0002.
 No HTTP/1.x client will send octets with these low values at these
 positions.

5. Combinations of octets

 In a DNS message, each Question in the Question section (or Zone in
 the Zone section for DNS UPDATE) is at least 5 octets (1 octet for
 zero-length QNAME + 2 octets for QTYPE + 2 octets for QCLASS), and
 each RR (in the Answer, Authority, and Additional sections for normal
 DNS queries; or in the Prerequisite, Update, and Additional sections
 for DNS UPDATE) is at least 11 octets. And the header itself is 12
 octets.

 So we know that for a valid DNS stream, the first message has a size
 of at least:

https://datatracker.ietf.org/doc/html/rfc3007

Gillmor Expires November 18, 2017 [Page 11]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 min_first_msg_size = 12 + 5 * (256*o[6] + o[7]) +
 11 * (256*(o[8] + o[10] + o[12]) +
 o[9] + o[11] + o[13])

 It's possible to compare this value with the expected first query
 size:

 first_msg_size = 256 * o[0] + o[1]

 if "first_query_size" is less than "min_first_query_size" we can be
 confident that the stream is not DNS.

5.1. Proof: a valid DNS message cannot be an HTTP/1.x query

 For any a valid, stream-based DNS message:

 o If there are fewer than 0x0A00 Questions then octet 6 < 0x0A.

 o If there are fewer than 0x0A00 Answer RRs, then octet 8 < 0x0A.

 o If there are fewer than 0x0A00 Authority RRs, then octet 10 <
 0x0A.

 o If there are fewer than 0x0A00 Additional RRs, then octet 12 <
 0x0A.

 If any of these four inequalities hold, then the packet is clearly
 DNS, not HTTP/1.x.

 if none of them hold, then there are at least 0x0A00 (2560) Questions
 and 3*2560 == 7680 RRs. But:

 12 + 5*2560 + 11*7680 == 97292

 So the smallest possible DNS message where none of these four
 inequalities hold is 97292 octets. But a DNS message is limited in
 size to 65535 octets.

 Therefore at least one of these inequalities holds, and one of the
 first 14 octets of a DNS steam is < 0x0A.

 But in a standard HTTP/1.x request, none of the first 14 octets can
 have a value < 0x0A, so a valid DNS message cannot be mistaken for an
 HTTP/1.x request.

Gillmor Expires November 18, 2017 [Page 12]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

6. Guidance for Demultiplexing Servers

 Upon receiving a connection stream that might be either DNS or
 HTTP/1.x, a server can inspect the initial octets of the stream to
 decide where to send it.

6.1. Without supporting HTTP/0.9

 A server that doesn't care about HTTP/0.9 can simply wait for the
 first 14 octets of the client's request to come in. Then the
 algorithm is:

 bytestream = read_from_client(14)
 for x in bytestream:
 if (x < 0x0A) or (x > 0x7F):
 return `DNS`
 return `HTTP`

6.2. Supporting archaic HTTP/0.9 clients

 A server that decides to try to support HTTP/0.9 clients has a
 slightly more challenging task, since some of them may send fewer
 octets than the initial DNS message, and the server shouldn't block
 waiting for data that will never come.

Gillmor Expires November 18, 2017 [Page 13]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 bytestream = read_from_client(5)
 for x in bytestream[0:5]
 if (x < 0x0A) or (x > 0x7F):
 return `DNS`
 if (bytestream[0:4] != 'GET '): # not HTTP/0.9
 bytestream += read_from_client(9)
 for x in bytestream[5:14]:
 if (x < 0x0A) or (x > 0x7f):
 return `DNS`
 return `HTTP`
 else: # maybe HTTP/0.9
 seen_sp = False
 seen_high = False
 while (len(bytestream) < 14):
 if (seen_sp and seen_high):
 return `DNS`
 x = read_from_client(1)
 bytestream += x
 if (x > 0x7F):
 seen_high = True
 elif (x < 0x0A):
 return `DNS`
 elif (x == 0x20):
 seen_sp = True # SP found before CRLF, not HTTP/0.9
 elif (x == 0x0A):
 return `HTTP`
 return `HTTP`

 Note that if read_from_client() ever fails to read the number of
 requested bytes (e.g. because of EOF), then the stream is neither
 valid HTTP nor valid DNS, and can be discarded.

6.3. Signaling demultiplexing capacity

 This document assumes that clients can learn out-of-band which
 listening service they can connect to. For example, the
 administrator of a machine can configure a local forwarding stub
 resolver to use DNS-over-TLS on port 443 of some specific server.
 This explicit configuration carries with it some level of trust - the
 client is choosing to trust the configured server with its DNS
 queries.

 In some circumstances, it might be useful for a listener to signal to
 a client that it is willing and capable of handling both DNS and
 HTTP/1.x traffic. While such signalling could be useful for dynamic
 discovery, it opens questions of trust (which servers should the
 client be willing to rely on for DNS resolution?) and is out-of-scope
 for this draft.

Gillmor Expires November 18, 2017 [Page 14]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

7. Guidance for DNS clients

 Consider a DNS client that connects to a server that might be
 interested in answering HTTP/1.x requests on the same address/port
 (or other channel identifier). The client wants to send traffic that
 is unambiguously DNS traffic to make it easy for the server to
 distinguish it from inbound HTTP/1.x requests. Fortunately, this is
 trivial to do. In fact, any sensibly-implemented DNS-over-TLS client
 can use this approach without modification, just by adjusting the
 port number of the upstream recursive resolver from 853 to 443.

 Such a client should follow these guidelines:

 o Send the DNS message size (a 16-bit integer) together in the same
 packet with the full header of the first DNS message so that the
 recipient can review as much as possible of the frame at once.
 This is a best practice for efficient stream-based DNS anyway.

 If the client is concerned about stream fragmentation that it cannot
 control, and it is talking to a server that might be expecting
 HTTP/0.9 clients, then the server might not be willing to wait for
 the full initial 14 octets to make a decision.

 Note that this fragmentation is not a concern for streams wrapped in
 TLS when using modern AEAD ciphersuites. In this case, the client
 gets to choose the size of the plaintext record, which is either
 recovered by the server in full (unfragmented) or the connection
 fails.

 If the client does not have such a guarantee from the transport, it
 MAY also take one of the following mitigating actions relating to the
 first DNS message it sends in the stream [explanation of what the
 server gets to see in the fragmented stream case are in square
 brackets after each mitigation]:

 o Ensure the first message is marked as a query (QR = 0), and it
 uses opcode 0 ("Standard Query"). [bytestream[4] < 0x08]

 o Ensure that the first message has RA = 0, Z = 0, and RCODE = 0.
 [bytestream[5] == 0x00]

 o Ensure that the high bit of the first octet of the message ID of
 the first message is set. [bytestream[2] > 0x7F]

 o Send an initial short Server Status DNS message ahead of the
 otherwise intended initial DNS message. [bytestream[0] == 0x00]

Gillmor Expires November 18, 2017 [Page 15]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 o Use the EDNS(0) padding option [RFC7830] to pad the first message
 to a multiple of 256 octets. [bytestream[1] == 0x00]

7.1. Interpreting failure

 FIXME: A DNS client that does not already know that a server is
 willing to carry both types of traffic SHOULD expect a transport
 connection failure of some sort. Can we say something specific about
 what it should expect?

8. Guidance for HTTP clients

 HTTP clients SHOULD NOT send HTTP/0.9 requests, since modern HTTP
 servers are not required to support HTTP/0.9. Sending an HTTP/1.0
 request (or any later version) is sufficient for a server to be able
 to distinguish the two protocols.

9. Security Considerations

 FIXME: Clients should locally validate DNSSEC (servers may still be
 able to omit some records)

 FIXME: if widely deployed, consider amplification for DDoS against
 authoritative servers?

 FIXME: consider DNSSEC transparency

 FIXME: consider TLS session resumption - this counts as a new stream
 boundary, so the multiplexing decision need not persist across
 resumption.

 FIXME: consider 0-RTT

 FIXME: consider X.509 cert validation

 FIXME: what other security considerations should clients take?

 FIXME: what other security considerations should servers take?

10. Privacy Considerations

 FIXME: DNS queries and HTTP requests can reveal potentially sensitive
 information about the sender.

 FIXME: consider DNS and HTTP traffic analysis - how should requests
 or responses be padded, aggregated, or delayed given that streams are
 multiplexed?

https://datatracker.ietf.org/doc/html/rfc7830

Gillmor Expires November 18, 2017 [Page 16]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 FIXME: any other privacy considerations?

11. IANA Considerations

 This document does not ask IANA to make any changes to existing
 registries.

 However, it does update the DNS and HTTP specifications, to reflect
 the fact that services using this demultiplexing technique may be
 constrained in adoption of future versions of either stream-based DNS
 or HTTP/1.x if those future versions modify either protocol in a way
 that breaks with the distinctions documented here.

 In particular, this draft assumes that all future stream-based
 versions of HTTP/1.x should have the following properties:

 o the client will speak first

 o the client will send at least 14 octets before expecting a
 response from the server.

 o none of those first 14 octets will be below 0x0A (LF) or above
 0x7F (DEL).

 Future extensions to stream-based DNS or HTTP/1.x should take this
 demultiplexing technique into consideration.

12. Document Considerations

 [RFC Editor: please remove this section before publication]

 This document is currently edited as markdown. Minor editorial
 changes can be suggested via merge requests at

https://gitlab.com/dkg/hddemux or by e-mail to the author. Please
 direct all significant commentary to the public IETF DNS Privacy
 mailing list: dns-privacy@ietf.org or to the IETF HTTP WG mailing
 list: ietf-http-wg@w3.org

13. References

13.1. Normative References

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

https://gitlab.com/dkg/hddemux
https://datatracker.ietf.org/doc/html/rfc1035
http://www.rfc-editor.org/info/rfc1035

Gillmor Expires November 18, 2017 [Page 17]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 [RFC1945] Berners-Lee, T., Fielding, R., and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945,
 DOI 10.17487/RFC1945, May 1996,
 <http://www.rfc-editor.org/info/rfc1945>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <http://www.rfc-editor.org/info/rfc2136>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

13.2. Informative References

 [HAPROXY] Tarreau, W., "The Proxy protocol", March 2017,
 <https://www.haproxy.org/download/1.8/doc/proxy-

protocol.txt>.

 [I-D.hoffman-dns-over-https]
 Hoffman, P. and P. McManus, "DNS Queries over HTTPS",

draft-hoffman-dns-over-https-00 (work in progress), May
 2017.

 [I-D.ietf-dnsop-dns-wireformat-http]
 Song, L., Vixie, P., Kerr, S., and R. Wan, "DNS wire-
 format over HTTP", draft-ietf-dnsop-dns-wireformat-http-01
 (work in progress), March 2017.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, DOI 10.17487/RFC3007, November 2000,
 <http://www.rfc-editor.org/info/rfc3007>.

https://datatracker.ietf.org/doc/html/rfc1945
http://www.rfc-editor.org/info/rfc1945
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2136
http://www.rfc-editor.org/info/rfc2136
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://datatracker.ietf.org/doc/html/draft-hoffman-dns-over-https-00
https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-dns-wireformat-http-01
https://datatracker.ietf.org/doc/html/rfc3007
http://www.rfc-editor.org/info/rfc3007

Gillmor Expires November 18, 2017 [Page 18]

Internet-Draft Demultiplexing Streamed DNS from HTTP/1.x May 2017

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6840] Weiler, S., Ed. and D. Blacka, Ed., "Clarifications and
 Implementation Notes for DNS Security (DNSSEC)", RFC 6840,
 DOI 10.17487/RFC6840, February 2013,
 <http://www.rfc-editor.org/info/rfc6840>.

 [RFC6895] Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895,
 April 2013, <http://www.rfc-editor.org/info/rfc6895>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

 [RFC7830] Mayrhofer, A., "The EDNS(0) Padding Option", RFC 7830,
 DOI 10.17487/RFC7830, May 2016,
 <http://www.rfc-editor.org/info/rfc7830>.

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
 and P. Hoffman, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
 2016, <http://www.rfc-editor.org/info/rfc7858>.

Author's Address

 Daniel Kahn Gillmor
 American Civil Liberties Union
 125 Broad St.
 New York, NY 10004
 USA

 Email: dkg@fifthhorseman.net

https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6840
http://www.rfc-editor.org/info/rfc6840
https://datatracker.ietf.org/doc/html/bcp42
https://datatracker.ietf.org/doc/html/rfc6895
http://www.rfc-editor.org/info/rfc6895
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7830
http://www.rfc-editor.org/info/rfc7830
https://datatracker.ietf.org/doc/html/rfc7858
http://www.rfc-editor.org/info/rfc7858

Gillmor Expires November 18, 2017 [Page 19]

