
Workgroup: openpgp

Internet-Draft:

draft-dkg-openpgp-stateless-cli-04

Published: 15 May 2022

Intended Status: Informational

Expires: 16 November 2022

Authors: D. K. Gillmor

ACLU

Stateless OpenPGP Command Line Interface

Abstract

This document defines a generic stateless command-line interface for

dealing with OpenPGP messages, known as sop. It aims for a minimal,

well-structured API covering OpenPGP object security.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

dkg.gitlab.io/openpgp-stateless-cli/. Status information for this

document may be found at https://datatracker.ietf.org/doc/draft-dkg-

openpgp-stateless-cli/.

Discussion of this document takes place on the OpenPGP Working Group

mailing list (mailto:openpgp@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/openpgp/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/dkg/openpgp-stateless-cli/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 November 2022.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://dkg.gitlab.io/openpgp-stateless-cli/
https://dkg.gitlab.io/openpgp-stateless-cli/
https://datatracker.ietf.org/doc/draft-dkg-openpgp-stateless-cli/
https://datatracker.ietf.org/doc/draft-dkg-openpgp-stateless-cli/
mailto:openpgp@ietf.org
https://mailarchive.ietf.org/arch/browse/openpgp/
https://gitlab.com/dkg/openpgp-stateless-cli/
https://gitlab.com/dkg/openpgp-stateless-cli/
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Terminology

1.3. Using sop in a Test Suite

2. Examples

3. Subcommands

3.1. version: Version Information

3.2. generate-key: Generate a Secret Key

3.3. extract-cert: Extract a Certificate from a Secret Key

3.4. sign: Create Detached Signatures

3.5. verify: Verify Detached Signatures

3.6. encrypt: Encrypt a Message

3.7. decrypt: Decrypt a Message

3.8. armor: Convert Binary to ASCII

3.9. dearmor: Convert ASCII to Binary

3.10. inline-detach: Split Signatures from an Inline-Signed

Message

3.11. inline-verify: Verify an Inline-Signed Message

3.12. inline-sign: Create an Inline-Signed Message

4. Input String Types

4.1. DATE

4.2. USERID

5. Input/Output Indirect Types

5.1. Special Designators for Indirect Types

5.2. CERTS

5.3. KEYS

5.4. CIPHERTEXT

5.5. INLINESIGNED

5.6. SIGNATURES

5.7. SESSIONKEY

5.8. MICALG

5.9. PASSWORD

¶

¶

https://trustee.ietf.org/license-info

5.10. VERIFICATIONS

5.11. DATA

6. Failure Modes

7. Alternate Interfaces

8. Guidance for Implementers

8.1. One OpenPGP Message at a Time

8.2. Simplified Subset of OpenPGP Message

8.3. Validate Signatures Only from Known Signers

8.4. OpenPGP Inputs can be either Binary or ASCII-armored

8.5. Complexities of the Cleartext Signature Framework

8.6. Reliance on Supplied Certs and Keys

8.7. Text is always UTF-8

8.8. Passwords are Human-Readable

8.8.1. Generating Material with Human-Readable Passwords

8.8.2. Consuming Password-protected Material

8.9. Be Careful with Special Designators

9. Guidance for Consumers

9.1. Choosing Between --as=text and --as=binary

9.2. Special Designators and Unusual Filenames

10. Security Considerations

10.1. Signature Verification

10.2. Compression

11. Privacy Considerations

11.1. Object Security vs. Transport Security

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Acknowledgements

Appendix B. Future Work

Appendix C. Document History

C.1. Substantive Changes between -03 and -04:

C.2. Substantive Changes between -02 and -03:

C.3. Substantive Changes between -01 and -02:

C.4. Substantive Changes between -00 and -01:

Author's Address

1. Introduction

Different OpenPGP implementations have many different requirements,

which typically break down in two main categories: key/certificate

management and object security.

The purpose of this document is to provide a "stateless" interface

that primarily handles the object security side of things, and

assumes that secret key management and certificate management will

be handled some other way.

Isolating object security from key/certificate management should

make it easier to provide interoperability testing for the object

¶

¶

security side of OpenPGP implementations, as described in Section

1.3.

This document defines a generic stateless command-line interface for

dealing with OpenPGP messages, known here by the placeholder sop. It

aims for a minimal, well-structured API.

An OpenPGP implementation should not name its executable sop to

implement this specification. It just needs to provide a program

that conforms to this interface.

A sop implementation should leave no trace on the system, and its

behavior should not be affected by anything other than command-line

arguments and input.

Obviously, the user will need to manage their secret keys (and their

peers' certificates) somehow, but the goal of this interface is to

separate out that task from the task of interacting with OpenPGP

messages.

While this document identifies a command-line interface, the rough

outlines of this interface should also be amenable to relatively

straightforward library implementations in different languages.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Terminology

This document uses the term "key" to refer exclusively to OpenPGP

Transferable Secret Keys (see Section 11.2 of [RFC4880]).

It uses the term "certificate" to refer to OpenPGP Transferable

Public Key (see Section 11.1 of [RFC4880]).

"Stateless" in "Stateless OpenPGP" means avoiding secret key and

certificate state. The user is responsible for managing all OpenPGP

certificates and secret keys themselves, and passing them to sop as

needed. The user should also not be concerned that any state could

affect the underlying operations.

OpenPGP revocations can have "Reason for Revocation"

(Section 5.2.3.23 of [RFC4880]), which can be either "soft" or

"hard". The set of "soft" reasons is: "Key is superseded" and "Key

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4880#section-11.2
https://rfc-editor.org/rfc/rfc4880#section-11.1
https://rfc-editor.org/rfc/rfc4880#section-5.2.3.23

is retired and no longer used". All other reasons (and revocations

that do not state a reason) are "hard" revocations.

1.3. Using sop in a Test Suite

If an OpenPGP implementation provides a sop interface, it can be

used to test interoperability (e.g., [OpenPGP-Interoperability-Test-

Suite]).

Such an interop test suite can, for example, use custom code (not

sop) to generate a new OpenPGP object that incorporates new

primitives, and feed that object to a stable of sop implementations,

to determine whether those implementations can consume the new form.

Or, the test suite can drive each sop implementation with a simple

input, and observe which cryptographic primitives each

implementation chooses to use as it produces output.

2. Examples

These examples show no error checking, but give a flavor of how sop

might be used in practice from a shell.

The key and certificate files described in them (e.g. alice.sec)

could be for example those found in [I-D.draft-bre-openpgp-

samples-01].

See Section 6 for more information about errors and error handling.

3. Subcommands

sop uses a subcommand interface, similar to those popularized by

systems like git and svn.

If the user supplies a subcommand that sop does not implement, it

fails with UNSUPPORTED_SUBCOMMAND. If a sop implementation does not

handle a supplied option for a given subcommand, it fails with

UNSUPPORTED_OPTION.

¶

¶

¶

¶

¶

¶

sop generate-key "Alice Lovelace <alice@openpgp.example>" > alice.sec

sop extract-cert < alice.sec > alice.pgp

sop generate-key "Bob Babbage <bob@openpgp.example>" > bob.sec

sop extract-cert < bob.sec > bob.pgp

sop sign --as=text alice.sec < statement.txt > statement.txt.asc

sop verify statement.txt.asc alice.pgp < statement.txt

sop encrypt --sign-with=alice.sec bob.pgp < msg.eml > ciphertext.asc

sop decrypt bob.sec < ciphertext.asc > cleartext.eml

¶

¶

¶

¶

All subcommands that produce OpenPGP material on standard output

produce ASCII-armored (Section 6 of [I-D.ietf-openpgp-crypto-

refresh-05]) objects by default (except for sop dearmor). These

subcommands have a --no-armor option, which causes them to produce

binary OpenPGP material instead.

All subcommands that accept OpenPGP material on input should be able

to accept either ASCII-armored or binary inputs (see Section 8.4)

and behave accordingly.

See Section 5 for details about how various forms of OpenPGP

material are expected to be structured.

3.1. version: Version Information

Standard Input: ignored

Standard Output: version information

This subcommand emits version information as UTF-8-encoded text.

With no arguments, the version string emitted should contain the

name of the sop implementation, followed by a single space, followed

by the version number. A sop implementation should use a version

number that respects an established standard that is easily

comparable and parsable, like [SEMVER].

If --backend is supplied, the implementation should produce a

comparable line of implementation and version information about the

primary underlying OpenPGP toolkit.

If --extended is supplied, the implementation may emit multiple

lines of version information. The first line MUST match the

information produced by a simple invocation, but the rest of the

text has no defined structure.

--backend and --extended are mutually-exclusive options.

Example:

¶

¶

¶

sop version [--backend|--extended]¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-6

3.2. generate-key: Generate a Secret Key

Standard Input: ignored

Standard Output: KEYS (Section 5.3)

Generate a single default OpenPGP key with zero or more User IDs.

The generated secret key SHOULD be usable for as much of the sop

functionality as possible. In particular:

It should be possible to extract an OpenPGP certificate from the

key in KEYS with sop extract-cert.

The key in KEYS should be able to create signatures (with sop

sign) that are verifiable by using sop verify with the extracted

certificate.

The key in KEYS should be able to decrypt messages (with sop

decrypt) that are encrypted by using sop encrypt with the

extracted certificate.

The detailed internal structure of the certificate is left to the

discretion of the sop implementation.

If the --with-key-password option is supplied, the generated key

will be password-protected (locked) with the supplied password. Note

that PASSWORD is an indirect data type from which the actual

password is acquired (Section 5). See also the guidance on ensuring

that the password is human-readable in Section 8.8.1.

If no --with-key-password option is supplied, the generated key will

be unencrypted.

$ sop version

ExampleSop 0.2.1

$ sop version --backend

LibExamplePGP 3.4.2

$ sop version --extended

ExampleSop 0.2.1

Running on MonkeyScript 4.5

LibExamplePGP 3.4.2

LibExampleCrypto 3.1.1

LibXCompression 4.0.2

See https://pgp.example/sop/ for more information

$

¶

sop generate-key [--no-armor]

 [--with-key-password=PASSWORD]

 [--] [USERID...]

¶

* ¶

* ¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

Example:

3.3. extract-cert: Extract a Certificate from a Secret Key

Standard Input: KEYS (Section 5.3)

Standard Output: CERTS (Section 5.2)

The output should contain one OpenPGP certificate in CERTS per

OpenPGP Transferable Secret Key found in KEYS. There is no guarantee

what order the CERTS will be in.

sop extract-cert SHOULD work even if any of the keys in KEYS is

password-protected.

Example:

3.4. sign: Create Detached Signatures

Standard Input: DATA (Section 5.11)

Standard Output: SIGNATURES (Section 5.6)

Exactly one signature will be made by each key in the supplied KEYS

arguments.

--as defaults to binary. If --as=text and the input DATA is not

valid UTF-8 (Section 8.7), sop sign fails with EXPECTED_TEXT.

--as=binary SHOULD result in OpenPGP signatures of type 0x00

("Signature of a binary document"). --as=text SHOULD result in

OpenPGP signatures of type 0x01 ("Signature of a canonical text

document"). See Section 5.2.1 of [RFC4880] for more details.

¶

$ sop generate-key 'Alice Lovelace <alice@openpgp.example>' > alice.sec

$ head -n1 < alice.sec

-----BEGIN PGP PRIVATE KEY BLOCK-----

$

¶

sop extract-cert [--no-armor]¶

* ¶

* ¶

¶

¶

¶

$ sop extract-cert < alice.sec > alice.pgp

$ head -n1 < alice.pgp

-----BEGIN PGP PUBLIC KEY BLOCK-----

$

¶

sop sign [--no-armor] [--micalg-out=MICALG]

 [--with-key-password=PASSWORD...]

 [--as={binary|text}] [--] KEYS [KEYS...]

¶

* ¶

* ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4880#section-5.2.1

When generating PGP/MIME messages ([RFC3156]), it is useful to know

what digest algorithm was used for the generated signature. When --

micalg-out is supplied, sop sign emits the digest algorithm used to

the specified MICALG file in a way that can be used to populate the

micalg parameter for the Content-Type (see Section 5.8). If the

specified MICALG file already exists in the filesystem, sop sign

will fail with OUTPUT_EXISTS.

When signing with multiple keys, sop sign SHOULD use the same digest

algorithm for every signature generated in a single run, unless

there is some internal constraint on the KEYS objects. If --micalg-

out is requested, and multiple incompatibly-constrained KEYS objects

are supplied, sop sign MUST emit the empty string to the designated

MICALG.

If the signing key material in any key in the KEYS objects is

password-protected, sop sign SHOULD try all supplied --with-key-

password options to unlock the key material until it finds one that

enables the use of the key for signing. If none of the PASSWORD

options unlock the key (or if no such option is supplied), sop sign

will fail with KEY_IS_PROTECTED. Note that PASSWORD is an indirect

data type from which the actual password is acquired (Section 5).

Note also the guidance for retrying variants of a non-human-readable

password in Section 8.8.2.

If any key in the KEYS objects is not capable of producing a

signature, sop sign will fail with KEY_CANNOT_SIGN.

sop sign MUST NOT produce any extra signatures beyond those from

KEYS objects supplied on the command line.

Example:

3.5. verify: Verify Detached Signatures

Standard Input: DATA (Section 5.11)

Standard Output: VERIFICATIONS (Section 5.10)

--not-before and --not-after indicate that signatures with dates

outside certain range MUST NOT be considered valid.

¶

¶

¶

¶

¶

¶

$ sop sign --as=text alice.sec < message.txt > message.txt.asc

$ head -n1 < message.txt.asc

-----BEGIN PGP SIGNATURE-----

$

¶

sop verify [--not-before=DATE] [--not-after=DATE]

 [--] SIGNATURES CERTS [CERTS...]

¶

* ¶

* ¶

¶

--not-before defaults to the beginning of time. Accepts the special

value - to indicate the beginning of time (i.e. no lower boundary).

--not-after defaults to the current system time (now). Accepts the

special value - to indicate the end of time (i.e. no upper

boundary).

sop verify only returns OK if at least one certificate included in

any CERTS object made a valid signature in the time window specified

over the DATA supplied.

For details about the valid signatures, the user MUST inspect the

VERIFICATIONS output.

If no CERTS are supplied, sop verify fails with MISSING_ARG.

If no valid signatures are found, sop verify fails with

NO_SIGNATURE.

See Section 10.1 for more details about signature verification.

Example:

(In this example, we see signature verification succeed first, and

then fail on a modified version of the message.)

3.6. encrypt: Encrypt a Message

Standard Input: DATA (Section 5.11)

Standard Output: CIPHERTEXT (Section 5.4)

--as defaults to binary. The setting of --as corresponds to the one

octet format field found in the Literal Data packet at the core of

¶

¶

¶

¶

¶

¶

¶

¶

¶

$ sop verify message.txt.asc alice.pgp < message.txt

2019-10-29T18:36:45Z EB85BB5FA33A75E15E944E63F231550C4F47E38E EB85BB5FA33A75E15E944E63F231550C4F47E38E signed by alice.pgp

$ echo $?

0

$ tr a-z A-Z < message.txt | sop verify message.txt.asc alice.pgp

$ echo $?

3

$

¶

sop encrypt [--as={binary|text}]

 [--no-armor]

 [--with-password=PASSWORD...]

 [--sign-with=KEYS...]

 [--] [CERTS...]

¶

* ¶

* ¶

the output CIPHERTEXT. If --as is set to binary, the octet is b

(0x62). If it is text, the format octet is u (0x75).

--with-password enables symmetric encryption (and can be used

multiple times if multiple passwords are desired). PASSWORD is an

indirect data type from which the actual password is acquired

(Section 5). If sop encrypt encounters a password which is not a

valid UTF-8 string (Section 8.7), or is otherwise not robust in its

representation to humans, it fails with PASSWORD_NOT_HUMAN_READABLE.

If sop encrypt sees trailing whitespace at the end of a password, it

will trim the trailing whitespace before using the password. See

Section 8.8 for more discussion about passwords.

--sign-with creates exactly one signature by for each secret key

found in the supplied KEYS object (this can also be used multiple

times if signatures from keys found in separaate files are desired).

If any key in any supplied KEYS objects is not capable of producing

a signature, sop sign will fail with KEY_CANNOT_SIGN.

If --as is set to binary, then --sign-with will sign as a binary

document (OpenPGP signature type 0x00).

If --as is set to text, then --sign-with will sign as a canonical

text document (OpenPGP signature type 0x01). In this case, if the

input DATA is not valid UTF-8 (Section 8.7), sop encrypt fails with

EXPECTED_TEXT.

If --sign-with is supplied for input DATA that is not valid UTF-8,

sop encrypt MAY sign as a binary document (OpenPGP signature type

0x00).

sop encrypt MUST NOT produce any extra signatures beyond those from

KEYS objects identified by --sign-with.

The resulting CIPHERTEXT should be decryptable by the secret keys

corresponding to every certificate included in all CERTS, as well as

each password given with --with-password.

If no CERTS or --with-password options are present, sop encrypt

fails with MISSING_ARG.

If at least one of the identified certificates requires encryption

to an unsupported asymmetric algorithm, sop encrypt fails with

UNSUPPORTED_ASYMMETRIC_ALGO.

If at least one of the identified certificates is not encryption-

capable (e.g., revoked, expired, no encryption-capable flags on

primary key and valid subkeys), sop encrypt fails with

CERT_CANNOT_ENCRYPT.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If sop encrypt fails for any reason, it emits no CIPHERTEXT.

Example:

(In this example, bob.bin is a file containing Bob's binary-

formatted OpenPGP certificate. Alice is encrypting a message to both

herself and Bob.)

3.7. decrypt: Decrypt a Message

Standard Input: CIPHERTEXT (Section 5.4)

Standard Output: DATA (Section 5.11)

The caller can ask sop for the session key discovered during

decryption by supplying the --session-key-out option. If the

specified file already exists in the filesystem, sop decrypt will

fail with OUTPUT_EXISTS. When decryption is successful, sop decrypt

writes the discovered session key to the specified file.

--with-session-key enables decryption of the CIPHERTEXT using the

session key directly against the SEIPD packet. This option can be

used multiple times if several possible session keys should be

tried. SESSIONKEY is an indirect data type from which the actual

sessionkey value is acquired (Section 5).

--with-password enables decryption based on any SKESK (Section 5.3

of [I-D.ietf-openpgp-crypto-refresh-05]) packets in the CIPHERTEXT.

This option can be used multiple times if the user wants to try more

than one password.

--with-key-password lets the user use password-protected (locked)

secret key material. If the decryption-capable secret key material

in any key in the KEYS objects is password-protected, sop decrypt

SHOULD try all supplied --with-key-password options to unlock the

¶

¶

¶

$ sop encrypt --as=text --sign-with=alice.key alice.asc bob.bin < message.eml > encrypted.asc

$ head -n1 encrypted.asc

-----BEGIN PGP MESSAGE-----

$

¶

sop decrypt [--session-key-out=SESSIONKEY]

 [--with-session-key=SESSIONKEY...]

 [--with-password=PASSWORD...]

 [--with-key-password=PASSWORD...]

 [--verify-out=VERIFICATIONS

 [--verify-with=CERTS...]

 [--verify-not-before=DATE]

 [--verify-not-after=DATE]]

 [--] [KEYS...]

¶

* ¶

* ¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-5.3

key material until it finds one that enables the use of the key for

decryption. If none of the --with-key-password options unlock the

key (or if no such option is supplied), and the message cannot be

decrypted with any other KEYS, --with-session-key, or --with-

password options, sop decrypt will fail with KEY_IS_PROTECTED.

Note that the two kinds of PASSWORD options are for different

domains: --with-password is for unlocking an SKESK, and --with-key-

password is for unlocking secret key material in KEYS. sop decrypt

SHOULD NOT apply the --with-key-password argument to any SKESK, or

the --with-password argument to any KEYS.

Each PASSWORD argument is an indirect data type from which the

actual password is acquired (Section 5). If sop decrypt tries and

fails to use a password supplied by a PASSWORD, and it observes that

there is trailing UTF-8 whitespace at the end of the password, it

will retry with the trailing whitespace stripped. See Section 8.8.2

for more discussion about consuming password-protected key material.

--verify-out produces signature verification status to the

designated file. If the designated file already exists in the

filesystem, sop decrypt will fail with OUTPUT_EXISTS.

The return code of sop decrypt is not affected by the results of

signature verification. The caller MUST check the returned

VERIFICATIONS to confirm signature status. An empty VERIFICATIONS

output indicates that no valid signatures were found.

--verify-with identifies a set of certificates whose signatures

would be acceptable for signatures over this message.

If the caller is interested in signature verification, both --

verify-out and at least one --verify-with must be supplied. If only

one of these options is supplied, sop decrypt fails with

INCOMPLETE_VERIFICATION.

--verify-not-before and --verify-not-after provide a date range for

acceptable signatures, by analogy with the options for sop verify

(see Section 3.5). They should only be supplied when doing signature

verification.

See Section 10.1 for more details about signature verification.

If no KEYS or --with-password or --with-session-key options are

present, sop decrypt fails with MISSING_ARG.

If unable to decrypt, sop decrypt fails with CANNOT_DECRYPT.

sop decrypt only emits cleartext to Standard Output that was

successfully decrypted.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Example:

(In this example, Alice stashes and re-uses the session key of an

encrypted message.)

3.8. armor: Convert Binary to ASCII

Standard Input: OpenPGP material (SIGNATURES, KEYS, CERTS,

CIPHERTEXT, or INLINESIGNED)

Standard Output: the same material with ASCII-armoring added, if

not already present

The user can choose to specify the label used in the header and tail

of the armoring.

The default for --label is auto, in which case, sop inspects the

input and chooses the label appropriately, based on the OpenPGP

packets encountered. If the type of the first OpenPGP packet is:

0x05 (Secret-Key), the packet stream should be parsed as a KEYS

input (with Armor Header BEGIN PGP PRIVATE KEY BLOCK).

0x06 (Public-Key), the packet stream should be parsed as a CERTS

input (with Armor Header BEGIN PGP PUBLIC KEY BLOCK).

0x01 (Public-key Encrypted Session Key) or 0x03 (Symmetric-key

Encrypted Session Key), the packet stream should be parsed as a

CIPHERTEXT input (with Armor Header BEGIN PGP MESSAGE).

0x04 (One-Pass Signature), the packet stream should be parsed as

an INLINESIGNED input (with Armor Header BEGIN PGP MESSAGE).

0x02 (Signature), the packet stream may be either a SIGNATURES

input or an INLINESIGNED input. If the packet stream contains

only Signature packets, it should be parsed as aSIGNATURES input

(with Armor Header BEGIN PGP SIGNATURE). If it contains any

packet other than a Signature packet, it should be parsed as an

INLINESIGNED input (with Armor Header BEGIN PGP MESSAGE).

¶

¶

$ sop decrypt --session-key-out=session.key alice.sec < ciphertext.asc > cleartext.out

$ ls -l ciphertext.asc cleartext.out

-rw-r--r-- 1 user user 321 Oct 28 01:34 ciphertext.asc

-rw-r--r-- 1 user user 285 Oct 28 01:34 cleartext.out

$ sop decrypt --with-session-key=session.key < ciphertext.asc > cleartext2.out

$ diff cleartext.out cleartext2.out

$

¶

sop armor [--label={auto|sig|key|cert|message}]¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

If the input packet stream does not match the expected sequence of

packet types, sop armor fails with BAD_DATA.

Note that --label=message may be used for either INLINESIGNED or

CIPHERTEXT inputs.

Since sop armor accepts ASCII-armored input as well as binary input,

this operation is idempotent on well-structured data. A caller can

use this subcommand blindly to ensure that any well-formed OpenPGP

packet stream is 7-bit clean.

FIXME: what to do if the input is a CSF INLINESIGNED message? Three

choices:

Leave it untouched -- this violates the claim about blindly

ensuring 7-bit clean, since UTF-8-encoded message text is not

necessarily 7-bit clean.

Convert to ASCII-armored INLINESIGNED -- this requires synthesis

of OPS packet (from the CSF Hash header) and Literal Data packet

(from the message body).

Raise a specific error.

Example:

3.9. dearmor: Convert ASCII to Binary

Standard Input: OpenPGP material (SIGNATURES, KEYS, CERTS,

CIPHERTEXT, or INLINESIGNED)

Standard Output: the same material with any ASCII-armoring

removed

If the input packet stream does not match any of the expected

sequence of packet types, sop dearmor fails with BAD_DATA. See also

Section 8.4.

Since sop dearmor accepts binary-formatted input as well as ASCII-

armored input, this operation is idempotent on well-structured data.

A caller can use this subcommand blindly ensure that any well-formed

OpenPGP packet stream is in its standard binary representation.

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

$ sop armor < bob.bin > bob.pgp

$ head -n1 bob.pgp

-----BEGIN PGP PUBLIC KEY BLOCK-----

$

¶

sop dearmor¶

*

¶

*

¶

¶

¶

FIXME: what to do if the input is a CSF INLINESIGNED? Three choices:

Leave it untouched -- output data is not really in binary format.

Convert to binary-format INLINESIGNED -- this requires synthesis

of OPS packet (from CSF Hash header) and Literal Data packet

(from the message body).

Raise a specific error.

Example:

3.10. inline-detach: Split Signatures from an Inline-Signed Message

Standard Input: INLINESIGNED

Standard Output: DATA (the message without any signatures)

In some contexts, the user may expect an inline-signed message of

some form or another (INLINESIGNED, see Section 5.5) rather than a

message and its detached signature. sop inline-detach takes such an

inline-signed message on standard input, and splits it into:

the potentially signed material on standard output, and

a detached signature block to the destination identified by --

signatures-out

Note that no cryptographic verification of the signatures is done by

this subcommand. Once the inline-signed message is separated,

verification of the detached signature can be done with sop verify.

If no --signatures-out is supplied, sop inline-detach fails with

MISSING_ARG.

Note that there may be more than one Signature packet in an inline-

signed message. All signatures found in the inline-signed message

will be emitted to the --signatures-out destination.

If the inline-signed message uses the Cleartext Signature Framework,

it may be dash-escaped (see Section 7.1 of [RFC4880]). The output

of sop detach-inband-signature-and-message will have any dash-

escaping removed.

¶

* ¶

*

¶

* ¶

¶

$ sop dearmor < message.txt.asc > message.txt.sig

$

¶

sop inline-detach [--no-armor] --signatures-out=SIGNATURES¶

* ¶

* ¶

¶

* ¶

*

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4880#section-7.1

If the input is not an INLINESIGNED message, sop inline-detach fails

with BAD_DATA. If the input contains more than one object that could

be interpreted as an INLINESIGNED message, sop inline-detach also

fails with BAD_DATA. A sop implementation MAY accept (and discard)

leading and trailing data when the incoming INLINESIGNED message

uses the Cleartext Signature Framework.

If the file designated by --signatures-out already exists in the

filesystem, sop detach-inband-signature-and-message will fail with

OUTPUT_EXISTS.

Note that --no-armor here governs the data written to the --

signatures-out destination. Standard output is always the raw

message, not an OpenPGP packet.

Example:

3.11. inline-verify: Verify an Inline-Signed Message

Standard Input: INLINESIGNED (Section 5.5)

Standard Output: DATA (Section 5.11)

This command is similar to sop verify (Section 3.5) except that it

takes an INLINESIGNED message (see Section 5.5) and produces the

message body (without signatures) on standard output. It is also

similar to sop inline-detach (Section 3.10) except that it actually

performs signature verification.

--not-before and --not-after indicate that signatures with dates

outside certain range MUST NOT be considered valid.

--not-before defaults to the beginning of time. Accepts the special

value - to indicate the beginning of time (i.e. no lower boundary).

--not-after defaults to the current system time (now). Accepts the

special value - to indicate the end of time (i.e. no upper

boundary).

sop inline-verify only returns OK if INLINESIGNED contains at least

one valid signature made during the time window specified by a

certificate included in any CERTS object.

¶

¶

¶

¶

$ sop inline-detach --signatures-out=Release.pgp < InRelease >Release

$ sop verify Release.pgp archive-keyring.pgp < Release

$

¶

sop inline-verify [--not-before=DATE] [--not-after=DATE]

 [--verifications-out=VERIFICATIONS]

 [--] CERTS [CERTS...]

¶

* ¶

* ¶

¶

¶

¶

¶

¶

For details about the valid signatures, the user MUST inspect the

VERIFICATIONS output.

If no CERTS are supplied, sop inline-verify fails with MISSING_ARG.

If no valid signatures are found, sop inline-verify fails with

NO_SIGNATURE and emits nothing on standard output.

See Section 10.1 for more details about signature verification.

Example:

(In this example, we see signature verification succeed first, and

then fail on a modified version of the message.)

3.12. inline-sign: Create an Inline-Signed Message

Standard Input: DATA (Section 5.11)

Standard Output: INLINESIGNED (Section 5.5)

Exactly one signature will be made by each key in the supplied KEYS

arguments.

The generated output stream will be an inline-signed message, by

default producing an OpenPGP "Signed Message" packet stream.

--as defaults to binary. If --as= is set to either text or

clearsigned, and the input DATA is not valid UTF-8 (Section 8.7),

sop inline-sign fails with EXPECTED_TEXT.

--as=binary SHOULD result in OpenPGP signatures of type 0x00

("Signature of a binary document"). --as=text SHOULD result in an

OpenPGP signature of type 0x01 ("Signature of a canonical text

document"). See Section 5.2.1 of [RFC4880] for more details. --

as=clearsigned SHOULD behave the same way as --as=text except that

¶

¶

¶

¶

¶

¶

$ sop inline-verify -- alice.pgp < message.txt

Hello, world!

$ echo $?

0

$ sed s/Hello/Goodbye/ < message.txt | sop inline-verify -- alice.pgp

$ echo $?

3

$

¶

sop inline-sign [--no-armor]

 [--with-key-password=PASSWORD...]

 [--as={binary|text|clearsigned}]

 [--] KEYS [KEYS...]

¶

* ¶

* ¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc4880#section-5.2.1

it produces an output stream using the Cleartext Signature Framework

(see Section 7 of [RFC4880] and Section 8.5).

If both --no-armor and --as=clearsigned are supplied, sop inline-

sign fails with INCOMPATIBLE_OPTIONS.

If the signing key material in any key in the KEYS objects is

password-protected, sop inline-sign SHOULD try all supplied --with-

key-password options to unlock the key material until it finds one

that enables the use of the key for signing. If none of the PASSWORD

options unlock the key (or if no such option is supplied), sop

inline-sign will fail with KEY_IS_PROTECTED. Note that PASSWORD is

an indirect data type from which the actual password is acquired

(Section 5). Note also the guidance for retrying variants of a non-

human-readable password in Section 8.8.2.

If any key in the KEYS objects is not capable of producing a

signature, sop inline-sign will fail with KEY_CANNOT_SIGN.

sop inline-sign MUST NOT produce any extra signatures beyond those

from KEYS objects supplied on the command line.

Example:

4. Input String Types

Some material is passed to sop directly as a string on the command

line.

4.1. DATE

An ISO-8601 formatted timestamp with time zone, or the special value

now to indicate the current system time.

Examples:

now

2019-10-29T12:11:04+00:00

2019-10-24T23:48:29Z

¶

¶

¶

¶

¶

¶

$ sop inline-sign --as=clearsigned alice.sec < message.txt > message-signed.txt

$ head -n5 < message-signed.txt

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA256

This is the message.

-----BEGIN PGP SIGNATURE-----

$

¶

¶

¶

¶

* ¶

* ¶

* ¶

https://rfc-editor.org/rfc/rfc4880#section-7

20191029T121104Z

In some cases where used to specify lower and upper boundaries, a

DATE value can be set to - to indicate "no time limit".

A flexible implementation of sop MAY accept date inputs in other

unambiguous forms.

Note that whenever sop emits a timestamp (e.g. in Section 5.10) it

MUST produce only a UTC-based ISO-8601 compliant representation with

a resolution of one second, using the literal Z suffix to indicate

timezone.

4.2. USERID

This is an arbitrary UTF-8 string (Section 8.7). By convention, most

User IDs are of the form Display Name <email.address@example.com>,

but they do not need to be.

5. Input/Output Indirect Types

Some material is passed to sop indirectly, typically by referring to

a filename containing the data in question. This type of data may

also be passed to sop on Standard Input, or delivered by sop to

Standard Output.

If any input data is specified explicitly to be read from a file

that does not exist, sop will fail with MISSING_INPUT.

If any input data does not meet the requirements described below,

sop will fail with BAD_DATA.

5.1. Special Designators for Indirect Types

An indirect argument or parameter that starts with "@" (COMMERCIAL

AT, U+0040) is not treated as a filename, but is reserved for

special handling, based on the prefix that follows the @. We

describe two of those prefixes (@ENV: and @FD:) here. A sop

implementation that receives such a special designator but does not

know how to handle a given prefix in that context MUST fail with

UNSUPPORTED_SPECIAL_PREFIX.

If the filename for any indirect material used as input has the

special form @ENV:xxx, then contents of environment variable $xxx is

used instead of looking in the filesystem. @ENV is for input only:

if the prefix @ENV: is used for any output argument, sop fails with

UNSUPPORTED_SPECIAL_PREFIX.

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the filename for any indirect material used as either input or

output has the special form @FD:nnn where nnn is a decimal integer,

then the associated data is read from file descriptor nnn.

See Section 8.9 for more details about safe handling of these

special designators.

5.2. CERTS

One or more OpenPGP certificates (Section 11.1 of [I-D.ietf-openpgp-

crypto-refresh-05]), aka "Transferable Public Key". May be armored

(see Section 8.4).

Although some existing workflows may prefer to use one CERTS object

with multiple certificates in it (a "keyring"), supplying exactly

one certificate per CERTS input will make error reporting clearer

and easier.

5.3. KEYS

One or more OpenPGP Transferable Secret Keys (Section 11.2 of [I-

D.ietf-openpgp-crypto-refresh-05]). May be armored (see Section

8.4).

By default, secret key material is expected to be in cleartext (that

is, not locked with a password). If any secret key material is

locked with a password and no --with-key-password option is

supplied, sop may fail with error KEY_IS_PROTECTED.

Although some existing workflows may prefer to use one KEYS object

with multiple keys in it (a "secret keyring"), supplying exactly one

key per KEYS input will make error reporting clearer and easier.

5.4. CIPHERTEXT

sop accepts only a restricted subset of the arbitrarily-nested

grammar allowed by the OpenPGP Messages definition (Section 11.3 of

[I-D.ietf-openpgp-crypto-refresh-05]).

In particular, it accepts and generates only:

An OpenPGP message, consisting of a sequence of PKESKs (Section 5.1

of [I-D.ietf-openpgp-crypto-refresh-05]) and SKESKs (Section 5.3 of

[I-D.ietf-openpgp-crypto-refresh-05]), followed by one SEIPD

(Section 5.14 of [I-D.ietf-openpgp-crypto-refresh-05]).

The SEIPD can decrypt into one of two things:

"Maybe Signed Data" (see below), or

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-11.1
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-11.2
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-11.3
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-5.1
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-5.3
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-5.14

Compressed data packet that contains "Maybe Signed Data"

"Maybe Signed Data" is a sequence of:

N (zero or more) one-pass signature packets, followed by

zero or more signature packets, followed by

one Literal data packet, followed by

N signature packets (corresponding to the outer one-pass

signatures packets)

FIXME: does any tool do compression inside signing? Do we need to

handle that?

May be armored (see Section 8.4).

5.5. INLINESIGNED

An inline-signed message may take any one of three different forms:

A binary sequence of OpenPGP packets that matches a subset of the

"Signed Message" element in the grammar in Section 11.3 of [I-

D.ietf-openpgp-crypto-refresh-05]

The same sequence of packets, but ASCII-armored (see Section 8.4)

A message using the Cleartext Signature Framework described in

Section 7 of [I-D.ietf-openpgp-crypto-refresh-05]

The subset of the packet grammar expected in the first two forms

consists of either:

a series of Signature packets followed by a Literal Data packet

a series of One-Pass Signature (OPS) packets, followed by one

Literal Data packet, followed by an equal number of Signature

packets corresponding to the OPS packets

When the message is in the third form (Cleartext Signature

Framework), it has the following properties:

The stream SHOULD consist solely of UTF-8 text

Every Signature packet found in the stream SHOULD have Signature

Type 0x01 (canonical text document).

* ¶

¶

* ¶

* ¶

* ¶

*

¶

¶

¶

¶

*

¶

* ¶

*

¶

¶

* ¶

*

¶

¶

* ¶

*

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-11.3
https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-7

It SHOULD NOT contain leading text (before the -----BEGIN PGP

SIGNED MESSAGE----- cleartext header) or trailing text (after the

-----END PGP SIGNATURE----- armor tail).

While some OpenPGP implementations MAY produce more complicated

inline signed messages, a sop implementation SHOULD limit itself to

producing these straightforward forms.

5.6. SIGNATURES

One or more OpenPGP Signature packets. May be armored (see Section

8.4).

5.7. SESSIONKEY

This documentation uses the GnuPG defacto ASCII representation:

ALGONUM:HEXKEY

where ALGONUM is the decimal value associated with the OpenPGP

Symmetric Key Algorithms (Section 9.3 of [I-D.ietf-openpgp-crypto-

refresh-05]) and HEXKEY is the hexadecimal representation of the

binary key.

Example AES-256 session key:

5.8. MICALG

This output indicates the cryptographic digest used when making a

signature. It is useful specifically when generating signed PGP/MIME

objects, which want a micalg= parameter for the multipart/signed

content type as described in Section 5 of [RFC3156].

It will typically be a string like pgp-sha512, but in some

situations (multiple signatures using different digests) it will be

the empty string. If the user of sop is assembling a PGP/MIME signed

object, and the MICALG output is the empty string, the user should

omit the micalg= parameter entirely.

5.9. PASSWORD

This is expected to be a UTF-8 string (Section 8.7), but for sop

decrypt, any bytestring that the user supplies will be accepted.

Note the details in sop encrypt and sop decrypt about trailing

whitespace!

See also Section 8.8 for more discussion.

*

¶

¶

¶

¶

¶

¶

¶

9:FCA4BEAF687F48059CACC14FB019125CD57392BAB7037C707835925CBF9F7BCD¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-9.3
https://rfc-editor.org/rfc/rfc3156#section-5

5.10. VERIFICATIONS

One line per successful signature verification. Each line has three

structured fields delimited by a single space, followed by arbitrary

text to the end of the line that forms a message describing the

verification.

ISO-8601 UTC datestamp, to one second precision, using the Z

suffix

Fingerprint of the signing key (may be a subkey)

Fingerprint of primary key of signing certificate (if signed by

primary key, same as the previous field)

message describing the verification (free form)

Note that while Section 4.1 permits a sop implementation to accept

other unambiguous date representations, its date output here MUST be

a strict ISO-8601 UTC date timestamp. In particular:

the date and time fields MUST be separated by T, not by

whitespace, since whitespace is used as a delimiter

the time MUST be emitted in UTC, with the explicit suffix Z

the time MUST be emitted with one-second precision

Example:

5.11. DATA

Cleartext, arbitrary data. This is either a bytestream or UTF-8

text.

It MUST only be UTF-8 text in the case of input supplied to sop sign

--as=text or sop encrypt --as=text. If sop receives DATA containing

non-UTF-8 octets in this case, it will fail (see Section 8.7) with

EXPECTED_TEXT.

6. Failure Modes

sop return codes have both mnemonics and numeric values.

When sop succeeds, it will return 0 (OK) and emit nothing to

Standard Error. When sop fails, it fails with a non-zero return

code, and emits one or more warning messages on Standard Error.

Known return codes include:

¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

* ¶

* ¶

¶

2019-10-24T23:48:29Z C90E6D36200A1B922A1509E77618196529AE5FF8 C4BC2DDB38CCE96485EBE9C2F20691179038E5C6 certificate from dkg.asc¶

¶

¶

¶

¶

Value Mnemonic Meaning

0 OK Success

3 NO_SIGNATURE
No acceptable signatures found

(sop verify)

13 UNSUPPORTED_ASYMMETRIC_ALGO
Asymmetric algorithm unsupported

(sop encrypt)

17 CERT_CANNOT_ENCRYPT

Certificate not encryption-

capable (e.g., expired, revoked,

unacceptable usage flags) (sop

encrypt)

19 MISSING_ARG Missing required argument

23 INCOMPLETE_VERIFICATION
Incomplete verification

instructions (sop decrypt)

29 CANNOT_DECRYPT Unable to decrypt (sop decrypt)

31 PASSWORD_NOT_HUMAN_READABLE

Non-UTF-8 or otherwise unreliable

password (sop encrypt, sop

generate-key)

37 UNSUPPORTED_OPTION Unsupported option

41 BAD_DATA
Invalid data type (no secret key

where KEYS expected, etc)

53 EXPECTED_TEXT
Non-text input where text

expected

59 OUTPUT_EXISTS Output file already exists

61 MISSING_INPUT Input file does not exist

67 KEY_IS_PROTECTED

A KEYS input is password-

protected (locked), and sop

cannot unlock it with any of the

--with-key-password options

69 UNSUPPORTED_SUBCOMMAND Unsupported subcommand

71 UNSUPPORTED_SPECIAL_PREFIX

An indirect parameter is a

special designator (it starts

with @) but sop does not know how

to handle the prefix

73 AMBIGUOUS_INPUT

A indirect input parameter is a

special designator (it starts

with @), and a filename matching

the designator is actually

present

79 KEY_CANNOT_SIGN

Key not signature-capable (e.g.,

expired, revoked, unacceptable

usage flags) (sop sign and sop

encrypt with --sign-with)

83 INCOMPATIBLE_OPTIONS
Options were supplied that are

incompatible with each other

Table 1

If a sop implementation fails in some way not contemplated by this

document, it MAY return any non-zero error code, not only those

listed above.

7. Alternate Interfaces

This draft primarily defines a command line interface, but future

versions may try to outline a comparable idiomatic interface for C

or some other widely-used programming language.

Comparable idiomatic interfaces are already active in the wild for

different programming languages, in particular:

Rust: [RUST-SOP]

Java: [SOP-JAVA]

Python: [PYTHON-SOP]

These programmatic interfaces are typically coupled with a wrapper

that can automatically generate a command-line tool compatible with

this draft.

An implementation that uses one of these languages should target the

corresponding idiomatic interface for ease of development and

interoperability.

8. Guidance for Implementers

sop uses a few assumptions that implementers might want to consider.

8.1. One OpenPGP Message at a Time

sop is intended to be a simple tool that operates on one OpenPGP

object at a time. It should be composable, if you want to use it to

deal with multiple OpenPGP objects.

FIXME: discuss what this means for streaming. The stdio interface

doesn't necessarily imply streamed output.

8.2. Simplified Subset of OpenPGP Message

While the formal grammar for OpenPGP Message is arbitrarily

nestable, sop constrains itself to what it sees as a single "layer"

(see Section 5.4).

This is a deliberate choice, because it is what most consumers

expect. Also, if an arbitrarily-nested structure is parsed with a

recursive algorithm, this risks a denial of service vulnerability.

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

sop intends to be implementable with a parser that defensively

declines to do recursive descent into an OpenPGP Message.

Note that an implementation of sop decrypt MAY choose to handle more

complex structures, but if it does, it should document the other

structures it handles and why it chooses to do so. We can use such

documentation to improve future versions of this spec.

8.3. Validate Signatures Only from Known Signers

There are generally only a few signers who are relevant for a given

OpenPGP message. When verifying signatures, sop expects that the

caller can identify those relevant signers ahead of time.

8.4. OpenPGP Inputs can be either Binary or ASCII-armored

OpenPGP material on input can be in either ASCII-armored or binary

form. This is a deliberate choice because there are typical

scenarios where the program can't predict which form will appear.

Expecting the caller of sop to detect the form and adjust

accordingly seems both redundant and error-prone.

The simple way to detect possible ASCII-armoring is to see whether

the high bit of the first octet is set: Section 4.2 of [RFC4880]

indicates that bit 7 is always one in the first octet of an OpenPGP

packet. In standard ASCII-armor, the first character is "-" (HYPHEN-

MINUS, U+002D), so the high bit should be cleared.

When considering an input as ASCII-armored OpenPGP material, sop MAY

reject an input based on any of the following variations (see

Section 6.2 of [RFC4880] for precise definitions):

An unknown Armor Header Line

Any text before the Armor Header Line

Malformed lines in the Armor Headers section

Any non-whitespace data after the Armor Tail

Any Radix-64 encoded line with more than 76 characters

Invalid characters in the Radix-64-encoded data

An invalid Armor Checksum

A mismatch between the Armor Header Line and the Armor Tail

For robustness, sop SHOULD be willing to ignore whitespace after the

Armor Tail.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

https://rfc-editor.org/rfc/rfc4880#section-4.2
https://rfc-editor.org/rfc/rfc4880#section-6.2

When considering OpenPGP material as input, regardless of whether it

is ASCII-armored or binary, sop SHOULD reject any material that

doesn't produce a valid stream of OpenPGP packets. For example, sop

SHOULD raise an error if an OpenPGP packet header is malformed, or

if there is trailing garbage after the end of a packet.

For a given type of OpenPGP input material (i.e., SIGNATURES, CERTS,

KEYS, or CIPHERTEXT), sop SHOULD also reject any input that does not

conform to the expected packet stream. See Section 5 for the

expected packet stream for different types.

8.5. Complexities of the Cleartext Signature Framework

sop prefers a detached signature as the baseline form of OpenPGP

signature, but provides affordances for dealing with inline-signed

messages (see INLINESIGNED, Section 5.5) as well.

The most complex form of inline-signed messages is the Cleartext

Signature Framework (CSF). Handling the CSF structure requires

parsing to delimit the multiple parts of the document, including at

least:

any preamble before the message

the inline message header (delimiter line, OpenPGP headers)

the message itself

the divider between the message and the signature (including any

OpenPGP headers there)

the signature

the divider that terminates the signature

any suffix after the signature

Note also that the preamble or the suffix might be arbitrary text,

and might themselves contain OpenPGP messages (whether signatures or

otherwise).

If the parser that does this split differs in any way from the

parser that does the verification, or parts of the message are

confused, it would be possible to produce a verification status and

an actual signed message that don't correspond to one another.

Blurred boundary problems like this can produce ugly attacks similar

to those found in [EFAIL].

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

A user of sop that receives an inline-signed message (whether the

message uses the CSF or not) can detach the signature from the

message with sop inline-detach (see Section 3.10).

Alternately, the user can send the message through sop inline-verify

to confirm required signatures, and then (if signatures are valid)

supply its output to the consumer of the signed message.

8.6. Reliance on Supplied Certs and Keys

A truly stateless implementation may find that it spends more time

validating the internal consistency of certificates and keys than it

does on the actual object security operations.

For performance reasons, an implementation may choose to ignore

validation on certificate and key material supplied to it. The

security implications of doing so depend on how the certs and keys

are managed outside of sop.

8.7. Text is always UTF-8

Various places in this specification require UTF-8 [RFC3629] when

encoding text. sop implementations SHOULD NOT consider textual data

in any other character encoding.

OpenPGP Implementations MUST already handle UTF-8, because various

parts of [RFC4880] require it, including:

User ID

Notation name

Reason for revocation

ASCII-armor Comment: header

Dealing with messages in other charsets leads to weird security

failures like [Charset-Switching], especially when the charset

indication is not covered by any sort of cryptographic integrity

check. Restricting textual data to UTF-8 universally across the

OpenPGP ecosystem eliminates any such risk without losing

functionality, since UTF-8 can encode all known characters.

8.8. Passwords are Human-Readable

Passwords are generally expected to be human-readable, as they are

typically recorded and transmitted as human-visible, human-

transferable strings. However, they are used in the OpenPGP protocol

as bytestrings, so it is important to ensure that there is a

reliable bidirectional mapping between strings and bytes. The

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

maximally robust behavior here is for sop encrypt and sop generate-

key to constrain the choice of passwords to strings that have such a

mapping, and for sop decrypt and sop sign to try multiple plausible

versions of any password supplied by PASSWORD.

8.8.1. Generating Material with Human-Readable Passwords

When generating material based on a password, sop encrypt and sop

generate-key enforce that the password is actually meaningfully

human-transferable (requiring UTF-8, trimming trailing whitespace).

Some sop encrypt and sop generate-key implementations may make even

more strict requirements on input to ensure that they are

transferable between humans in a robust way.

For example, a more strict sop encrypt or sop generate-key MAY also:

forbid leading whitespace

forbid non-printing characters other than SPACE (U+0020), such

as ZERO WIDTH NON-JOINER (U+200C) or TAB (U+0009)

require the password to be in Unicode Normal Form C ([UNICODE-

NORMALIZATION])

Violations of these more-strict policies SHOULD result in an error

of PASSWORD_NOT_HUMAN_READABLE.

A sop encrypt or sop generate-key implementation typically SHOULD

NOT attempt enforce a minimum "password strength", but in the event

that some implementation does, it MUST NOT represent a weak password

with PASSWORD_NOT_HUMAN_READABLE.

8.8.2. Consuming Password-protected Material

When sop decrypt receives a PASSWORD input, either from a --with-

key-password or --with-password option, it sees its content as a

bytestring. sop sign also sees the content of any PASSWORD input

supplied to its --with-key-password option as a bytestring. If the

bytestring fails to work as a password, but ends in UTF-8

whitespace, it will try again with the trailing whitespace removed.

This handles a common pattern of using a file with a final newline,

for example. The pattern here is one of robustness in the face of

typical errors in human-transferred textual data.

A more robust sop decrypt or sop sign implementation that finds

neither of the above two attempts work for a given PASSWORD MAY try

additional variations if they produce a different bytestring, such

as:

trimming any leading whitespace, if discovered

¶

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

trimming any internal non-printable characters other than SPACE

(U+0020)

converting the supplied PASSWORD into Unicode Normal Form C

([UNICODE-NORMALIZATION])

A sop decrypt or sop sign implementation that stages multiple

decryption attempts like this SHOULD consider the computational

resources consumed by each attempt, to avoid presenting an attack

surface for resource exhaustion in the face of a non-standard

PASSWORD input.

8.9. Be Careful with Special Designators

As documented in Section 5.1, special designators for indirect

inputs like @ENV: and @FD: (and indirect outputs using @FD:) warrant

some special/cautious handling.

For one thing, it's conceivable that the filesystem could contain a

file with these literal names. If sop receives an indirect output

parameter that starts with an "@" (COMMERCIAL AT, U+0040) it MUST

NOT write to the filesystem for that parameter. A sop implementation

that receives such a parameter as input MAY test for the presence of

such a file in the filesystem and fail with AMBIGUOUS_INPUT to warn

the user of the ambiguity and possible confusion.

These special designators are likely to be used to pass sensitive

data (like secret key material or passwords) so that it doesn't need

to touch the filesystem. Given this sensitivity, sop should be

careful with such an input, and minimize its leakage to other

processes. In particular, sop SHOULD NOT leak any environment

variable identified by @ENV: or file descriptor identified by @FD:

to any subprocess unless the subprocess specifically needs access to

that data.

9. Guidance for Consumers

While sop is originally conceived of as an interface for

interoperability testing, it's conceivable that an application that

uses OpenPGP for object security would want to use it.

FIXME: more guidance for how to use such a tool safely and

efficiently goes here.

FIXME: if an encrypted OpenPGP message arrives without metadata, it

is difficult to know which signers to consider when decrypting. How

do we do this efficiently without invoking sop decrypt twice, once

without --verify-* and again with the expected identity material?

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

9.1. Choosing Between --as=text and --as=binary

A program that invokes sop to generate an OpenPGP signature

typically needs to decide whether it is making a text or binary

signature.

By default, sop will make a binary signature. The caller of sop sign

should choose --as=text only when it knows that: - the data being

signed is in fact textual, and encoded in UTF-8, and - the signed

data might be transmitted to the recipient (the verifier of the

signature) over a channel that has the propensity to transform line-

endings.

Examples of such channels include FTP ([RFC0959]) and SMTP

([RFC5321]).

9.2. Special Designators and Unusual Filenames

In some cases, a user of sop might want to pass all the files in a

given directory as positional parameters (e.g., a list of CERTS

files to test a signature against).

If one of the files has a name that starts with --, it might be

confused by sop for an option. If one of the files has a name that

starts with @, it might be confused by sop as a special designator

(Section 5.1).

If the user wants to deliberately refer to such an ambiguously-named

file in the filesystem, they should prefix the filename with ./ or

use an absolute path.

Any specific @FD: special designator SHOULD NOT be supplied more

than once to an invocation of sop. If a sop invocation sees multiple

copies of a specific @FD:n input (e.g., sop sign @FD:3 @FD:3), it

MAY fail with MISSING_INPUT even if file descriptor 3 contains a

valid KEYS, because the bytestream for the KEYS was consumed by the

first argument. Doubling up on the same @FD: for output (e.g., sop

decrypt --session-key-out=@FD:3 --verify-out=@FD:3) also results in

an ambiguous data stream.

10. Security Considerations

The OpenPGP object security model is typically used for

confidentiality and authenticity purposes.

10.1. Signature Verification

In many contexts, an OpenPGP signature is verified to prove the

origin and integrity of an underlying object.

¶

¶

¶

¶

¶

¶

¶

¶

¶

When sop checks a signature (e.g. via sop verify or sop decrypt --

verify-with), it MUST NOT consider it to be verified unless all of

these conditions are met:

The signature must be made by a signing-capable public key that

is present in one of the supplied certificates

The certificate and signing subkey must have been created before

or at the signature time

The certificate and signing subkey must not have been expired at

the signature time

The certificate and signing subkey must not be revoked with a

"hard" revocation

If the certificate or signing subkey is revoked with a "soft"

revocation, then the signature time must predate the revocation

The signing subkey must be properly bound to the primary key, and

cross-signed

The signature (and any dependent signature, such as the cross-sig

or subkey binding signatures) must be made with strong

cryptographic algorithms (e.g., not MD5 or a 1024-bit RSA key)

Implementers MAY also consider other factors in addition to the

origin and authenticity, including application-specific information.

For example, consider the application domain of checking software

updates. If software package Foo version 13.3.2 was signed on

2019-10-04, and the user receives a copy of Foo version 12.4.8 that

was signed on 2019-10-16, it may be authentic and have a more recent

signature date. But it is not an upgrade (12.4.8 < 13.3.2), and

therefore it should not be applied automatically.

In such cases, it is critical that the application confirms that the

other information verified is also protected by the relevant OpenPGP

signature.

Signature validity is a complex topic (see for example the

discussion at [DISPLAYING-SIGNATURES]), and this documentation

cannot list all possible details.

10.2. Compression

The interface as currently specified does not allow for control of

compression. Compressing and encrypting data that may contain both

attacker-supplied material and sensitive material could leak

information about the sensitive material (see the CRIME attack).

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

[I-D.ietf-openpgp-crypto-refresh-05]

[RFC2119]

[RFC3156]

[RFC3629]

[RFC4880]

Unless an application knows for sure that no attacker-supplied

material is present in the input, it should not compress during

encryption.

11. Privacy Considerations

Material produced by sop encrypt may be placed on an untrusted

machine (e.g., sent through the public SMTP network). That material

may contain metadata that leaks associational information (e.g.,

recipient identifiers in PKESK packets (Section 5.1 of [I-D.ietf-

openpgp-crypto-refresh-05])). FIXME: document things like PURBs and

--hidden-recipient)

11.1. Object Security vs. Transport Security

OpenPGP offers an object security model, but says little to nothing

about how the secured objects get to the relevant parties.

When sending or receiving OpenPGP material, the implementer should

consider what privacy leakage is implicit with the transport.

12. References

12.1. Normative References

Koch, W. and P. Wouters,

"OpenPGP Message Format", Work in Progress, Internet-

Draft, draft-ietf-openpgp-crypto-refresh-05, 7 March

2022, <https://www.ietf.org/archive/id/draft-ietf-

openpgp-crypto-refresh-05.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Elkins, M., Del Torto, D., Levien, R., and T. Roessler,

"MIME Security with OpenPGP", RFC 3156, DOI 10.17487/

RFC3156, August 2001, <https://www.rfc-editor.org/info/

rfc3156>.

Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November

2003, <https://www.rfc-editor.org/info/rfc3629>.

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.

Thayer, "OpenPGP Message Format", RFC 4880, DOI 10.17487/

RFC4880, November 2007, <https://www.rfc-editor.org/info/

rfc4880>.

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh-05#section-5.1
https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-05.txt
https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-05.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc4880

[RFC8174]

[Charset-Switching]

[DISPLAYING-SIGNATURES]

[EFAIL]

[I-D.draft-bre-openpgp-samples-01]

[OpenPGP-Interoperability-Test-Suite]

[PYTHON-SOP]

[RFC0959]

[RFC5321]

[RUST-SOP]

[SEMVER]

[SOP-JAVA]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

12.2. Informative References

Gillmor, D. K., "Inline PGP Considered Harmful",

24 February 2014, <https://dkg.fifthhorseman.net/notes/

inline-pgp-harmful/>.

Brunschwig, P., "On Displaying Signatures",

n.d., <https://admin.hostpoint.ch/pipermail/enigmail-

users_enigmail.net/2017-November/004683.html>.

Poddebniak, D. and C. Dresen, "Efail: Breaking S/MIME and

OpenPGP Email Encryption using Exfiltration Channels",

n.d., <https://efail.de>.

Einarsson, B. R., "juga", and D.

K. Gillmor, "OpenPGP Example Keys and Certificates", Work

in Progress, Internet-Draft, draft-bre-openpgp-

samples-01, 20 December 2019, <https://www.ietf.org/

archive/id/draft-bre-openpgp-samples-01.txt>.

"OpenPGP Interoperability Test

Suite", 25 October 2021, <https://tests.sequoia-pgp.org/

>.

Gillmor, D., "SOP for python", n.d., <https://pypi.org/

project/sop/>.

Postel, J. and J. Reynolds, "File Transfer Protocol", STD

9, RFC 959, DOI 10.17487/RFC0959, October 1985, <https://

www.rfc-editor.org/info/rfc959>.

Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,

DOI 10.17487/RFC5321, October 2008, <https://www.rfc-

editor.org/info/rfc5321>.

Winter, J., "A Rust implementation of the Stateless

OpenPGP Protocol", n.d., <https://sequoia-pgp.gitlab.io/

sop-rs/>.

Preston-Werner, T., "Semantic Versioning 2.0.0", 18 June

2013, <https://semver.org/>.

Schaub, P., "Stateless OpenPGP Protocol for Java.", n.d.,

<https://github.com/pgpainless/sop-java>.

https://www.rfc-editor.org/info/rfc8174
https://dkg.fifthhorseman.net/notes/inline-pgp-harmful/
https://dkg.fifthhorseman.net/notes/inline-pgp-harmful/
https://admin.hostpoint.ch/pipermail/enigmail-users_enigmail.net/2017-November/004683.html
https://admin.hostpoint.ch/pipermail/enigmail-users_enigmail.net/2017-November/004683.html
https://efail.de
https://www.ietf.org/archive/id/draft-bre-openpgp-samples-01.txt
https://www.ietf.org/archive/id/draft-bre-openpgp-samples-01.txt
https://tests.sequoia-pgp.org/
https://pypi.org/project/sop/
https://pypi.org/project/sop/
https://www.rfc-editor.org/info/rfc959
https://www.rfc-editor.org/info/rfc959
https://www.rfc-editor.org/info/rfc5321
https://www.rfc-editor.org/info/rfc5321
https://sequoia-pgp.gitlab.io/sop-rs/
https://sequoia-pgp.gitlab.io/sop-rs/
https://semver.org/
https://github.com/pgpainless/sop-java

[UNICODE-NORMALIZATION]
Whistler, K., "Unicode Normalization Forms",

4 February 2019, <https://unicode.org/reports/tr15/>.

Appendix A. Acknowledgements

This work was inspired by Justus Winter's [OpenPGP-Interoperability-

Test-Suite].

The following people contributed helpful feedback and considerations

to this draft, but are not responsible for its problems:

Allan Nordhoey

Antoine Beaupre

Edwin Taylor

Heiko Schaefer

Jameson Rollins

Justus Winter

Paul Schaub

Vincent Breitmoser

Appendix B. Future Work

certificate transformation into popular publication forms:

WKD

DANE OPENPGPKEY

Autocrypt

sop encrypt -- specify compression? (see Section 10.2)

sop encrypt -- specify padding policy/mechanism?

sop decrypt -- how can it more safely handle zip bombs?

sop decrypt -- what should it do when encountering weakly-

encrypted (or unencrypted) input?

sop encrypt -- minimize metadata (e.g. --throw-keyids)?

specify an error if a DATE arrives as input without a time zone?

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

- ¶

- ¶

- ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

https://unicode.org/reports/tr15/

add considerations about what it means for armored CERTS to

contain multiple certificates -- multiple armorings? one big

blob?

do we need an interface or option (for performance?) with the

semantics that sop doesn't validate certificates internally, it

just accepts whatever's given as legit data? (see Section 8.6)

do we need to be able to convert a message with a text-based

signature to a CSF INLINESIGNED message? I'd rather not, given

the additional complications.

Appendix C. Document History

C.1. Substantive Changes between -03 and -04:

Reinforce that PASSWORD and SESSIONKEY are indirect data types

sign: remove --as=mime option

Handle password-locked secret key material: add --with-key-

password options to generate-key, sign, and decrypt.

Introduce INLINESIGNED message type (Section 5.5)

Rename detach-inband-signature-and-message to inline-detach,

clarify its possible inputs

Add inline-verify

Add inline-sign

C.2. Substantive Changes between -02 and -03:

Added --micalg-out parameter to sign

Change from KEY to KEYS (permit multiple secret keys in each

blob)

New error code: KEY_CANNOT_SIGN

version now has --backend and --extended options

C.3. Substantive Changes between -01 and -02:

Added mnemonics for return codes

decrypt should fail when asked to output to a pre-existing file

Removed superfluous --armor option

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

Much more specific about what armor --label=auto should do

armor and dearmor are now fully idempotent, but work only well-

formed OpenPGP streams

Dropped armor --allow-nested

Specified what encrypt --as= means

New error code: KEY_IS_PROTECTED

Documented expectations around human-readable, human-transferable

passwords

New subcommand: detach-inband-signature-and-message

More specific guidance about special designators like @FD: and

@ENV:, including new error codes UNSUPPORTED_SPECIAL_PREFIX and

AMBIGUOUS_INPUT

C.4. Substantive Changes between -00 and -01:

Changed generate subcommand to generate-key

Changed convert subcommand to extract-cert

Added "Input String Types" section as distinct from indirect I/O

Made implicit arguments potentially explicit (e.g. sop armor --

label=auto)

Added --allow-nested to sop armor to make it idempotent by

default

Added fingerprint of signing (sub)key to VERIFICATIONS output

Dropped --mode and --session-key arguments for sop encrypt (no

plausible use, not needed for interop)

Added --with-session-key argument to sop decrypt to allow for

session-key-based decryption

Added examples to each subcommand

More detailed error codes for sop encrypt

Move from CERT to CERTS (each CERTS argument might contain

multiple certificates)

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

Author's Address

Daniel Kahn Gillmor

American Civil Liberties Union

125 Broad St.

New York, NY, 10004

United States of America

Email: dkg@fifthhorseman.net

mailto:dkg@fifthhorseman.net

	Stateless OpenPGP Command Line Interface
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Terminology
	1.3. Using sop in a Test Suite

	2. Examples
	3. Subcommands
	3.1. version: Version Information
	3.2. generate-key: Generate a Secret Key
	3.3. extract-cert: Extract a Certificate from a Secret Key
	3.4. sign: Create Detached Signatures
	3.5. verify: Verify Detached Signatures
	3.6. encrypt: Encrypt a Message
	3.7. decrypt: Decrypt a Message
	3.8. armor: Convert Binary to ASCII
	3.9. dearmor: Convert ASCII to Binary
	3.10. inline-detach: Split Signatures from an Inline-Signed Message
	3.11. inline-verify: Verify an Inline-Signed Message
	3.12. inline-sign: Create an Inline-Signed Message

	4. Input String Types
	4.1. DATE
	4.2. USERID

	5. Input/Output Indirect Types
	5.1. Special Designators for Indirect Types
	5.2. CERTS
	5.3. KEYS
	5.4. CIPHERTEXT
	5.5. INLINESIGNED
	5.6. SIGNATURES
	5.7. SESSIONKEY
	5.8. MICALG
	5.9. PASSWORD
	5.10. VERIFICATIONS
	5.11. DATA

	6. Failure Modes
	7. Alternate Interfaces
	8. Guidance for Implementers
	8.1. One OpenPGP Message at a Time
	8.2. Simplified Subset of OpenPGP Message
	8.3. Validate Signatures Only from Known Signers
	8.4. OpenPGP Inputs can be either Binary or ASCII-armored
	8.5. Complexities of the Cleartext Signature Framework
	8.6. Reliance on Supplied Certs and Keys
	8.7. Text is always UTF-8
	8.8. Passwords are Human-Readable
	8.8.1. Generating Material with Human-Readable Passwords
	8.8.2. Consuming Password-protected Material

	8.9. Be Careful with Special Designators

	9. Guidance for Consumers
	9.1. Choosing Between --as=text and --as=binary
	9.2. Special Designators and Unusual Filenames

	10. Security Considerations
	10.1. Signature Verification
	10.2. Compression

	11. Privacy Considerations
	11.1. Object Security vs. Transport Security

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Acknowledgements
	Appendix B. Future Work
	Appendix C. Document History
	C.1. Substantive Changes between -03 and -04:
	C.2. Substantive Changes between -02 and -03:
	C.3. Substantive Changes between -01 and -02:
	C.4. Substantive Changes between -00 and -01:

	Author's Address

