
Workgroup: NFSv4

Updates: 8881, 7530 (if approved)

Published: 13 October 2021

Intended Status: Standards Track

Expires: 16 April 2022

Authors: D. Noveck, Ed.

NetApp

Security for the NFSv4 Protocols

Abstract

This document describes the core security features of the NFSv4

family of protocols, applying to all minor versions. The discussion

includes the use of security features provided by the RPC transport.

This preliminary version of the document, is intended, in large

part, to result in working group discussion regarding existing NFSv4

security issues and to provide a framework for addressing these

issues and obtaining working group consensus regarding necessary

changes.

When a successor document is eventually published as an RFC, it will

supersede the description of security appearing in existing minor

version specification documents such as RFC 7530 and RFC 8881.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc7530
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Overview

1.1. Document Motivation

1.2. Document Annotation

2. Requirements Language

2.1. Keyword Definitions

2.2. Special Considerations

3. Introduction to this Update

3.1. Transport-based Security Features

3.2. Handling of Multiple Minor Versions

3.3. Handling of Minor-version-specific features

3.4. Features Needing Extensive Clarification

3.5. Process Going Forward

4. Introduction to NFSv4 Security

5. Structure of Access Control Lists

5.1. Access Control Entries

5.2. ACE Type

5.3. ACE Access Mask

5.4. Uses of Mask Bits

5.5. Requirements and Recommendations Regarding Mask Granularity

5.6. Handling of Deletion

5.6.1. Previous Handling of Deletion

5.7. ACE flag bits

5.8. Details Regarding ACE Flag Bits

5.9. ACE Who

5.10. Automatic Inheritance Features

5.11. Attribute 13: aclsupport

5.12. Attribute 12: acl

¶

¶

https://trustee.ietf.org/license-info

6. Authorization in General

7. User-based File Access Authorization

7.1. Attributes for User-based File Access Authorization

7.2. Handling of Multiple Parallel File Access Authorization

Models

7.3. Posix Authorization Model

7.3.1. Attribute 33: mode

7.3.2. NFSv4.1 Attribute 74: mode_set_masked

7.4. ACL-based Authorization Model

7.4.1. Processing Access Control Entries

7.4.2. V4.1 Attribute 58: dacl

8. Common Considerations for Both File access Models

8.1. Server Considerations

8.2. Client Considerations

9. Combining Authorization Models

9.1. Background for Combined Authorization Model

9.2. Needed Attribute Coordination

9.3. Computing a Mode Attribute from an ACL

9.4. Alternatives in Computing Mode Bits

9.5. Setting Multiple ACL Attributes

9.6. Setting Mode and not ACL (overall)

9.6.1. Setting Mode and not ACL (vestigial)

9.6.2. Setting Mode and not ACL (Discussion)

9.6.3. Setting Mode and not ACL (Proposed)

9.7. Setting ACL and Not Mode

9.8. Setting Both ACL and Mode

9.9. Retrieving the Mode and/or ACL Attributes

9.10. Creating New Objects

9.11. Use of Inherited ACL When Creating Objects

9.12. Combined Authorization Models for NFSv4.2

10. Labelled NFS Authorization Model

11. State Modification Authorization

12. Other Uses of Access Control Lists

12.1. V4.1 Attribute 59: sacl

13. Identification and Authentication

13.1. Identification vs. Authentication

13.2. Items to be Identified

13.3. Authentication Provided by specific RPC Flavors

13.4. Authentication Provided by the RPC Transport

14. Security of Data in Flight

14.1. Data Security Provided by the Flavor-associated Services

14.2. Data Security Provided by the RPC Transport

15. Security Negotiation

15.1. Flavors and Pseudo-flavors

15.2. Negotiation of Security Flavors and Mechanisms

15.3. Negotiation of RPC Transports and Characteristics

15.4. Overall Interpretation of SECINFO Response Arrays

15.4.1. Interpretation of SECINFO Response Arrays (Core)

15.4.2. Connection Type Transcription

15.4.3. Flavor Transcription

15.5. SECINFO

15.5.4. SECINFO IMPLEMENTATION (general)

15.5.5. SECINFO IMPLEMENTATION (for NFSv4.0)

15.5.6. SECINFO IMPLEMENTATION (for NFSv4.1 and v4.2)

16. Future Security Needs

17. Security Considerations

17.1. Changes in Security Considerations

17.1.1. Wider View of Threats

17.1.2. Transport-layer Security Facilities

17.1.3. Approach to Implementation Semantic Divergences

17.1.4. Compatibility and Maturity Issues

17.1.5. Discussion of AUTH_SYS

17.2. Security Considerations Scope

17.2.1. Discussion of Potential Classification of Environments

17.2.2. Discussion of Environments

17.3. Major New Recommendations

17.3.1. Recommendations Regarding Security of Data in Flight

17.3.2. Recommendations Regarding Client Peer Authentication

17.3.3. Issues Regarding Valid Reasons to Bypass

Recommendations

17.4. Data Security Threats

17.5. Authentication-based threats

17.5.1. Attacks based on the use of AUTH_SYS

17.5.2. Attacks on Name/Userid Mapping Facilities

17.6. Disruption and Denial-of-Service Attacks

17.6.1. Attacks Based on the Disruption of Client-Server Shared

State

17.6.2. Attacks Based on Forcing the Misuse of Server Resources

18. IANA Considerations

18.1. New Authstat Values

18.2. New Authentication Pseudo-Flavors

19. References

19.1. Normative References

19.2. Informative References

Appendix A. Changes Made

A.1. Motivating Changes

A.2. Other Major Changes

Appendix B. Issues for which Consensus Needs to be Ascertained

Acknowledgments

Author's Address

1. Overview

This document is intended to form the basis for a new description of

NFSv4 security applying to all NFSv4 minor versions. The motivation

for this new document and the need for major improvements in NFSv4

security are explained in Section 1.1.¶

Because this document anticipates making major changes in material

covered in previous standards-track RFCs, extensive working group

discussion will be necessary to make sure that there is a working

group consensus to make the changes being proposed. These changes

include the major improvements mentioned above and changes necessary

to suitably describe features currently in an unsatisfactory state

as described in Section 3.4

1.1. Document Motivation

A new treatment of security is necessary because:

Previous treatments paid insufficient attention to security

issues regarding data in flight.

The presentation of AUTH_SYS as an "'OPTIONAL' means of

authentication" obscured the significant security problems that

come with its use.

The security considerations sections of existing minor version

specifications contain no threat analyses and focus on particular

security issues in a way that obscures, rather than clarifying,

the security issues that need to be addressed.

The availability of RPC-with-TLS (described in [12]) provides

facilities that NFSv4 clients and servers will need to use to

provide security for data in flight and mitigate the lack of

authentication when AUTH_SYS is used.

1.2. Document Annotation

The first version of this preliminary document contained many notes

with headers in brackets, requesting comments regarding confusing or

otherwise dubious passages in existing documents and noting other

choices that need to made. Comments about and working group

discussion of these issues will be important in arriving at an

adequate RFC candidate. In this version, those specific items have

been removed and are replaced by the sorts of items described below

which show the troublesome existing text, explain the issues with

it, and and provide a proposed replacement.

In order to make further progress on these difficult issues,

including many whose resolution will probably involve compatibility

issues with existing implementations, the author has tried his best

to resolve these issues, even though there is no assurance that the

resolution adopted by consensus will match the author's current best

efforts. To provide a possible resolution that might be the basis of

discussion while not foreclosing other possibilities, proposed

changes are organized into a series of consensus items, which are

listed in Appendix B.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

For such pending issues, the following annotations will be used:

A paragraph headed "[Author Aside]:", provides the author's

comments about possible changes and will probably not appear in

an eventual RFC.

This paragraph can specify that certain changes within the

current section are to be implicitly considered as part of a

specific consensus item.

The paragraph can indicate that all unannotated material in the

current section is to be considered either the previous treatment

or the proposed replacement text for a specific consensus item.

A paragraph headed "[Consensus Needed (Item #NNx)]:", provides

the author's preferred treatment of the matter and should only

appear in the eventual RFC if working group consensus on the

matter is obtained allowing the necessary changes to be made

permanent, without being conditional on a future consensus.

The item id, represented above by "NNx" consists of a number

identifying the specific consensus item and letter which is

unique to appearance of that consensus item in a particular

section. In cases in which a pending item is cited with no part

of the discussion appearing in the current section, an item id of

the form "#NN" is used.

A paragraph headed "[Previous Treatment]:", indicates text that

is provided for context but which the author believes, should not

appear in the eventual RFC, because it is expected to be

superseded by a corresponding consensus item

The corresponding consensus item is often easily inferred, but

can be specified explicitly, as it is for items associated with

the consensus item itself.

Each of the annotations above can be modified by addition of the

phrase, "Including List" to indicate that it applies to a following

bulleted list as well as the current paragraph.

2. Requirements Language

2.1. Keyword Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as specified in BCP 14 [1] [5] when,

and only when, they appear in all capitals, as shown here.

¶

*

¶

¶

¶

*

¶

¶

*

¶

¶

¶

¶

2.2. Special Considerations

Because this document needs to revise previous treatments of its

subject, it will need to cite previous treatments of issues that now

need to be dealt with in a different way. This will take the form

of quotations from documents whose treatment of the subject is being

obsoleted, most often direct but sometimes indirect as well.

Paragraphs headed "[Previous Treatment] or otherwise annotated as

having that status, as described in Section 1, can be considered

quotations in this context.

Such treatments in quotations will involve use of these BCP14-

defined terms in two noteworthy ways:

The term may have been used inappropriately (i.e not in accord

with [1]), as has been the case for the "RECOMMENDED" attributes,

which are in fact OPTIONAL.

In such cases, the surrounding text will make clear that the

quoted text does not have a normative effect.

Some specific issues relating to this case are described below

Section 7.1.

The term may been used in accord with [1], although the resulting

normative statement is now felt to be inappropriate.

In such cases, the surrounding text will need to make clear that

the text quoted is no longer to be considered normative, often by

providing new text that conflicts with the quoted, previously

normative, text.

An important instance of this situation is the description of

AUTH_SYS as an "OPTIONAL" means of authentication. For detailed

discussion of this case, see Sections 13 and 17.1.5

3. Introduction to this Update

There are a number of noteworthy aspects to the updated approach to

NFSv4 security presented in this document:

There is a major rework of the security framework to take

advantage of work done in RPC-with-TLS, as described in Section

1.1.

NFSv4 security is still built on RPC, as had been done

previously. However, it is now able to take advantage of

security-related transport properties. For more information about

this transformation, see Section 3.1.

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

*

¶

¶

For an overview of changes made so far as part of this rework,

see Appendix A.1.

This document deals with all minor versions together, although

there is a need for exceptions to deal with, for example, pNFS

security.

For more detail about how minor version differences will be

addressed, see Sections 3.2 and 3.3.

There is a new Security Considerations section including a threat

analysis.

There has been extensive work to clarify the multiple types of

authorization within NFSv4 and deal more completely with the co-

ordination of ACL-based and mode-based file access authorization.

3.1. Transport-based Security Features

There are a number of security-related facilities that can be

provided at the transport layer eliminating the need to provide such

support to as part of RPC proper.

These will initially be provided by RPC-with-TLS but similar

facilities might be provided by new versions of existing transports

or new RPC transports.

The transport might provide encryption of requests and replies,

eliminating the need for privacy and integrity services to be

negotiated later and applied on a per-request basis.

While clients might choose to establish connections with such

encryption, servers can establish policies allowing access to

certain pieces of the namespace using such transports, or

limiting access to those providing privacy, allowing the use of

either transport-based encryption or privacy services provided by

RPCSEC_GSS.

The transport might provide mutual authentication of the client

and server peers as part of the establishment of the connection

This authentication is distinct from the the mutual

authentication of the client user and server peer, implemented

within the GSSSEC_RPC framework.

This form of authentication is of particular importance when when

the server allows the use of the flavors AUTH_SYS and AUTH_NONE,

which have no provision for the authentication of the user

requesting the operation.

¶

*

¶

¶

*

¶

*

¶

¶

¶

*

¶

¶

*

¶

¶

While clients might choose, on their own,to establish connections

with such peer authentication, servers can establish policies a

limiting access to certain pieces of the namespace without such

peer authentication or only allowing it when using RPCSEC_GSS.

To enable server policies to be effectively communicated to clients,

the security negotiation framework now allows connection

characteristics to be specified using pseudo-flavors returned as

part of the response to SECINFO and SECINFO_NONAME. See Section 15

for details.

3.2. Handling of Multiple Minor Versions

In some cases, there are differences between minor versions in that

there are security-related features, not present in all minor

versions.

To deal with this issue, this document will focus on a few major

areas listed below which are common to all minor versions.

File access authorization (discussed in Section 7) is the same in

all minor versions together with the identification/

authentication infrastructure supporting it (discussed in Section

13) provided by RPC and applying to all of NFS.

An exception is made regarding labelled NFS, an optional feature

within NFSv4.2, described in [10]. This is discussed as a

version-specific feature in this document in Section 10

Features to secure data in-flight, all provided by RPC, together

with the negotiation infrastructure to support them are common to

all NFSv4 minor versions, are discussed in Section 15

However, the use of SECINFO_NONAME, together with changes needed

for transport level encryption, paralleling those proposed here

for SECINFO, is treated as a version-specific feature and, while

mentioned here, will be fully documented in new NFSv4.1

specification documents.

The protection of state data from unauthorized modification is

discussed in Section 11) is the same in all minor versions

together with the identification/ authentication infrastructure

supporting it (discussed in Section 13) provided by secure

transports such as RPC-over-TLS.

It should be noted that state protection based on RPCSEC_GSS is

treated as a version-specific feature and will continue to be

described by [8] or its successors. Also, it needs to be noted

that the use of state protection was not discussed in [6].

¶

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

¶

3.3. Handling of Minor-version-specific features

There are a number of areas in which security features differ among

minor versions, as discussed below. In some cases, a new feature

requires specific security support while in others one version will

have a new feature related to enhancing the security infrastructure.

How such features are dealt with in this document depends on the

specific feature.

In addition to SECINFO, whose enhanced description appears in

this document, NFSv4.1 added a new SECINFO_NONAME operation,

useful for pNFS file as well as having some non-pNFS uses.

While the enhanced description of SECINFO mentions

SECINFO_NONAME, this is handled as one of a number of cases in

which the description has to indicate that different actions need

to be taken for different minor versions.

The definitive description of SECINFO_NONAME, now appearing in

RFC8881 needs to be modified to match the description of SECINFO

appearing in this document. It is expected that this will be done

as part of the rfc5661bis process.

The security implications of the security negotiation facilities

as a whole will be addressed in the security considerations

section of this document.

The pNFS optional feature added in NFSv4.1 has its own security

needs which parallel closely those of non-pNFS access but are

distinct, especially when the storage access protocol used are

not RPC protocols. As a result, these needs and the means to

satisfy them are not discussed in this document.

The definitive description of pNFS security will remain in

RFC8881 and its successors (i.e. the rfc5661bis document suite).

However, because pNFS security relies heavily on the

infrastructure discussed here, it is anticipated that the new

treatment of pNFS security will deal with many matters by

referencing the overall NFS security document.

The security considerations section of rfc5661bis will deal with

pNFS security issues.

In addition to the state protection facilities described in this

document, NFS has another set of such facilities that are only

implemented in NFSv4.1.

¶

¶

*

¶

¶

¶

¶

*

¶

¶

¶

*

¶

While this document will discuss the security implications of

protection against state modification, it will not discuss the

details of the NFSv4.1-specific features to accomplish it.

The additional NFSv4.1 acl attributes, sacl and dacl, are

discussed in this document, together with the ACL inheritance

features they enable.

As a result, the responsibility for the definitive description of

these attributes will move to overall NFS security document, with

the fact that they are not available in NFSv4.0 duly noted. While

these attributes will continue to be mentioned in NFSv4.1

specification documents, the detailed description appearing in

RFC8881 will be removed in successor documents.

Both NFSv4.0 and NFSv4.1 specifications discussed the

coordination of the values the mode and ACL-related attributes.

While the treatment in RFC8881 is more detailed, the differences

in the approaches are quite minor.

[Consensus Item #25a]: This document will provide a unified

treatment of these issues, which will note any differences of

treatment that apply to NFSv4.0. Changes applying to NFSv4.2 will

also be noted.

As a result, this document will override the treatment within

RFC7530 and RFC8881. This material will be removed in the

rfc5661bis document suite and replaced by a reference to the

treatment in the NFSv4 security RFC.

The protocol extension defined in [13], now part of NFSv4.2, is

also related to the issue of co-ordination of acl and mode

attributes and will be discussed in that context.

Nevertheless, the description in [13] will remain definitive.

The NFSv4.1 attribute set-mode-masked attribute is mentioned

together with the other attributes implementing the POSIX

authorization model.

Because this attribute. while related to security, does not

substantively modify the security properties of the protocol, the

full description of this attribute, will continue to be the

province of the NFSv4.1 specification proper.

There is a brief description of the v4.2 Labelled NFS feature in

Section 10. Part of that description discusses the limitations in

the description of that feature within [10].

¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

Because of some limitations in the description, it is not

possible to provide an appropriate security considerations

section for that feature in this document.

As a result, the responsibility for providing an appropriate

Security Considerations section remains, unrealized for now, with

the NFSv4.2 specification document and its possible successors.

3.4. Features Needing Extensive Clarification

For a number of authorization-related features, the existing

descriptions are inadequate for various reasons:

In the description of the the use of the mode attribute in

implementing the POSIX-based authorization model, critical pieces

of the semantics are not mentioned, while, ironically, the

corresponding semantics for ACL-based authorization are

discussed.

This includes the authorization of file deletion and of

modification of the mode, owner and owner-group attributes. For

ACL-based authorization, there is a an attempt to provide the

description.

The situation for authorization of RENAME is similar, although,

in this case, the corresponding semantics for the ACL case are

also absent.

The description of authorization for ACLs is more complete but it

needs further work, because the previous specifications make

extensive efforts, in my view misguided, to allow an enormous

range of server behaviors, making it hard for a client to know

what the effect of many actions, and the corresponding security-

related consequences, might be.

Troublesome in this connection are the discussion of ACE mask

bits which essentially treats every mask bit, as its own OPTIONAL

feature, the use of "SHOULD" and "SHOULD NOT" in situations which

it is unclear what valid reasons to ignore the recommendation

might be, and cases in which it is is simply stated that some

servers do some particular thing, leaving the unfortunate

implication that clients need to be prepared for a vast range of

server behaviors.

This approach essentially treated ACLs in a manner appropriate to

an experimental feature.

Similar issues apply to descriptions related to the need to co-

ordinate the values of the mode attribute and the ACL-related

attributes.

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

*

¶

Although the need for such coordination is recognized. There are

multiple modes of mapping an ACL to a corresponding mode together

with multiple sources of uncertainty about the reverse mapping.

In addition, certain of the mapping algorithms have flaws in that

their behavior under unusual circumstances give results that

appear erroneous.

Dealing with these issues is not straightforward, because the

appropriate resolution will depend on:

The actual existence of server implementations with non-preferred

semantics.

In some cases in which "SHOULD" was used, there may not have been

any actual severs choosing to ignore the recommendation,

eliminating the possibility of compatibility issues when changing

the "SHOULD" to a formulation that restricts the server's

choices.

The difficulty of modifying server implementations to eliminate

or narrow the effect of non-standard semantics.

One aspect of that difficulty might be client or application

expectations based on existing server implementations, even if

the existing specifications give the client no assurance that

that server's behavior is mandated by the standard.

Whether the existing flaw in some existing recommended actions to

be performed by the server is sufficiently troublesome to justify

changing the specification at this point.

This sort of information will be used in deciding whether to:

Narrow the scope of allowable server behavior to those actually

used by existing severs.

Limiting the negative effects of unmotivated SHOULDs by limiting

valid reasons to ignore the recommendation to the difficulty of

changing existing implementations.

This would give significant guidance to future implementations,

while forcing clients to live with the uncertainty about existing

servers

Tie a more restricted set of semantics to nominally unrelated

OPTIONAL features such as implementation of dacl and sacl.

This would provide a way to allow the development of newer

servers to proceed in a way that

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

¶

Provide means that clients to use to determine, experimentally,

what semantics are provided by the server.

Would need to be supported by a requirement/assurance that a

server behave uniformly, at least within the scope of a single

filesystem.

Allow the provision of other ways for the client to know the

semantics choices made by the server.

Despite the difficulty of addressing these issues, if the protocol

is to be secure and ACLs are to be widely available, these problems

must be addressed. While there has not been significant effort to

provide client-side ACL APIs and there might not be for a while, we

cannot have a situation if which the security specification makes

that development essentially impossible.

3.5. Process Going Forward

Because of the scope of this document, and the fact that it is

necessary to modify previous treatments of the subject previously

published as Proposed Standards, it is necessary that the process of

determining whether there is Working Group Consensus to submit it

for publication be more structured than that used for the antecedent

documents.

In order to facilitate this process, the necessary changes which

need to be made, beyond those clearly editorial in nature, are

listed in Appendix B. As working group review and discussion of this

document and its successors proceeds, there will be occasion to

discuss each of these changes, identified by the annotations

described in Section 1.2.

Based on working group discussions, successive document versions

will do one of the following for some set of consensus items:

Deciding that the replacement text is now part of a new working

group consensus.

When this happens, future drafts of the document will be modified

to remove the previous treatment, treat the proposed text as

adopted, and remove Author Asides or replace them by new text

explaining why a new treatment of the matter has been adopted or

pointing the reader to an explanation in Appendix A.

At this point, the consensus item will be removed from Appendix B

and an explanation for the change will be added to Appendix A.

*

¶

¶

*

¶

¶

¶

¶

¶

*

¶

¶

¶

Deciding that the general approach to the issue, if not

necessarily the specific current text has reached the point of

"general acceptance" as defined in Appendix B

In this case, to facilitate discussion of remaining issues, the

text of the document proper will remain as it is.

At this point, the consensus item will be marked within the table

in Appendix B as having reached general acceptance, indicating

the need to prioritize discussion in the next document cycle,

aimed at arriving at final text to address the issue.

In addition, an explanation for the change will be added to

Appendix A.

Deciding that modification of the existing text is necessary to

facilitate eventual consensus, based on the working group's

input.

In this case, there will be changes to the document proper in the

next draft revision. In some cases, because of the need for a

coherent description, text outside the consensus item may be

affected.

The table in Appendix B will be updated to reflect the new item

status while Appendix A is not expected to change.

Deciding that the item is best dropped in the next draft.

In this case, the changes to the document proper will be the

inverse of those when a change is accepted by consensus. The

previous treatment will be restored as the current text while the

proposed new text will vanish from the document at the next draft

revision. The Author Aside will be the basis for an explanation

of the consequences of not dealing with the issue.

At this point, the consensus item will be removed from Appendix

B.

The changes that the working group will need to reach consensus on,

either to accept (as-is or with significant modifications) or reject

can be divided into three groups.

A large set of changes, all addressing issues mentioned in

Section 1.1, were already present in the initial I-D so that

there has been the opportunity for working group discussion of

them, although that discussion has been quite limited so far.

As a result, a small set of these changes is marked, in Appendix

B, as having reached general acceptance.

*

¶

¶

¶

¶

*

¶

¶

¶

* ¶

¶

¶

¶

*

¶

¶

That subset of these changes changes, together with the

organizational changes to support them are described in Appendix

A.1.

Another large set of changes were made in draft -02. These mostly

concern the issues mentioned in Section 3.4 None of these changes

is yet considered to have reached general acceptance.

The organizational changes to support these changes are described

in Appendix A.2.

There remain a set of potential changes for which a need is

expected but for which no text is yet available.

Such changes have associated Author Asides and are listed in

Appendix B.

The text for these changes is expected to be made available in

future document revisions and they will be processed then, in the

same way as other changes will be processed now.

If and when such changes reach general acceptance, they will be

explained in the appropriate subsection of Appendix A.

4. Introduction to NFSv4 Security

Because the basic approach to security issues is so similar for all

minor versions, this document applies to all NFSv4 minor versions.

The details of the transition to an NFSv4-wide document are

discussed in Sections 3.2 and 3.3.

NFSv4 security is built on facilities provided by the RPC layer,

including various authentication flavors and underlying transports.

[Consensus Needed, Including List (Item #1a)}: Support for multiple

authentication flavors can be provided. Not all of these actually

provide authentication, as discussed in Section 13.

Support for RPCSEC_GSS is REQUIRED, although use of other flavors

is provided for.

This flavor provides for mutual authentication of the principal

making the request and the server performing it.

This flavor allows the client to request the provision of

encryption-based services to provide privacy or integrity for

specific requests. Although such services are often provided by

the underlying RPC transport, this support is useful, when the

transport services are not supported or are otherwise

unavailable.

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

¶

AUTH_SYS, provides identification of the principal making the

request but SHOULD NOT be used unless the client peer sending the

request can be authenticated and there is protection against the

modification of the request in flight.

Both of the above require transport-level support.

AUTH_NONE does not provide identification of the principal making

the request so only should be used for requests for which there

is no such principal or for which it would irrelevant.

The restrictions mentioned above for AUTH_SYS apply to AUTH_NONE

as well.

[Consensus Needed, Including List (Item #1a)}: There are important

services that can be provided by the RPC transport when RPC-with-TLS

is available, or when other transports provide similar services

The transport can provide data security to all requests on the.

This is to be preferred to data security provided by the

authentication flavor because it provides protection to the

request headers, because it applies to requests using all

authentication flavors, and because it is more likely to be

offloadable.

The transport can authenticate the server to the client peer.

This is desirable since that authentication applies even when

AUTH_SYS or AUTH_NONE is used.

The transport can authenticate the client-peer to the server at

the time the connection is set up. This is essential to allow

AUTH_SYS to be used with a modicum of security, based on the

server's level of trust with regard to the client peer.

[Consensus Needed (Item #2a)}: Because important security-related

services depend on the transport used, rather the authentication,

the process of security negotiation, described in Section 15

provides for the negotiation of an appropriate transport at

connection time if the server's policy limits the range of

transports being used and also when use of a particular transport/

flavor combination causes NFS4ERR_WRONGSEC to be returned,

[Consensus Needed (Item #1a)}: The authentication provided by RPC,

is used to provide the basis of authorization, which is discussed in

general in Section 6. This includes file access authorization,

discussed in Sections 7 through 9 and state modification

authorization, discussed in Section 11

File access is controlled by the server support for and client use

of certain recommended attributes, as described in Section 7.1.

*

¶

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

Multiple file access model are provided for and the considerations

discussed in Section 8 apply to all of them.

The mode attribute provides a POSIX-based authorization model, as

described in Section 7.3

The ACL-related attributes acl, sacl, and dacl (the last two

introduced in NFSv4.1) support a finer grained authorization

model and provide additional securiy-related services. The

structure of ACLs is described in Section 5.

The ACL-based authorization model is described in Section 7.4

The additional security-related services are described in Section

12. These also rely on the authentication provided by RPC.

Because there are two different approaches to file-access

authorization, servers might implement both, in which case the

associated attributes need to be coordinated as described in

Section 9.

NFSv4.2 provides an file access authorization model oriented

toward Mandatory Access Control. It is described in Section 10.

For reasons described there, its security properties are hard to

analyze in detail and this document will not consider it as part

of the NFSv4 threat analysis.

Authorization of locking state modification is discussed in Section

11. This form of authorization relies on the authentication of the

client peer as opposed to file access authorization, which relies on

authentication of the client principal.

5. Structure of Access Control Lists

Access Control Lists consisting of multiple Access Control Elements,

while originally designed to support a more flexible authorization

model, have multiple uses within NFSv4, with the use of each element

depending on its type, as defined in Section 5.2

They may be used to provide a more flexible authorization model

as described in Section 7.4. This involves use of Access Control

Entries of the ALLOW and DENY types.

They may be used to provide the security-related services

described in Section 12. This involves use of Access Control

Entries of the AUDIT and ALARM types.

Subsections of this section define the structure of ACLs and discuss

ACL-related matters that apply to multiple types of ACL use,

including the definitions of the acl and aclsupport attributes.

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

Matters that relate to only a single one of these use classes,

including the definition of the NFSv4.1-specific attributes dacl and

sacl, are discussed in subsections of Sections 7.4 or 12.

5.1. Access Control Entries

The attributes acl, sacl (v4.1 only) and dacl (v4.1 only) each

contain an array of Access Control Entries (ACEs) that are

associated with the file system object. The client can set and get

these attributes attribute, the server is responsible for using the

ACL-related attributes to perform access control. The client can use

the OPEN or ACCESS operations to check access without modifying or

explicitly reading data or metadata.

The NFS ACE structure is defined as follows:

typedef uint32_t acetype4;

typedef uint32_t aceflag4;

typedef uint32_t acemask4;

struct nfsace4 {

 acetype4 type;

 aceflag4 flag;

 acemask4 access_mask;

 utf8str_mixed who;

};

5.2. ACE Type

The constants used for the type field (acetype4) are as follows:

const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;

const ACE4_ACCESS_DENIED_ACE_TYPE = 0x00000001;

const ACE4_SYSTEM_AUDIT_ACE_TYPE = 0x00000002;

const ACE4_SYSTEM_ALARM_ACE_TYPE = 0x00000003;

All four are permitted in the acl attribute. For NFSv4.1 and beyond,

only the ALLOWED and DENIED types may be used in the dacl attribute,

and only the AUDIT and ALARM types.x used in the sacl attribute.

Value Abbreviation Description

ACE4_ACCESS_ALLOWED_ACE_TYPE ALLOW

Explicitly grants the

ability to perform the

action specified in

¶

¶

¶

¶

¶

¶

¶

Value Abbreviation Description

acemask4 to the file or

directory.

ACE4_ACCESS_DENIED_ACE_TYPE DENY

Explicitly denies the

ability to perform the

action specified in

acemask4 to the file or

directory.

ACE4_SYSTEM_AUDIT_ACE_TYPE AUDIT

Log (in a system-

dependent way) any

attempt to perform, for

the file or directory,

any of the actions

specified in acemask4.

ACE4_SYSTEM_ALARM_ACE_TYPE ALARM

Generate an alarm (in a

system-dependent way) any

attempt to perform, for

the file or directory,

any of the actions

specified in acemask4.

Table 1

The "Abbreviation" column denotes how the types will be referred to

throughout the rest of this document.

5.3. ACE Access Mask

The bitmask constants used for the access mask field of the ACE are

as follows:

¶

¶

const ACE4_READ_DATA = 0x00000001;

const ACE4_LIST_DIRECTORY = 0x00000001;

const ACE4_WRITE_DATA = 0x00000002;

const ACE4_ADD_FILE = 0x00000002;

const ACE4_APPEND_DATA = 0x00000004;

const ACE4_ADD_SUBDIRECTORY = 0x00000004;

const ACE4_READ_NAMED_ATTRS = 0x00000008;

const ACE4_WRITE_NAMED_ATTRS = 0x00000010;

const ACE4_EXECUTE = 0x00000020;

const ACE4_DELETE_CHILD = 0x00000040;

const ACE4_READ_ATTRIBUTES = 0x00000080;

const ACE4_WRITE_ATTRIBUTES = 0x00000100;

const ACE4_WRITE_RETENTION = 0x00000200;

const ACE4_WRITE_RETENTION_HOLD = 0x00000400;

const ACE4_DELETE = 0x00010000;

const ACE4_READ_ACL = 0x00020000;

const ACE4_WRITE_ACL = 0x00040000;

const ACE4_WRITE_OWNER = 0x00080000;

const ACE4_SYNCHRONIZE = 0x00100000;

Note that some masks have coincident values, for example,

ACE4_READ_DATA and ACE4_LIST_DIRECTORY. The mask entries

ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and ACE4_ADD_SUBDIRECTORY are

intended to be used with directory objects, while ACE4_READ_DATA,

ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with

non-directory objects.

5.4. Uses of Mask Bits

[Author Aside]: Because this section has been moved to be part of a

general description of ACEs, not limited to authorization, the

descriptions no longer refer to permissions but rather to actions.

This is best considered a purely editorial change, but, to allow for

possible disagreement on the matter, it will be considered, here and

in Appendix B, as consensus item #3a.

[Author Aside]: In a large number of places, SHOULD is used

inappropriately, since there appear to be no valid reasons to allow

a server to ignore what might well be a requirement. Such changes

are not noted individually below. However, they will be considered,

here and in Appendix B, as consensus item #4a.

[Author Aside}: In a significant number of cases the ACCESS

operation is not listed as a operation affected by the mask bit.

These additions are not noted individually below. However, they will

be considered, here and in Appendix B, as consensus item #5a.

¶

¶

¶

¶

¶

[Author Aside, Including List]: In a number of cases, there are

additional changes which go beyond editorial or arguably do so.

These will be marked as their own consensus items usually with an

accompanying author aside but without necessarily citing the

previous treatment. These include:

Revisions were necessary to clarify the relationship between

READ_DATA and EXECUTE. These are part of consensus item #7a.

Revisions were necessary to clarify the relationship between

WRITE_DATA and APPEND_DATA. These are part of consensus item #8a.

Clarification of the handling of RENAME by ADD_SUBDIRECTORY. This

is part of consensus item #9a.

Revisions in handling of the masks WRITE_RETENTION and

WRITE_RETENTION_HOLD. These are parts of consensus items #10a.

[Author Aside]: Because of the need to address sticky-bit issues as

part of of the ACE mask descriptions, it is appropriate to introduce

the subject here.

[Consensus Item (Item #6a)]: Despite the fact that ACLs and mode

bits are separate means of authentication, it has been necessary,

even if only for the purpose of providing compatibility with earlier

implementations, to introduce the issue here, since reference to

this mode bit are necessary to resolve issues regard directory entry

deletion, as is done in Section 5.6.

[Consensus Item, Including List (Item #6a): The full description of

the role of the sticky-bit appears in Section 7.3.1. In evaluating

and understanding the relationship between the handling of this bit

when ACLs are used and when they are not, the following points need

to be kept in mind:

This is troublesome in that it combines data normally assigned to

two different authorization models and breaks the overall

architectural arrangement in which the mask bits represent the

mode bits but provide a finer granularity of control.

It might have been possible to conform to the existing

architectural model if a new mask bit were created to represent

to directory sticky bit. It is probably too late to so now, even

though it would be allowed as an NFSv4.2 extension.

The new treatment in Section 5.6 is more restrictive than the

previous one appearing in Section 5.6.1. This raises potential

compatibility issues since the new treatment, while designed to

address the same issues was designed to match existing Unix

handling of this bit.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

This handling initially addresses REMOVE and does not address

directory sticky bit semantics with regard to RENAME. Whether it

should do so is still uncertain.

The handling of this mode bit was not documented in previous

specifications. However, there is a preliminary attempt to do so

in Section 7.3.1. The reason for doing so, is that given the Unix

orientation of the mode attribute, it is likely that servers

currently implement this, even though there is no NFSv4

documentation of this semantics

This treatment needs to be checked for compatibility issues and

also to establish a model that we might adapt to the ACL case.

In the long term, it would make more sense to allow the client

rather than the server to have the primary role in determining

the semantics for things like this. That does not seem possible

right now but it is worth considering.

ACE4_READ_DATA

READ

OPEN

ACCESS

The action of reading the data to the data of the file.

[Previous Treatment (Item #7a)]: Servers SHOULD allow a user

the ability to read the data of the file when only the

ACE4_EXECUTE access mask bit is allowed.

[Author Aside]: The treatment needs to be clarified to make it

appropriate to all ACE types.

[Consensus Needed (Item #7a)]: When used to handle READ or

OPEN operations, the handling MUST be identical whether this

bit, ACE4_EXECUTE, or both are present, as the server has no

way of determining whether a file is being read for execution

are not. The only occasion for different handling is in

construction of a corresponding mode or in responding to the

ACCESS operation.

ACE4_LIST_DIRECTORY

READDIR

*

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

The action of listing the contents of a directory.

ACE4_WRITE_DATA

WRITE

OPEN

ACCESS

SETATTR of size

[Author Aside]: Needs to be revised to deal with issues

related to the interaction of WRITE_DATA and APPEND_DATA.

[Consensus Needed (Item #8a)]: The action of modifying

existing data bytes within a file's current data.

[Consensus Needed (Item #8a)]: As there is no way for the

server to decide, in processing an OPEN or ACCESS request,

whether subsequent WRITEs will extend the file or not, the

server will, in processing an OPEN treat masks containing only

WRITE_DATA, only APPEND_DATA, or both identically.

[Consensus Needed (Item #8a)]: In processing a WRITE request,

the server is presumed to have the to determine whether the

current request extends the file and whether it modifies bytes

already in the file.

[Consensus Needed (Item #8a)]: ACE4_WRITE_DATA is required to

process a WRITE which spans pre-existing byte in the file,

whether the file is extended or not.

ACE4_ADD_FILE

CREATE

LINK

OPEN

RENAME

The action of adding a new file in a directory. The CREATE

operation is affected when nfs_ftype4 is NF4LNK, NF4BLK,

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

NF4CHR, NF4SOCK, or NF4FIFO. (NF4DIR is not included because

it is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when

used to create a regular file. LINK and RENAME are always

affected.

ACE4_APPEND_DATA

WRITE

ACCESS

OPEN

SETATTR of size

[Author Aside]: Also needs to be revised to deal with issues

related to the interaction of WRITE_DATA and APPEND_DATA.

The action of modifying a file's data, but only starting at

EOF. This allows for the specification of append-only files,

by allowing ACE4_APPEND_DATA and denying ACE4_WRITE_DATA to

the same user or group.

[Consensus Needed (Item #8a)]: As there is no way for the

server to decide, in processing an OPEN or ACCESS request,

whether subsequent WRITEs will extend the file or not, the

server will treat masks containing only WRITE_DATA, only

APPEND_DATA or both, identically.

[Consensus Needed (Item #8a)]: If the server is processing a

WRITE request and the area to be written extends beyond the

existing EOF of the file then the state of APPEND_DATA mask

bit is consulted to determine whether the operation is

permitted or whether alarm or audit activities are to be

performed. If a file has an ACL allowing only APPEND_DATA (and

not WRITE_DATA) and a WRITE request is made at an offset below

EOF, the server MUST return NFS4ERR_ACCESS.

[Consensus Needed (Item #8a)]: If the server is processing a

WRITE request and the area to be written does not extend

beyond the existing EOF of the file then the state of

APPEND_DATA mask bit does not need to be consulted to

determine whether the operation is permitted or whether alarm

or audit activities are to be performed. In this case, only

the WRITE_DATA mask bit needs to be checked to determine

whether the WRITE is authorized.

ACE4_ADD_SUBDIRECTORY

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

CREATE

RENAME

[Author Aside]: The RENAME cases need to be limited to the

renaming of directories, rather than saying, "The RENAME

operating is always affected."

[Consensus Needed (Item #9a)]: The action of creating a

subdirectory in a directory. The CREATE operation is affected

when nfs_ftype4 is NF4DIR. The RENAME operation is always

affected when directories are renamed and the target directory

ACL contains the mask ACE4_ADD_SUBDIRECTORY.

ACE4_READ_NAMED_ATTRS

OPENATTR

The action of reading the named attributes of a file or of

looking up the named attribute directory. OPENATTR is affected

when it is not used to create a named attribute directory.

This is when 1) createdir is TRUE, but a named attribute

directory already exists, or 2) createdir is FALSE.

ACE4_WRITE_NAMED_ATTRS

OPENATTR

The action of writing the named attributes of a file or

creating a named attribute directory. OPENATTR is affected

when it is used to create a named attribute directory. This is

when createdir is TRUE and no named attribute directory

exists. The ability to check whether or not a named attribute

directory exists depends on the ability to look it up;

therefore, users also need the ACE4_READ_NAMED_ATTRS

permission in order to create a named attribute directory.

ACE4_EXECUTE

READ

OPEN

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

ACCESS

REMOVE

RENAME

LINK

CREATE

The action of reading a file in order to execute it.

Servers MUST allow a user the ability to read the data of the

file when only the ACE4_EXECUTE access mask bit is allowed.

This is because there is no way to execute a file without

reading the contents. Though a server may treat ACE4_EXECUTE

and ACE4_READ_DATA bits identically when deciding to permit a

READ or OPEN operation, it MUST still allow the two bits to be

set independently in ACLs, and distinguish between them when

replying to ACCESS operations. In particular, servers MUST NOT

silently turn on one of the two bits when the other is set, as

that would make it impossible for the client to correctly

enforce the distinction between read and execute permissions.

As an example, following a SETATTR of the following ACL:

nfsuser:ACE4_EXECUTE:ALLOW

A subsequent GETATTR of ACL for that file will return:

nfsuser:ACE4_EXECUTE:ALLOW

and MUST NOT return:

nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW

ACE4_EXECUTE

LOOKUP

The action of traversing/searching a directory.

ACE4_DELETE_CHILD

REMOVE

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

RENAME

The action of deleting a file or directory within a directory.

See Section 5.6 for information on now ACE4_DELETE and

ACE4_DELETE_CHILD are to interact.

ACE4_READ_ATTRIBUTES

GETATTR of file system object attributes

VERIFY

NVERIFY

READDIR

The action of reading basic attributes (non-ACLs) of a file.

On a UNIX system, such basic attributes can be thought of as

the stat-level attributes. Allowing this access mask bit would

mean that the entity can execute "ls -l" and stat. If a

READDIR operation requests attributes, this mask must be

allowed for the READDIR to succeed.

ACE4_WRITE_ATTRIBUTES

SETATTR of time_access_set, time_backup, time_create,

time_modify_set, mimetype, hidden, system.

The action of changing the times associated with a file or

directory to an arbitrary value. Also permission to change the

mimetype, hidden, and system attributes. A user having

ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to

set the times associated with a file to the current server

time.

ACE4_WRITE_RETENTION

SETATTR of retention_set, retentevt_set.

The action of modifying the durations for event and non-event-

based retention. Also includes enabling event and non-event-

based retention.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

[Author Aside]: The use of "MAY" here ignores the potential

for harm which unexpected modification of the associated

attributes might cause for security/compliance.

[Previous Treatment]: A server MAY behave such that setting

ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.

[Consensus Needed (Items #10a, #11a)]: Options for coarser-

grained treatment involving this mask bit are discussed in

Section 5.5

ACE4_WRITE_RETENTION_HOLD

SETATTR of retention_hold.

The action of modifying the administration retention holds.

[Previous Treatment]: A server MAY map ACE4_WRITE_ATTRIBUTES

to ACE_WRITE_RETENTION_HOLD.

[Author Aside]: The use of "MAY" here ignores the potential

for harm which unexpected modification of the associated

attributes might cause for security/compliance.

[Consensus Needed (Items #10a, #11a)]: Options for coarser-

grained treatment of this mask bit are discussed in Section

5.5

ACE4_DELETE

REMOVE

The action of deleting the associated file or directory. See

Section 5.6 for information on how ACE4_DELETE and

ACE4_DELETE_CHILD are to interact.

ACE4_READ_ACL

GETATTR of acl, dacl, or sacl

NVERIFY

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

VERIFY

The action of reading the ACL.

ACE4_WRITE_ACL

SETATTR of acl and mode

The action of modifying the acl or mode attributes.

ACE4_WRITE_OWNER

SETATTR of owner and owner_group

The action of modifying the owner or owner_group attributes.

On UNIX systems, this done by executing chown() and chgrp().

ACE4_SYNCHRONIZE

NONE

Permission to use the file object as a synchronization

primitive for interprocess communication. This permission is

not enforced or interpreted by the NFSv4.1 server on behalf of

the client.

Typically, the ACE4_SYNCHRONIZE permission is only meaningful

on local file systems, i.e., file systems not accessed via

NFSv4.1. The reason that the permission bit exists is that

some operating environments, such as Windows, use

ACE4_SYNCHRONIZE.

For example, if a client copies a file that has

ACE4_SYNCHRONIZE set from a local file system to an NFSv4.1

server, and then later copies the file from the NFSv4.1 server

to a local file system, it is likely that if ACE4_SYNCHRONIZE

was set in the original file, the client will want it set in

the second copy. The first copy will not have the permission

set unless the NFSv4.1 server has the means to set the

ACE4_SYNCHRONIZE bit. The second copy will not have the

permission set unless the NFSv4.1 server has the means to

retrieve the ACE4_SYNCHRONIZE bit.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.5. Requirements and Recommendations Regarding Mask Granularity

This is new section which replaces material formerly in the previous

section, cited here as "Previous Treatment. The new material,

constituting the remainder of the section is proposed to replace it.

All such unannotated material is to be considered, as part of

consensus item #11b.

[Previous Treatment (Item #11b)]: Server implementations need not

provide the granularity of control that is implied by this list of

masks. For example, POSIX-based systems might not distinguish

ACE4_APPEND_DATA (the ability to append to a file) from

ACE4_WRITE_DATA (the ability to modify existing contents); both

masks would be tied to a single "write" permission bit. When such a

server returns attributes to the client that contain such masks, it

would show ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the

the write permission bit is enabled.

[Previous Treatment (Item #11b)]: If a server receives a SETATTR

request that it cannot accurately implement, it should err in the

direction of more restricted access, except in the previously

discussed cases of execute and read. For example, suppose a server

cannot distinguish overwriting data from appending new data, as

described in the previous paragraph. If a client submits an ALLOW

ACE where ACE4_APPEND_DATA is set but ACE4_WRITE_DATA is not (or

vice versa), the server should either turn off ACE4_APPEND_DATA or

reject the request with NFS4ERR_ATTRNOTSUPP.

[Author Aside]: Giving servers a general freedom to to not support

the masks defined in this section, creates an unacceptable level of

potential interoperability problems. With regard to the specific

example given, it is hard to imagine a server incapable of

distinguishing a write to an offset within existing file and one

beyond it. This applies whether the server in question is

implemented within a POSIX-based system or not. It is true that a

server that used the unmodified POSIX interface to interact with the

file system, rather than a purpose-built VFS, would face this

difficulty, but it not clear that that fact justifies the client

compatibility issues that accommodating this behavior in the

protocol would generate. A further difficulty with the previous

treatment is that it at variance with the approach to other cases in

which ACEs are stored with the understanding that implementations of

other protocols might be responsible for enforcement.

[Author Aside]: A replacement should clearly be based on the idea

that these mask bits were included in NFSv4 for a reason, and that

exceptions need to be justified, and take interoperability issues

into account. The treatment below attempts to do that.

¶

¶

¶

¶

¶

All implementations of the acl, dacl, and sacl attributes SHOULD

follow the definitions provided above in Section 5.4, which allow

finer-grained control of the actions allowed to specific users than

is provided by the mode attribute. Valid reasons to bypass this

guidance include the need for compatibility with clients expecting a

coarser-grained implementation.

The specific cases in which servers may validly provide coarser-

grained implementations are discussed below.

Servers not providing the mask granularity described in Section 5.4

MUST NOT treat masks other than described in that section except as

listed below.

Servers that do not distinguish between WRITE_DATA and

APPEND_DATA need to make it clear to clients that support for

append-only files is not present. To do that, requests to set

ACLs where the handling for these two masks are different for any

specified user or group are to be rejected with

NFS4ERR_ATTRNOTSUPP.

[Consensus Needed (Items #10b, #11b)]: Servers that combine

either of the masks WRITE_RETENTION or WRITE_RETENTION_HOLD with

WRITE_ATTRIBUTES need to make it clear to clients that the finer-

grained treatment normally expected is not available. To do that,

requests to set ACLs in which the two combined masks are

explicitly assigned different permission states (i.e. one is

ALLOWED while the other is DENIED) for any specific user or group

are to be rejected with NFS4ERR_ATTRNOTSUPP.

The above are in line with the requirement that attempts to set ACLs

that the server cannot enforce, it needs to be clear that there are

cases in which such ACLs need to be set with the expectation that

enforcement will be done by the local file system or by another file

access protocol. In particular,

In handling the mask bit SYNCHRONIZE, the server is not

responsible for enforcement and so can accept ACLs it has no way

of enforcing.

When mask bits refers to an OPTIONAL feature that the server does

not support such as named attributes or retention attributes, the

server is allowed to accept ACLs containing mask bits associated

with the unimplemented feature, even though there is no way these

cold be enforced. The expectation is that the files might be

accessed by other protocols having such support or might be

copied, together with associated ACLs to severs capable of

enforcing them.

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

5.6. Handling of Deletion

[Author Aside]: This section, exclusive of subsections contains a

proposal for the revision of the ACL-based handling of requests to

delete directory entries. All unannotated material within it is to

be considered part of consensus item #12a.

[Author Aside]: The associated previous treatment is to be found in

Section 5.6.1

This section describes the handling requests of that involve

deletion of a directory entry. It needs to be noted that:

Modification or transfer of a directory, as happens in RENAME is

not covered.

The deletion of the file's data is dealt with separately as this,

like a truncation to length zero, requires ACE4_WRITE_DATA.

In general, the recognition of such an operation for authorization/

auditing/alarm depends on either of two bits mask bits being set:

ACE4_MASK_DELETE on the file being deleted and

ACE4_MASK_DELETE_CHILD on the directory from which the entry is

being deleted.

In the case of authorization, the above applies even when one of the

bits is allowed and the other is explicitly denied.

[Consensus Items, Including List (#6b, #12a): When neither of the

mask bits is set, the result is normally negative. That is,

permission is denied and no audit or alarm event is recognized.

However, in the case of authorization, the server MAY make

permission dependent on the setting of MODE4_SVTX if the mode

attribute is supported, as follows:

If that bit not set, allow the removal if and only if

ACE4_ADD_FILE is permitted.

If that bit is set, allow the removal if and only if

ACE4_ADD_FILE is permitted and the requester is the owner of the

target.

5.6.1. Previous Handling of Deletion

[Author Aside]: This section contains the former content of Section

5.6. All unannotated paragraphs within it are to be considered the

Previous Treatment associated with consensus item #12b.

¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

[Author Aside, Including List]: Listed below are some of the reasons

that I have tried to replace the existing treatment rather than

address the specific issues mentioned here and in later asides.

The fact that there is no clear message about what servers are to

do and about whether behavior clients might rely rely on. This

derives in turn from the use of SHOULD in contexts in which it is

clearly not appropriate, combined with non-normative reports of

what some systems do, and the statement that the approach

suggested is a way of providing "something like traditional UNIX-

like semantics".

The complexity of the approach without any indication that there

is a need for such complexity makes me doubtful that anything was

actually implemented, especially since the text is so wishy-washy

about the need for server implementation. The probability that it

would be implemented so widely that clients might depend on it is

even more remote.

The fact that how audit and alarm issues are to be dealt with is

not addressed at all.

The fact that this treatment combines ACL data with mode bit

information in a confused way without any consideration of the

fact that the mode attribute is OPTIONAL.

Two access mask bits govern the ability to delete a directory entry:

ACE4_DELETE on the object itself (the "target") and

ACE4_DELETE_CHILD on the containing directory (the "parent").

Many systems also take the "sticky bit" (MODE4_SVTX) on a directory

to allow unlink only to a user that owns either the target or the

parent; on some such systems the decision also depends on whether

the target is writable.

Servers SHOULD allow unlink if either ACE4_DELETE is permitted on

the target, or ACE4_DELETE_CHILD is permitted on the parent. (Note

that this is true even if the parent or target explicitly denies one

of these permissions.)

If the ACLs in question neither explicitly ALLOW nor DENY either of

the above, and if MODE4_SVTX is not set on the parent, then the

server SHOULD allow the removal if and only if ACE4_ADD_FILE is

permitted. In the case where MODE4_SVTX is set, the server may also

require the remover to own either the parent or the target, or may

require the target to be writable.

This allows servers to support something close to traditional UNIX-

like semantics, with ACE4_ADD_FILE taking the place of the write

bit.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

5.7. ACE flag bits

The bitmask constants used for the flag field are as follows:

const ACE4_FILE_INHERIT_ACE = 0x00000001;

const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;

const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;

const ACE4_INHERIT_ONLY_ACE = 0x00000008;

const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;

const ACE4_FAILED_ACCESS_ACE_FLAG = 0x00000020;

const ACE4_IDENTIFIER_GROUP = 0x00000040;

const ACE4_INHERITED_ACE = 0x00000080;

[Author Aside]: Although there are multiple distinct issues that

might need to be changed, in the interest of simplifying the review,

all such issues within this section will be considered part of

Consensus Item #13a with a single revised treatment addressing all

the issues noted.

[Previous Treatment]: A server need not support any of these flags.

[Author Aside]: It is hard to understand why such broad license is

granted to the server, leaving the client to deal, without an

explicit non-support indication, with 256 possible combinations of

supported and unsupported flags. If there were specific issues with

some flags that makes it reasonable for a server not to support

them, then these need to be specifically noted. Also problematic is

the use of the term "need not", suggesting that the server does not

need any justification for choosing these flags, defined by the

protocol. At least it needs to be said that the server SHOULD

support the defined ACE flags. After all they were included in the

protocol for a reason.

[Previous Treatment]: If the server supports flags that are similar

to, but not exactly the same as, these flags, the implementation may

define a mapping between the protocol-defined flags and the

implementation-defined flags.

[Author Aside]: The above dealing how an implementation might store

the bits it support, while valid, is out-of-scope and should be

deleted.

[Previous Treatment]: For example, suppose a client tries to set an

ACE with ACE4_FILE_INHERIT_ACE set but not

ACE4_DIRECTORY_INHERIT_ACE. If the server does not support any form

of ACL inheritance, the server should reject the request with

NFS4ERR_ATTRNOTSUPP. If the server supports a single "inherit ACE"

flag that applies to both files and directories, the server may

¶

¶

¶

¶

¶

¶

¶

ACE4_FILE_INHERIT_ACE

ACE4_DIRECTORY_INHERIT_ACE

ACE4_NO_PROPAGATE_INHERIT_ACE

ACE4_INHERIT_ONLY_ACE

reject the request (i.e., requiring the client to set both the file

and directory inheritance flags). The server may also accept the

request and silently turn on the ACE4_DIRECTORY_INHERIT_ACE flag.

]Author Aside]: What is the possible for justification for accepting

a request asking you do something and then, without notice to the

client do, something else. I believe there is none.

Consensus Needed (Item #13a)]: Servers SHOULD support the flag bits

defined above as described in Section 5.8. When a server which does

not support all the flags bits receives a request to set an ACL

containing an ACE with an unsupported flag bit set the server MUST

reject the request with NFS4ERR_ATTRNOTSUPP.

Consensus Needed (Item #13a)]: The case of servers which do not

provide support for particular flag combinations is to be treated

similarly. If a server supports a single "inherit ACE" flag that

applies to both files and directories, receives a request set an ACL

with ACE ACE4_FILE_INHERIT_ACE set but ACE4_DIRECTORY_INHERIT_ACE

not set, it MUST reject the request with NFS4ERR_ATTRNOTSUPP.

5.8. Details Regarding ACE Flag Bits

Any non-directory file in any sub-directory will get this ACE

inherited.

Can be placed on a directory and indicates that this ACE should

be added to each new directory created.

If this flag is set in an ACE in an ACL attribute to be set on a

non-directory file system object, the operation attempting to set

the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

Can be placed on a directory. This flag tells the server that

inheritance of this ACE should stop at newly created child

directories.

Can be placed on a directory but does not apply to the directory;

ALLOW and DENY ACEs with this bit set do not affect access to the

directory, and AUDIT and ALARM ACEs with this bit set do not

trigger log or alarm events. Such ACEs only take effect once they

are applied (with this bit cleared) to newly created files and

directories as specified by the ACE4_FILE_INHERIT_ACE and

ACE4_DIRECTORY_INHERIT_ACE flags.

¶

¶

¶

¶

¶

¶

¶

¶

¶

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and ACE4_FAILED_ACCESS_ACE_FLAG

ACE4_IDENTIFIER_GROUP

ACE4_INHERITED_ACE

If this flag is present on an ACE, but neither

ACE4_DIRECTORY_INHERIT_ACE nor ACE4_FILE_INHERIT_ACE is present,

then an operation attempting to set such an attribute SHOULD fail

with NFS4ERR_ATTRNOTSUPP.

The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and

ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on

ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE

(ALARM) ACE types. If during the processing of the file's ACL,

the server encounters an AUDIT or ALARM ACE that matches the

principal attempting the OPEN, the server notes that fact, and

the presence, if any, of the SUCCESS and FAILED flags encountered

in the AUDIT or ALARM ACE. Once the server completes the ACL

processing, it then notes if the operation succeeded or failed.

If the operation succeeded, and if the SUCCESS flag was set for a

matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM

event occurs. If the operation failed, and if the FAILED flag was

set for the matching AUDIT or ALARM ACE, then the appropriate

AUDIT or ALARM event occurs. Either or both of the SUCCESS or

FAILED can be set, but if neither is set, the AUDIT or ALARM ACE

is not useful.

The previously described processing applies to ACCESS operations

even when they return NFS4_OK. For the purposes of AUDIT and

ALARM, we consider an ACCESS operation to be a "failure" if it

fails to return a bit that was requested and supported.

Indicates that the "who" refers to a GROUP as defined under UNIX

or a GROUP ACCOUNT as defined under Windows. Clients and servers

MUST ignore the ACE4_IDENTIFIER_GROUP flag on ACEs with a who

value equal to one of the special identifiers outlined in Section

5.9.

Indicates that this ACE is inherited from a parent directory. A

server that supports automatic inheritance will place this flag

on any ACEs inherited from the parent directory when creating a

new object. Client applications will use this to perform

automatic inheritance. Clients and servers MUST clear this bit in

the acl attribute; it may only be used in the dacl and sacl

attributes.

5.9. ACE Who

The "who" field of an ACE is an identifier that specifies the

principal or principals to whom the ACE applies. It may refer to a

¶

¶

¶

¶

¶

user or a group, with the flag bit ACE4_IDENTIFIER_GROUP specifying

which.

There are several special identifiers that need to be understood

universally, rather than in the context of a particular DNS domain.

Some of these identifiers cannot be understood when an NFS client

accesses the server, but have meaning when a local process accesses

the file. The ability to display and modify these permissions is

permitted over NFS, even if none of the access methods on the server

understands the identifiers.

Who Description

OWNER The owner of the file.

GROUP The group associated with the file.

EVERYONE The world, including the owner and owning group.

INTERACTIVE Accessed from an interactive terminal.

NETWORK Accessed via the network.

DIALUP Accessed as a dialup user to the server.

BATCH Accessed from a batch job.

ANONYMOUS Accessed without any authentication.

AUTHENTICATED Any authenticated user (opposite of ANONYMOUS).

SERVICE Access from a system service.

Table 2

To avoid conflict, these special identifiers are distinguished by an

appended "@" and should appear in the form "xxxx@" (with no domain

name after the "@"), for example, ANONYMOUS@.

The ACE4_IDENTIFIER_GROUP flag MUST be ignored on entries with these

special identifiers. When encoding entries with these special

identifiers, the ACE4_IDENTIFIER_GROUP flag SHOULD be set to zero.

[working group input needed]: I don't understand what might be valid

reasons to ignore this. Would "MUST" be appropriate here?

It is important to note that "EVERYONE@" is not equivalent to the

UNIX "other" entity. This is because, by definition, UNIX "other"

does not include the owner or owning group of a file. "EVERYONE@"

means literally everyone, including the owner or owning group.

[working group input needed]: Some of these require that changes be

made as discussed below:

For "INTERACTIVE", "NETWORK", "DIALUP", "BATCH", and "SERVICE" it

needs to be specified that server's ability to make these

distinctions is limited, making their use where security is an

issue quite problematic.

¶

¶

¶

¶

¶

¶

¶

*

¶

For "ANONYMOUS", clearly requests using AUTH_NONE fit but what

else?

Request by nobody and by users root-squashed to nobody are

probably OK, although you could argue about the case of a user

"nobody" authenticated by RPCSEC_GSS.

ON a more contentious note, I would argue that users

"authenticated" using AUTH_SYS, in the clear, without client-peer

authentication fit here, but we need to get to consensus on this

point.

Issues regarding "AUTHENTICATED" will be the mirror image of

those for "ANONYMOUS".

5.10. Automatic Inheritance Features

The acl attribute consists only of an array of ACEs, but the sacl

(Section 12.1) and dacl (Section 7.4.2) attributes also include an

additional flag field.

struct nfsacl41 {

 aclflag4 na41_flag;

 nfsace4 na41_aces<>;

};

The flag field applies to the entire sacl or dacl; three flag values

are defined:

const ACL4_AUTO_INHERIT = 0x00000001;

const ACL4_PROTECTED = 0x00000002;

const ACL4_DEFAULTED = 0x00000004;

and all other bits must be cleared. The ACE4_INHERITED_ACE flag may

be set in the ACEs of the sacl or dacl (whereas it must always be

cleared in the acl).

Together these features allow a server to support automatic

inheritance, which we now explain in more detail.

Inheritable ACEs are normally inherited by child objects only at the

time that the child objects are created; later modifications to

inheritable ACEs do not result in modifications to inherited ACEs on

descendants.

*

¶

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

However, the dacl and sacl provide an OPTIONAL mechanism that allows

a client application to propagate changes to inheritable ACEs to an

entire directory hierarchy.

A server that supports this feature performs inheritance at object

creation time in the normal way, and SHOULD set the

ACE4_INHERITED_ACE flag on any inherited ACEs as they are added to

the new object.

A client application such as an ACL editor may then propagate

changes to inheritable ACEs on a directory by recursively traversing

that directory's descendants and modifying each ACL encountered to

remove any ACEs with the ACE4_INHERITED_ACE flag and to replace them

by the new inheritable ACEs (also with the ACE4_INHERITED_ACE flag

set). It uses the existing ACE inheritance flags in the obvious way

to decide which ACEs to propagate. (Note that it may encounter

further inheritable ACEs when descending the directory hierarchy and

that those will also need to be taken into account when propagating

inheritable ACEs to further descendants.)

The reach of this propagation may be limited in two ways: first,

automatic inheritance is not performed from any directory ACL that

has the ACL4_AUTO_INHERIT flag cleared; and second, automatic

inheritance stops wherever an ACL with the ACL4_PROTECTED flag is

set, preventing modification of that ACL and also (if the ACL is set

on a directory) of the ACL on any of the object's descendants.

This propagation is performed independently for the sacl and the

dacl attributes; thus, the ACL4_AUTO_INHERIT and ACL4_PROTECTED

flags may be independently set for the sacl and the dacl, and

propagation of one type of acl may continue down a hierarchy even

where propagation of the other acl has stopped.

New objects should be created with a dacl and a sacl that both have

the ACL4_PROTECTED flag cleared and the ACL4_AUTO_INHERIT flag set

to the same value as that on, respectively, the sacl or dacl of the

parent object.

Both the dacl and sacl attributes are Recommended, and a server may

support one without supporting the other.

A server that supports both the old acl attribute and one or both of

the new dacl or sacl attributes must do so in such a way as to keep

all three attributes consistent with each other. Thus, the ACEs

reported in the acl attribute should be the union of the ACEs

reported in the dacl and sacl attributes, except that the

ACE4_INHERITED_ACE flag must be cleared from the ACEs in the acl.

And of course a client that queries only the acl will be unable to

determine the values of the sacl or dacl flag fields.

¶

¶

¶

¶

¶

¶

¶

¶

When a client performs a SETATTR for the acl attribute, the server

SHOULD set the ACL4_PROTECTED flag to true on both the sacl and the

dacl. By using the acl attribute, as opposed to the dacl or sacl

attributes, the client signals that it may not understand automatic

inheritance, and thus cannot be trusted to set an ACL for which

automatic inheritance would make sense.

When a client application queries an ACL, modifies it, and sets it

again, it should leave any ACEs marked with ACE4_INHERITED_ACE

unchanged, in their original order, at the end of the ACL. If the

application is unable to do this, it should set the ACL4_PROTECTED

flag. This behavior is not enforced by servers, but violations of

this rule may lead to unexpected results when applications perform

automatic inheritance.

If a server also supports the mode attribute, it SHOULD set the mode

in such a way that leaves inherited ACEs unchanged, in their

original order, at the end of the ACL. If it is unable to do so, it

SHOULD set the ACL4_PROTECTED flag on the file's dacl.

Finally, in the case where the request that creates a new file or

directory does not also set permissions for that file or directory,

and there are also no ACEs to inherit from the parent's directory,

then the server's choice of ACL for the new object is

implementation-dependent. In this case, the server SHOULD set the

ACL4_DEFAULTED flag on the ACL it chooses for the new object. An

application performing automatic inheritance takes the

ACL4_DEFAULTED flag as a sign that the ACL should be completely

replaced by one generated using the automatic inheritance rules.

5.11. Attribute 13: aclsupport

A server need not support all of the above ACE types. This attribute

indicates which ACE types are supported for the current file system.

The bit mask constants used to represent the above definitions

within the aclsupport attribute are as follows:

const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;

const ACL4_SUPPORT_DENY_ACL = 0x00000002;

const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;

const ACL4_SUPPORT_ALARM_ACL = 0x00000008;

[Author Aside]: Even though support aclsupport is OPTIONAL, there

has been no mention of the possibility of it not being supported.

[Consensus Needed (Item #14a)]: If this attribute is not supported

for a server, the client is entitled to assume that if the acl

attribute is supported, support for ALLOW and DENY ACEs is present.

¶

¶

¶

¶

¶

¶

¶

Thus, if such a server supports the the sacl attribute, clients are

not likely to use it if aclsupport is not supported by the server.

[Previous Treatment]: Servers that support either the ALLOW or DENY

ACE type SHOULD support both ALLOW and DENY ACE types.

[Author Aside]: It needs to be made clearer what the harm is that is

to be prevented by this. Further if such harm exists, it is not

clear what are the valid reasons not do this?

[Consensus Needed (Item #15a)]: There is little point in

implementing a server which supports either ALLOW or DENY ACE types

without supporting both. For reasons explained in Section 7.1 the

ACL_based authorization cannot be used if only a single ACE type is

available.

Clients should not attempt to set an ACE unless the server claims

support for that ACE type. If the server receives a request to set

an ACE that it cannot store, it MUST reject the request with

NFS4ERR_ATTRNOTSUPP.

[Previous Treatment (Item #12c)]: If the server receives a request

to set an ACE that it can store but cannot enforce, the server

SHOULD reject the request with NFS4ERR_ATTRNOTSUPP.

[Author Aside]: Beyond the issues with the use of SHOULD, it is

better to centralize this material and be clearer about the whole

issue of ACL enforcement.

[Consensus Needed (Item #12c)]: The case of ACEs that cannot be

enforced is similar, with the details of enforcement discussed in

Section 5.5.

Support for any of the ACL attributes is OPTIONAL, although

Recommended. However, a server (NFSv4.1 and above) that supports

either of the new ACL attributes (dacl or sacl) MUST allow use of

the new ACL attributes to access all of the ACE types that it

supports. In other words, if a server which supports sacl or dacl

supports ALLOW or DENY ACEs, then it MUST support the dacl

attribute, and if it supports AUDIT or ALARM ACEs, then it MUST

support the sacl attribute.

5.12. Attribute 12: acl

The acl attribute, as opposed to the sacl and dacl attributes,

consists only of an ACE array and does not support automatic

inheritance.

The acl attribute is recommended and there is no requirement that a

server support it. However, when the dacl attribute is supported, it

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

is a good idea to provide support for the acl attribute as well, in

order to accommodate clients that have not been upgraded to use the

dacl attribute.

[Author Aside]: Although it has generally been assumed that changes

to sacl and dacl attributes are to be visible in the acl and vice

versa, NFSv4.1 specification do not appear to document this fact.

[Consensus Item, Including List (Item #16a)]: For NFSv4.1 servers

that support Both the acl attribute and one or more of the sacl and

dacl attributes, changes to the ACE's need to be immediately

reflected in the other supported attributes:

The result of reading the dacl attribute MUST consist of a set of

ACEs that are exactly the same as the ACEs ALLOW and DENY ACEs

within the the acl attribute, in the same order.

The result of reading the sacl attribute MUST consist of a set of

ACEs that are exactly the same as the ACEs AUDIT and ALARM ACEs

within the the acl attribute, in the same order.

The result of reading the acl attribute MUST consist of a set of

ACEs that are exactly the same as the union of ACEs within the

sacl and dacl attributes. Two ACEs that both appear in one of the

sacl or dacl attributes must appear in the same order in the acl

attribute.

6. Authorization in General

There are three distinct methods of checking whether NFSv4 requests

are authorized:

The most important method of authorization is used to effect

user-based file access control, as described in Section 7.

This requires the identification of the user making the request.

Because of the central role of such access control in providing

NFSv4 security, server implementations SHOULD NOT use such

identifications when they are not authenticated. In this context,

valid reasons to do otherwise are limited to the compatibility

and maturity issues discussed in Section 17.1.4

NFSv4.2, via the labelled NFS feature, provides an additional

potential requirement for request authorization.

For reasons made clear in Section 10, there is no realistic

possibility of the server using the data defined by existing

specifications of this feature to effect request authorization.

While it is possible for clients to provide this authorization,

the lack of detailed specifications makes it impossible to

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

determine the nature of the identification used and whether it

can appropriately be described as "authentication".

Since undesired changes to server-maintained locking state (and,

for NFSv4.1, session state) can result in denial of service

attacks (see Section 17.6), server implementations SHOULD take

steps to prevent unauthorized state changes. This can be done by

implementing the state authorization restrictions discussed in

Section 11

7. User-based File Access Authorization

7.1. Attributes for User-based File Access Authorization

NFSv4.1 provides for multiple authentication models, controlled by

the support for particular recommended attributes implemented by the

server, as discussed below:

Consensus Needed (Item #18a)]: The attributes owner,

owning_group, and mode enable use of a POSIX-based authorization

model, as described in Section 7.3. When all of these attributes

are supported, this authorization model can be implemented.

Consensus Needed (Item #18a)]:When none of these attributes or

only a proper subset of them are supported, this authorization

model is unavailable.

[Consensus Needed (Item #17a)]: The acl attribute (or the

attribute dacl in NFSv4.1) can provide an ACL-based authorization

model as described in Section 7.4 as long as support for ALLOW

and DENY ACEs is provided.

[Consensus Needed (Items #17a, #18a)]: When some of these ACE

types are not supported or the owner or owning_group attribute is

not supported, this authorization model is unavailable, since

there are some modes that cannot be represented as corresponding

ACL, when using only a single ACE type. See Section 9.2 for

details.

7.2. Handling of Multiple Parallel File Access Authorization Models

ACLs and modes represent two well-established models for specifying

user-based file access permissions. NFSv4 provides support for

either or both depending on the attributes supported by the server

and, in cases in which both ACLs and the mode attribute are

supported, the actual attributes set for a particular object.

[Consensus Needed (item #18b)]: When the attributes mode, owner,

owner group are all supported, the posix-based authorization

model, described in Section 7.3 can be used.

¶

*

¶

¶

*

¶

¶

*

¶

¶

¶

*

¶

[Consensus Needed (Items #17b, #18b)]: When the acl (or dacl)

attribute is supported together with both of the ACE types ALLOW

and DENY, the acl based authorization model, described in Section

7.4 can be used as long as the attributes owner and owner_group

are also supported.

[Consensus Needed (item #18b)]: While formally recommended

(essentially OPTIONAL) attributes, it appears that the owner and

owner_group attributes need to be available to support any file

access authorization model. As a result, this document will not

discuss the possibility of servers that do not support both of these

attributes and clients have no need to support such servers.

When both authorization models can be used, there are difficulties

that can arise because the ACL-based model provides finer-grained

access control than the POSIX model. The ways of dealing with these

difficulties appear later in this section while more detail on the

appropriate handling of this situation, which might depend on the

minor version used, appears in Section 9.

The following describe NFSv4's handling in supporting multiple

authorization models for file access.

If a server supports the mode attribute, it should provide the

appropriate POSIX semantics if no ACL-based attributes have ever

been assigned to object. These semantics include the restriction

of the ability to modify the mode, owner and owner-group to the

current owner of the file.

If a server supports ACL attributes, it should provide ACL

semantics as described in this document for all objects for which

the ACL attributes have actually been set. This includes the ACL-

based restrictions on the authorization to modify the mode, owner

and owner_group attributes.

On servers that support the mode attribute, if ACL attributes

have never been set on an object, via inheritance or explicitly,

the behavior should be the behavior mandated by POSIX, including

the those that restrict the setting of authorization-related

attributes.

On servers that support the mode attribute, if the ACL attributes

have been previously set on an object, either explicitly or via

inheritance:

[Previous Treatment]: Setting only the mode attribute should

effectively control the traditional UNIX-like permissions of

read, write, and execute on owner, owner_group, and other.

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

-

¶

[Author Aside]: It isn't really clear what the above paragraph

means, especially as it governs the handling of aces

designating specific users and groups which are not the owner

and have no overlap with the owning group

{Consensus Needed (Item #19a)]: Setting only the mode

attribute, should result in the access of the file being

controlled just it would be if the existing acl did not exist,

with file access decisions as to read made in accordance with

the mode set. The ALLOW and DENY aces in the ACL should

reflect the modified security although there is no need to

modify AUDIT and ALARM aces or mask bits not affected by the

mode bits, such as SYNCHRONIZE.

[Author Aside]: the above may need to modified to reflect the

resolution of Consensus Item #??.

[Previous Treatment]: Setting only the mode attribute should

provide reasonable security. For example, setting a mode of

000 should be enough to ensure that future OPEN operations for

OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any

principal fail, regardless of a previously existing or

inherited ACL.

[Author Aside]: We need to get rid of or provide some some

replacement for the subjective first sentence. While the

specific example give is unexceptionable, it raises questions

in other cases as to what would constitutes "reasonable

semantics". While the resolution of such questions would be

subject to dispute, the author believes that consensus item

#19a deals with the matter adequately. As a result he

proposes, that the that this bullet be removed and the second-

level list collapsed to single paragraph.

Although RFCs 7530 and 8881 present different descriptions of the

specific semantic requirements relating to the interaction of

mode and ACL attributes, the difference are quite small, with the

most important ones deriving from the absence of the

set_mode_masked attribute. The unified treatment in Section 9

will indicate where version-specific differences exist.

7.3. Posix Authorization Model

7.3.1. Attribute 33: mode

The NFSv4.1 mode attribute is based on the UNIX mode bits. The

following bits are defined:

¶

¶

¶

-

¶

¶

*

¶

¶

const MODE4_SUID = 0x800; /* set user id on execution */

const MODE4_SGID = 0x400; /* set group id on execution */

const MODE4_SVTX = 0x200; /* save text even after use */

const MODE4_RUSR = 0x100; /* read permission: owner */

const MODE4_WUSR = 0x080; /* write permission: owner */

const MODE4_XUSR = 0x040; /* execute permission: owner */

const MODE4_RGRP = 0x020; /* read permission: group */

const MODE4_WGRP = 0x010; /* write permission: group */

const MODE4_XGRP = 0x008; /* execute permission: group */

const MODE4_ROTH = 0x004; /* read permission: other */

const MODE4_WOTH = 0x002; /* write permission: other */

const MODE4_XOTH = 0x001; /* execute permission: other */

Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal

identified by the owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and

MODE4_XGRP apply to principals belonging to the group identified in

the owner_group attribute but who are not identified by the owner

attribute. Bits MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any

principal that does not match that in the owner attribute and does

not belong to a group matching that of the owner_group attribute.

These nine bits are used in providing authorization information.

[Previous Treatment]: The bits MODE4_SUID, MODE4_SGID, and

MODE4_SVTX do not provide authorization information and do not

affect server behavior. Instead, they are acted on by the client

just as they would be for corresponding mode bits obtained from

local file systems.

[Consensus needed (Item #6c)]: For objects which are not

directories, the bits MODE4_SUID, MODE4_SGID, and MODE4_SVTX do not

provide authorization information and do not affect server behavior.

Instead, they are acted on by the client just as they would be for

corresponding mode bits obtained from local file systems.

[Consensus needed (Item #6c)]: For directories, the bits MODE4_SUID

and MODE4_SGID, do not provide authorization information and do not

affect server behavior. Instead, they are acted on by the client

just as they would be for corresponding mode bits obtained from

local file systems. The mode bit MODE_SVTX does have an

authorization-related role as described later in this section

¶

¶

¶

¶

¶

[Consensus Needed, Including List (Item #6c]): When handling RENAME

and REMOVE operations the check for authorization depends on the

setting of MODE_SVTX for the directory.

When MODE_SVTX is not set on the directory, authorization

requires write permission on both the file being renamed and the

source directory.

When MODE_SVTX is not on the directory, authorization requires,

in addition that the requesting principal be the owner of the

file to be named or removed.

[Consensus needed (Item #6c)]: It should be noted that this approach

is similar to ACL-based approach documented in Section 5.6. However

there are some semantics differences whose motivation remains

unclear and the specification does not mention RENAME, as it should.

[Author Aside]: Bringing the above into more alignment with the ACL-

based semantics is certainly desirable but the necessary work has

not been done yet. For tracking purposes, that realignment will be

considered Consensus Item #20.

Bits within a mode other than those specified above are not defined

by this protocol. A server MUST NOT return bits other than those

defined above in a GETATTR or READDIR operation, and it MUST return

NFS4ERR_INVAL if bits other than those defined above are set in a

SETATTR, CREATE, OPEN, VERIFY, or NVERIFY operation.

[Consensus Needed (Item #21a)]: In the typical case, the nine low-

order bits are set such that each successive set of three bits is a

subset, not necessarily proper, of the previous three bits. Such

modes are described as forward-slope nodes because the privilege

level goes downward as you proceed forward. There are, however,

cases in which there is an increase of privilege going from owner to

group or from group to owner. Such modes are considered reverse-

slope modes. As will be seen in Sections 9.3 and 9.6, many

straightforward ways of dealing with mode that work well with

forward-slope modes need adjustment to properly deal with reverse-

slope modes.

7.3.2. NFSv4.1 Attribute 74: mode_set_masked

The mode_set_masked attribute is a write-only attribute that allows

individual bits in the mode attribute to be set or reset, without

changing others. It allows, for example, the bits MODE4_SUID,

MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified

any of the nine low-order mode bits devoted to permissions.

When minor versions other than NFSv4.0 are used, instances of use of

the set_mode_masked attribute such that none of the nine low-order

¶

*

¶

*

¶

¶

¶

¶

¶

¶

bits are subject to modification, then neither the acl nor the dacl

attribute should be automatically modified as discussed in Sections

9.6 and 9.8.

The mode_set_masked attribute consists of two words, each in the

form of a mode4. The first consists of the value to be applied to

the current mode value and the second is a mask. Only bits set to

one in the mask word are changed (set or reset) in the file's mode.

All other bits in the mode remain unchanged. Bits in the first word

that correspond to bits that are zero in the mask are ignored,

except that undefined bits are checked for validity and can result

in NFS4ERR_INVAL as described below.

The mode_set_masked attribute is only valid in a SETATTR operation.

If it is used in a CREATE or OPEN operation, the server MUST return

NFS4ERR_INVAL.

Bits not defined as valid in the mode attribute are not valid in

either word of the mode_set_masked attribute. The server MUST return

NFS4ERR_INVAL if any such bits are set to one in a SETATTR. If the

mode and mode_set_masked attributes are both specified in the same

SETATTR, the server MUST also return NFS4ERR_INVAL.

7.4. ACL-based Authorization Model

7.4.1. Processing Access Control Entries

To determine if a request succeeds, the server processes each

nfsace4 entry of type ALLOW or DENY in turn as ordered in the array.

Only ACEs that have a "who" that matches the requester are

considered. An ACE is considered to match a given requester if at

least one of the following is true:

The "who' designates a specific user which is the user making the

request.

The "who" specifies "OWNER@" and the user making the request is

the owner of the file.

The "who" designates a specific group and the user making the

request is a member of that group.

The "who" specifies "GROUP@" and the user making the request is a

member of the group owning the file.

The "who" specifies "EVERYONE@".

The "who" specifies "INTERACTIVE@", "NETWORK@", "DIALUP@",

"BATCH@", or "SERVICE@" and the requester, in the judgment of the

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

server, feels that designation appropriately describes the

requester.

The "who" specifies "ANONYMOUS@" or "AUTHENTICATED@" and the

requestor's authentication status matches the who, using the

definitions in Section 5.9

Each ACE is processed until all of the bits of the requester's

access have been ALLOWED. Once a bit (see below) has been ALLOWED by

an ACCESS_ALLOWED_ACE, it is no longer considered in the processing

of later ACEs. If an ACCESS_DENIED_ACE is encountered where the

requester's access still has unALLOWED bits in common with the

"access_mask" of the ACE, the request is denied. When the ACL is

fully processed, if there are bits in the requester's mask that have

not been ALLOWED or DENIED, access is denied.

Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types

do not affect a requester's access, and instead are for triggering

events as a result of a requester's access attempt. AUDIT and ALARM

ACEs are processed only after processing ALLOW and DENY ACEs if any

exist. This is necessary since the handling of AUDIT and ALARM ACEs

are affected by whether the access attempt is successful.

[Previous Treatment]: The NFSv4.1 ACL model is quite rich. Some

server platforms may provide access-control functionality that goes

beyond the UNIX-style mode attribute, but that is not as rich as the

NFS ACL model. So that users can take advantage of this more limited

functionality, the server may support the acl attributes by mapping

between its ACL model and the NFSv4.1 ACL model. Servers must ensure

that the ACL they actually store or enforce is at least as strict as

the NFSv4 ACL that was set. It is tempting to accomplish this by

rejecting any ACL that falls outside the small set that can be

represented accurately. However, such an approach can render ACLs

unusable without special client-side knowledge of the server's

mapping, which defeats the purpose of having a common NFSv4 ACL

protocol. Therefore, servers should accept every ACL that they can

without compromising security. To help accomplish this, servers may

make a special exception, in the case of unsupported permission

bits, to the rule that bits not ALLOWED or DENIED by an ACL must be

denied. For example, a UNIX-style server might choose to silently

allow read attribute permissions even though an ACL does not

explicitly allow those permissions. (An ACL that explicitly denies

permission to read attributes should still be rejected.)

[Author Aside]: While the NFSv4.1 provides that many might not need

or use, it is the one that the working group adopted by the working

group, and I have to assume that alternatives, such as the withdrawn

POSIX ACL proposal were considered but not adopted. The phrase

"unsupported permission bits" with no definition of the bit whose

¶

*

¶

¶

¶

¶

support might be dispensed with, implies that the server is free to

support whatever subset of these bits it chooses. As a result,

clients would not be able to rely on a functioning server

implementation of this OPTIONAL attribute. If there are specific

compatibility issues that make it necessary to allow non-support of

specific mask bits, then these need to be limited and the client

needs guidance about determining the set of unsupported mask bits.

[Previous Treatment]: The situation is complicated by the fact that

a server may have multiple modules that enforce ACLs. For example,

the enforcement for NFSv4.1 access may be different from, but not

weaker than, the enforcement for local access, and both may be

different from the enforcement for access through other protocols

such as SMB (Server Message Block). So it may be useful for a server

to accept an ACL even if not all of its modules are able to support

it.

[Author Aside]: The following paragraph does not provide helpful

guidance and takes no account of the need of the the client to be

able to rely on the server implementing protocol-specifying

semantics and giving notice in those cases in which it is unable to

so

[Previous Treatment]: The guiding principle with regard to NFSv4

access is that the server must not accept ACLs that appear to make

access to the file more restrictive than it really is.

7.4.2. V4.1 Attribute 58: dacl

The dacl attribute is like the acl attribute, but dacl allows only

ALLOW and DENY ACEs. The dacl attribute supports automatic

inheritance (see Section 5.10).

8. Common Considerations for Both File access Models

[Author Aside, Including List]: This subsections within this section

are derived from Section 6.3 of 8881, entitled "Common Methods.

However, its content is different because it has been rewritten to

deal with issues common to both file access models, which now

appears to have not been the original intention. Nevertheless, the

following changes have been made:

The section "Server Considerations" has been revised to deal with

both the mode and acl attributes, since the points being made

apply, in almost all cases, to both attributes.

The section "Client Considerations" has been heavily revised,

since what had been there did not make any sense to me.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

The section "Computing a Mode Attribute from an ACL" has been

moved to Section 9.3 since it deals with the co-ordination of the

posix and acl authorization models.

8.1. Server Considerations

The server uses the mode attribute or the acl attribute applying the

algorithm described in Section 7.4.1 to determine whether an ACL

allows access to an object.

[Author Aside, Including List]: The list previously in this section

(now described as "Previous Treatment" combines two related issues

in a way which obscures the very different security-related

consequences of two distinct issues:

In some cases an operation will be authorized but is not allowed

for reasons unrelated to authorization.

This has no negative effect on security.

The converse case does have troubling effects on security which

are mentioned in this section and discussed in more detail in

Section 17

[Author Aside, Including List]: The items in that list have been

dealt with as follows:

The first and sixth items fit under the first (i.e. less

troublesome) of these issues. They have have been transferred

into an appropriate replacement list.

The third item is to be deleted since it does not manifest either

of these issues. In fact, it refers to the semantics already

described in Section 5.4. is already described in ...

The second, fourth and fifth items need to be addressed in a new

list dealing with the potentially troublesome issues arising from

occasions in which the access semantics previously described are

relaxed, for various reasons.

Included are cases in which previous specifications explicitly

allowed this by using the term "MAY" and others in which the

existence of servers manifesting such behavior was reported, with

the implication that clients need to prepared for such behavior.

*

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

[Previous Treatment, Including List (Item #22a)]: However, these

attributes might not be the sole determiner of access. For example:

In the case of a file system exported as read-only, the server

will deny write access even though an object's file access

attributes would grant it.

Server implementations MAY grant ACE4_WRITE_ACL and ACE4_READ_ACL

permissions to prevent a situation from arising in which there is

no valid way to ever modify the ACL.

All servers will allow a user the ability to read the data of the

file when only the execute permission is granted (e.g., if the

ACL denies the user the ACE4_READ_DATA access and allows the user

ACE4_EXECUTE, the server will allow the user to read the data of

the file).

Many servers implement owner-override semantics in which the

owner of the object is allowed to override accesses that are

denied by the ACL. This may be helpful, for example, to allow

users continued access to open files on which the permissions

have changed.

Many servers provide for the existence of a "superuser" that has

privileges beyond an ordinary user. The superuser may be able to

read or write data or metadata in ways that would not be

permitted by the ACL or mode attributes.

A retention attribute might also block access otherwise allowed

by ACLs (see Section 5.13 of [8]).

[Consensus Needed, Including List (Item #22a)]: It should be noted

that, even when an operation is authorized, it may be denied for

reasons unrelated to authorization. For example:

In the case of a file system exported as read-only, the server

will deny write access even though an object's file access

attributes would authorize it.

A retention attribute might also block access otherwise allowed

by ACLs (see Section 5.13 of [8]).

[Consensus Needed, (Item #22a)]: There are also cases in which the

converse issue arises, so that an operation which is not authorized

as specified by the mode and ACL attributes is, nevertheless,

executed as if it were authorized. Because previous NFSv4

specifications have cited the cases listed below without reference

to the security problems that they create, it is necessary to

discuss them here to provide clarification of the security

implications of following this guidance, which is now superseded.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

These cases are listed below and discussed in more detail in Section

17.1.3.

[Consensus Needed, Including List (Item #22a)]: In the following

list, the treatment used in RFC8881 is quoted, while the

corresponding text in RFC7530 is essentially identical.

RFC8881 contains the following, which is now superseded:

Server implementations MAY grant ACE4_WRITE_ACL and

ACE4_READ_ACL permissions to prevent a situation from arising

in which there is no valid way to ever modify the ACL.

While, as a practical matter, there do need to be provisions to

deal with this issue, the "MAY" above is too broad,in that it

describes the motivation without any limits providing appropriate

restriction on the step that might be taken to deal with the

issue. See Section 17.1.3 for the updated treatment of this

issue.

RFC8881 contains the following, which is now superseded:

Many servers implement owner-override semantics in which the

owner of the object is allowed to override accesses that are

denied by the ACL. This may be helpful, for example, to allow

users continued access to open files on which the permissions

have changed.

Regardless of the truth of the first sentence above, either when

it was written or today, it needs to be stressed that the fact

that a server manifests a particular behavior does not imply that

it is valid according to the protocol specification. In this

case, the supposed "owner-override semantics" clearly are not

valid, since they contradict the specification of both the mode-

based and ACL-based approaches to file access authorization.

With regard to the second sentence of the quotation above, it is

not clear whether it is helpful or hurtful to allow continued

access to open files which have become inaccessible due to

changes in security and it is not clear that the working group

will make a decision on the matter in this document, despite the

obvious security implications. In any case, the resolution is

unlikely to depend on whether the owner is involved.

RFC8881 contains the following, which is now superseded:

Many servers have the notion of a "superuser" that has

privileges beyond an ordinary user. The superuser may be able

to read or write data or metadata in ways that would not be

permitted by the ACL or mode attributes.

¶

¶

* ¶

¶

¶

* ¶

¶

¶

¶

* ¶

¶

While many (or almost all) systems in which NFSv4 servers are

embedded, have provisions for such privileged access to be

provided, it does not follow that NFSv4 servers, as such, need to

have provision for such access.

Providing such access as part of the NFSv4 protocols, would

necessitate a major revision of the semantics of ACL including

such troublesome matters as the proper handling of AUDIT and

ALARM ACEs in the face of such privileged access.

Because of the effect such unrestricted access might have in

facilitating and perpetuating attacks, Section 17.1.3 will

explain that the treat analysis in Section 17, will not cover

servers which choose to allow such access.

8.2. Client Considerations

[Previous Treatment]: Clients SHOULD NOT do their own access checks

based on their interpretation of the ACL, but rather use the OPEN

and ACCESS operations to do access checks. This allows the client to

act on the results of having the server determine whether or not

access should be granted based on its interpretation of the ACL.

[Author Aside]: With regard to the use of "SHOULD NOT" in the

paragraph above, it is not clear what might be valid reasons to

bypass this recommendation. Perhaps "MUST NOT" or "should not" would

be more appropriate.

[Consensus Needed (Item #23a)]: Clients are expected to do their own

access checks based on their interpretation of the ACL, but instead

use the OPEN and ACCESS operations to do access checks. This allows

the client to act on the results of having the server determine

whether or not access should be granted based on its interpretation

of the ACL.

[Previous Treatment]: Clients must be aware of situations in which

an object's ACL will define a certain access even though the server

will not enforce it. In general, but especially in these situations,

the client needs to do its part in the enforcement of access as

defined by the ACL.

[Author Aside]: Despite what is said later, the only such case I

know of is the use of READ and EXECUTE where the client, but not the

server, has any means of distinguishing these. I don't know of any

others. If there were, how could ACCESS or OPEN be used to verify

access?

[Consensus Needed (Item #23a)]; Clients need to be aware of

situations in which an object's ACL will define a certain access

even though the server is not in position to enforce it because the

¶

¶

¶

¶

¶

¶

¶

¶

server does not have the relevant information, such as knowing

whether a READ is for the purpose of executing a file. Because of

such situations, the client needs to do be prepared to do its part

in the enforcement of access as defined by the ACL.

To do this, the client will send the appropriate ACCESS operation

prior to servicing the request of the user or application in order

to determine whether the user or application should be granted the

access requested.

[Previous Treatment (Item #24a)]: For examples in which the ACL may

define accesses that the server doesn't enforce, see Section 8.1.

[Author Aside]: The sentence above is clearly wrong since that

section is about enforcement the server does do. The expectation is

that it will be deleted as part of Consensus Item #24a.

9. Combining Authorization Models

9.1. Background for Combined Authorization Model

Both RFCs 7530 and 5661 contain material relating to the need, when

both mode and ACL attributes are supported, to make sure that the

values are appropriately co-ordinated. Despite the fact that these

discussions are different, they are compatible, and differ in only a

small number of areas.

[Author Aside]: From this point on, all unannotated paragraphs in

this section are to be assumed part of Consensus Item #25b

As a result, in this document, we will have a single treatment of

this issue, in Sections 9.2 through 9.11. In addition, an NFSv4.2-

based extension related to attribute co-ordination will be described

in Section 9.12.

The current NFSv4.0 and NFSv4.1 descriptions of this share one

unfortunate characteristic in that they both are written to give

server implementations a broad latitude in implementation choices

while neglecting entirely the need for the clients and users to have

a reliable description of what servers are to do in this area.

As a result, one of the goals of this new combined treatment will be

to limit this excessive freedom, while taking proper account of the

possibility of compatibility issues that a more tightly drawn

specification might give rise to.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[Author Aside, Including List]: The various ways in which these

kinds of issues have been dealt with are listed below:

In some cases, the term "MAY" is used in contexts where it is

inappropriate, since the allowed variation has the potential to

cause harm in that it leaves the client unsure exactly what

security-related action will be performed by the server.

There are also cases in which no RFC2119-defined keywords are

used but it is stated that certain server implementations do a

particular, leaving the impression that that action is to be

allowed, just as if "MAY" had been used.

There is a case in which the term "SHOULD" is clearly used

intentionally, without it being clear what the valid reasons to

ignore the guidance might be.

There are many case in which the term "SHOULD" is used without

any clear indication why it was used. In this situation it is

possible that the "SHOULD" was essentially treated as a "MAY" but

also possible that servers chose to follow the recommendation.

In order to deal with the many uses of the terms "SHOULD" and

"SHOULD NOT" in Section 9 and included subsections, which have no

clear motivation, it is to be assumed that the valid reasons to act

contrary to the recommendation given are the difficulty of changing

implementations based on previous analogous guidance, which may have

given the impression that the server was free to ignore the guidance

for any reason the implementer chose. This allows the possibility of

more individualized treatment of these instances once compatibility

issues have been adequately discussed.

[Author Aside]: In each subsection in which the the interpretation

of these term in the previous paragraph applies there will be an

explicit reference to Consensus Item #25, to draw attention to this

change, even in the absence of modified text.

9.2. Needed Attribute Coordination

On servers that support both the mode and the acl or dacl

attributes, the server must keep the two consistent with each other.

The value of the mode attribute (with the exception of the high-

order bits reserved for client use as described in Section 7.3.1)

must be determined entirely by the value of the ACL, so that use of

the mode is never required for anything other than setting the three

high-order bits. See Sections 9.6 through 9.8 for detailed

discussion.

[Previous Treatment (Item #25c)]: When a mode attribute is set on an

object, the ACL attributes may need to be modified in order to not

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

conflict with the new mode. In such cases, it is desirable that the

ACL keep as much information as possible. This includes information

about inheritance, AUDIT and ALARM ACEs, and permissions granted and

denied that do not conflict with the new mode.

[Author Aside]: the things that this formulation leaves uncertain,

is whether, if the ACL specifies permission for a named user group

or group, it "conflicts" with the node. Ordinarily, one might think

it does not, unless the specified user is the owner of the file or a

member of the owning group, or the specified group is the owning

group. However, while some parts of the existing treatment seem to

agree with this, other parts, while unclear, seem to suggest

otherwise, while the treatment in Section 9.6 is directly in

conflict.

[Previous Treatment (Item #26a)]: The server that supports both mode

and ACL must take care to synchronize the MODE4_*USR, MODE4_*GRP,

and MODE4_*OTH bits with the ACEs that have respective who fields of

"OWNER@", "GROUP@", and "EVERYONE@".

[Author Aside]: This sentence ignores named owners and group, giving

the impressions that there is no need to change them.

[Previous Treatment (Item #26a)]: This way, the client can see if

semantically equivalent access permissions exist whether the client

asks for the owner, owner_group, and mode attributes or for just the

ACL.

[Author Aside, Including List:] The above sentence, while hard to

interpret for a number a reasons, is worth looking at in detail

because it might suggest an approach different from the in the

previous sentence from the initial paragraph for The Previous

Treatment of Item #26a.

The introductory phrase "this way" adds confusion because it

suggests that there are other valid ways of doing this, while not

giving any hint about what these might be.

It is hard to understand the intention of "client can see if

semantically equivalent access permissions" especially as the

client is told elsewhere that he is not to interpret the ACL

himself.

If this sentence is to have any effect at all it, it would be to

suggest that the result be the same "whether the client asks for

the owner, owner_group, and mode attributes or for just the ACL."

If these are to be semantically equivalent it would be necessary

to delete ACEs for named users, which requires a different

approach form the first sentence of the original paragraph.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

{Consensus Needed (Items #26a, #28a)]: A server that supports both

mode and ACL need to take care to synchronize the MODE4_*USR,

MODE4_*GRP, and MODE4_*OTH bits with the ACEs that have respective

who fields of "OWNER@", "GROUP@", and "EVERYONE@". This is

relatively straightforward in the case of forward-slope modes, but

the case of reverse-slope modes need to be addressed as described in

Sections 9.3 and 9.6.

{Consensus Needed (Item #26a)]: How other ACEs are dealt with when

setting mode is described in Section 9.6. This includes ACEs with

other who value, all AUDIT and ALARM ACEs, and all ACES that affect

ACL inheritance.

[Author Aside, Including List]: The author believes that the

material now associated with Item #27, including the following

paragraph and Section 9.4 are best deleted. This is because of

reasons specified in that section and the following reasons listed

below:

Having multiple methods to map from ACL to mode undercuts the

whole purpose of Section 9, which is to co-ordinate these

attributes so that clients who use each of the attributes can use

that without interfering with those that reference others. That

cannot be accomplished if there were multiple valid ways that

servers might choose, without providing any means by which the

client might determine which mapping was being used.

The withdrawn POSIX draft ACLs would almost certainly have been

considered in connection with an NFSv4. In any case, they were

not adopted and the current ACL model adopted. Given that fact

there is no sense in burdening the new feature with the

substantial burden of supporting the one that was rejected by the

working group

It is very unlikely that such implementations still exist, given

that that it is over twenty years since the decision was made to

adopt the more extensive NFSv4 ACL model and over ten years since

RFC5661 was published. Even assuming this was justified as a

transition measure, the time for any such transition mechanisms

is long past.

Despite the statement in the next section that this alternate

model is "discouraged", its continued appearance as an alternate

way of computing mode, on the same level as the one appropriate

to the NFSv4 acl model encourages this use compared to a

situation in which no alternate method of computing mode was

mentioned.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

[Previous Treatment (Item #27a)]: In this section, much depends on

the method in specified Section 9.3. Many requirements refer to this

section. It should be noted that the methods have behaviors

specified with "SHOULD" and that alternate approaches are discussed

in Section 9.4. This is intentional, to avoid invalidating existing

implementations that compute the mode according to the withdrawn

POSIX ACL draft (1003.1e draft 17), rather than by actual

permissions on owner, group, and other.

[Author Aside]: Given the mixture of RFC2219 terms, I think all of

them in Section 9 need review. Further, given the effort that has

gone into Section 9, to accommodate these implementations of a draft

that was withdrawn decades ago. The idea of trying to make mode and

acl match is undercut when there are different valid ways of

computing the mode. There shouldn't be. To specify one way to do

this is necessary to accomplish the goal here and to do so would not

"invalidate" anything. Rather, it would establish, correctly, that

such implementations are not implementations of the NFSv4 ACL model,

but of the withdrawn POSIX ACL draft.

9.3. Computing a Mode Attribute from an ACL

[Previous Treatment (Item #27b)]: The following method can be used

to calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of a mode

attribute, based upon an ACL.

[Author Aside]: "can be used" says essentially "do whatever you

choose" and would make Section 9 essentially pointless. Would prefer

"is to be used" or "MUST", with "SHOULD" available if valid reasons

to do otherwise can be found.

[Consensus Needed (Items #27b, #28b)}: The following method (or

another one providing exactly the same results) SHOULD be used to

calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of a mode

attribute, based upon an ACL. In this case valid reasons to bypass

the recommendation are limited to implementor reliance on previous

specifications which ignored the cases of the owner having less

access than the owning group or the owning group having less access

than others. Further, in implementing or the maintaining an

implementation previously believed to be valid, the implementor

needs to be aware that this will result invalid values in some

uncommon cases.

[Author Aside, Including List]: The algorithm specified below, now

considered the Previous Treatment associated with Item #24a, has an

important flaw in does not deal with the (admittedly uncommon) case

in which the owner_group has less access than the owner or others

¶

¶

¶

¶

¶

have less access than the owner-group. In essence, this algorithm

ignores the following facts:

That GROUP@ includes the owning user while group bits in the mode

do not affect the owning user.

That EVERYONE includes the owning group while other bits in the

mode do not affect users within the owning group.

[Previous Treatment (Item #28a)]: First, for each of the special

identifiers OWNER@, GROUP@, and EVERYONE@, evaluate the ACL in

order, considering only ALLOW and DENY ACEs for the identifier

EVERYONE@ and for the identifier under consideration. The result of

the evaluation will be an NFSv4 ACL mask showing exactly which bits

are permitted to that identifier.

[Previous Treatment (Item #28a)]: Then translate the calculated mask

for OWNER@, GROUP@, and EVERYONE@ into mode bits for, respectively,

the user, group, and other, as follows:

[Consensus Needed, including List(Item #28a)]: First, for each of

the sets of mode bits (i.e., user, group other, evaluate the ACL in

order, with a specific evaluation procedure depending on the

specific set of mode bits being determined. For each set there will

be one or more special identifiers considered in a positive sense so

that ALLOW and DENY ACE's are considered in arriving at the mode

bit. In addition, for some sets of bits, there will be one or more

special identifiers to be considered only in a negative sense, so

that only DENY ACE's are considered in arriving at the mode it. The

users to be considered are as follows:

For the owner bits, "OWNER@" and "EVERYONE@" are to be

considered, both in a positive sense.

For the group bits, "GROUP@" and "EVERYONE@" are to be

considered, both in a positive sense, while "OWNER@" is to be

considered in a negative sense.

For the other bit, "EVERYONE@" is to be considered in a positive

sense, while "OWNER@" and "GROUP@" are to be considered in a

negative sense.

[Consensus Needed (Item #28a)]: Then translate the calculated mask

for for each set of bit into the corresponding mode bits for, user,

group, and other, as follows:

Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and

only if ACE4_READ_DATA is set in the corresponding mask.

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

1.

¶

Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if

and only if ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set

in the corresponding mask.

Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if

and only if ACE4_EXECUTE is set in the corresponding mask.

9.4. Alternatives in Computing Mode Bits

[Author Aside]: For reasons explained below, the author believes

this section needs to deleted, as part of Consensus Item #27c. In

order to enable this deletion or its replacement by an alternate

formulation if the working group so decides, all unannotated

paragraphs within this section are to be considered the Previous

Treatment corresponding to Consensus Item #27c.

Some server implementations also add bits permitted to named users

and groups to the group bits (MODE4_RGRP, MODE4_WGRP, and

MODE4_XGRP).

Implementations are discouraged from doing this, because it has been

found to cause confusion for users who see members of a file's group

denied access that the mode bits appear to allow. (The presence of

DENY ACEs may also lead to such behavior, but DENY ACEs are expected

to be more rarely used.)

[Author Aside]: The text does not seem to really discourage this

practice and makes no reference to the need to standardize behavior

so the clients know what to expect or any other reason for providing

standardization of server behavior.

The same user confusion seen when fetching the mode also results if

setting the mode does not effectively control permissions for the

owner, group, and other users; this motivates some of the

requirements that follow.

[Author Aside]: The part before the semicolon appears to be relevant

to Consensus Item #23 but does not point us to a clear conclusion.

The statement certainly suggests that the 512-ACL approach is more

desirable but the absence of a more direct statement to that effect

suggest that this is a server implementer choice.

[Author Aside]: The part after the semicolon is hard to interpret in

that it is not clear what "this" refers to or which which

requirements are referred to by "some of the requirements that

follow". The author would appreciate hearing from anyone who has

insight about what might have been intended here.

2.

¶

3.

¶

¶

¶

¶

¶

¶

¶

¶

9.5. Setting Multiple ACL Attributes

In the case where a server supports the sacl or dacl attribute, in

addition to the acl attribute, the server MUST fail a request to set

the acl attribute simultaneously with a dacl or sacl attribute. The

error to be given is NFS4ERR_ATTRNOTSUPP.

9.6. Setting Mode and not ACL (overall)

9.6.1. Setting Mode and not ACL (vestigial)

[Author Aside]: All unannotated paragraphs as considered the

Previous treatment of Consensus Item #30a.

[Previous Treatment (Item #?a)]: When any of the nine low-order mode

bits are subject to change, either because the mode attribute was

set or because the mode_set_masked attribute was set and the mask

included one or more bits from the nine low-order mode bits, and no

ACL attribute is explicitly set, the acl and dacl attributes must be

modified in accordance with the updated value of those bits. This

must happen even if the value of the low-order bits is the same

after the mode is set as before.

Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl

attribute) are unaffected by changes to the mode.

In cases in which the permissions bits are subject to change, the

acl and dacl attributes MUST be modified such that the mode computed

via the method in Section 9.3 yields the low-order nine bits

(MODE4_R*, MODE4_W*, MODE4_X*) of the mode attribute as modified by

the attribute change. The ACL attributes SHOULD also be modified

such that:

If MODE4_RGRP is not set, entities explicitly listed in the ACL

other than OWNER@ and EVERYONE@ SHOULD NOT be granted

ACE4_READ_DATA.

If MODE4_WGRP is not set, entities explicitly listed in the ACL

other than OWNER@ and EVERYONE@ SHOULD NOT be granted

ACE4_WRITE_DATA or ACE4_APPEND_DATA.

If MODE4_XGRP is not set, entities explicitly listed in the ACL

other than OWNER@ and EVERYONE@ SHOULD NOT be granted

ACE4_EXECUTE.

Access mask bits other than those listed above, appearing in ALLOW

ACEs, MAY also be disabled.

Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect

the permissions of the ACL itself, nor do ACEs of the type AUDIT and

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

ALARM. As such, it is desirable to leave these ACEs unmodified when

modifying the ACL attributes.

Also note that the requirement may be met by discarding the acl and

dacl, in favor of an ACL that represents the mode and only the mode.

This is permitted, but it is preferable for a server to preserve as

much of the ACL as possible without violating the above

requirements. Discarding the ACL makes it effectively impossible for

a file created with a mode attribute to inherit an ACL (see Section

9.10).

9.6.2. Setting Mode and not ACL (Discussion)

[Author Aside]: All unannotated paragraphs as considered Author

Asides relating to Consensus Item #30b.

Existing documents are unclear about the changes to be made to an

existing ACL when the nine low-order bits of the mode attribute are

subject to modification using SETATTR.

A new treatment needs to apply to all minor versions. It will be

necessary to specify that, for all minor versions, setting of the

mode attribute, subjects the low-order nine bits to modification.

One important source of this lack of clarity is the following

paragraph from Section 9.6.1, which we refer to later as the

trivial-implementation-remark".

Also note that the requirement may be met by discarding the acl

and dacl, in favor of an ACL that represents the mode and only

the mode. This is permitted, but it is preferable for a server to

preserve as much of the ACL as possible without violating the

above requirements. Discarding the ACL makes it effectively

impossible for a file created with a mode attribute to inherit an

ACL (see Section 9.10).

The only "requirement" which might be met by the procedure mentioned

above is the text quoted below.

In cases in which the permissions bits are subject to change, the

acl and dacl attributes MUST be modified such that the mode

computed via the method in Section 9.3 yields the low-order nine

bits (MODE4_R*, MODE4_W*, MODE4_X*) of the mode attribute as

modified by the attribute change.

While it is true that this requirement could be met by the specified

treatment, this fact does not, in itself, affect the numerous

recommendations that appear between the above requirement and the

trivial-implementation-remark.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

It may well be that there are are implementations that have treated

the trivial-implementation-remark as essentially allowing them to

essentially ignore all of those recommendations, resulting in a

situation in which were treated as if it were a trivial-

implementation-ok indication. How that issue will be dealt with in a

replacement for Section 9.6.1 will be affected by the working

group's examination of compatibility issues.

The following specific issues need to be addressed:

Handling of inheritance.

Beyond the possible issues that arise from the trivial-

implementation-ok interpretation, the treatment in Section 9.6.1,

by pointing specifically to existing INHERIT_ONLY ACEs obscures

the corresponding need to convert ACE's that specify both

inheritance and access permissions to be converted to

INHERIT_ONLY ACEs.

Reverse-slope modes

Named users and groups.

The exact bounds of what within the ACL is covered by the low-

order bits of the mode.

It appears that for many of the issues, there are many possible

readings of the existing specs, leading to the possibility of

multiple inconsistent server behaviors. Furthermore, there are cases

in which none of the possible behaviors described in existing

specifications meets the needs.

As a result of these issues, the existing specifications do not

provide a reliable basis for client-side implementations of the ACL

feature which a Proposed Standard is normally expected to provide.

9.6.3. Setting Mode and not ACL (Proposed)

[Author Aside]: This proposed section is part of Consensus Item #30c

and all unannotated paragraphs within it are to be considered part

of that Item. Since the proposed text includes support for reverse-

slope modes, treats all minor versions together and assumes

decisions about handling of ACEs for named users and groups, the

relevance of consensus items #26, #28, and #29 should be noted.

[Author Aside]: As with all such Consensus Items, it is expected

that the eventual text in a published RFC might be substantially

different based on working group discussion of client and server

needs and possible compatibility issues. In this particular case,

that divergence can be expected to be larger, because the author was

¶

¶

* ¶

¶

* ¶

* ¶

*

¶

¶

¶

¶

forced to guess about compatibility issues and because earlier

material, on which it is based left such a wide range of matters to

the discretion of server implementers. It is the author's hope that,

as the working group discusses matters, sufficient attention is

placed on the need for client-side implementations to have reliable

information about expected server-side actions.

This section describes how ACLs are to be updated in response to

actual or potential changes in the mode attribute, when the

attributes needed by both of the file access authorization models

are supported. It supersedes the discussions of the subject in RFCs

7530 and 8881, each of which appeared in Section 6.4.1.1 of the

corresponding document.

It is necessary to approach the matter differently than in the past

because:

Organizational changes are necessary to address all minor

versions together.

Those previous discussions are often internally inconsistent

leaving it unclear what specification-mandated actions were being

specified..

In many cases, servers were granted an extraordinary degree of

freedom to choose the action to take, either explicitly or via an

apparently unmotivated use of SHOULD, leaving it unclear what

might be considered "valid" reasons to ignore the recommendation.

There appears to have been no concern for the problems that

clients and applications might encounter dealing ACLs in such an

uncertain environment.

Cases involving reverse-slope modes were not adequately

addressed.

The security-related effects of SVTX were not addressed.

While that sort of approach might have been workable at one time, it

made it difficult to devise client-side ACL implementations, even if

there had been any interest in doing so. In order to enable this

situation to eventually be rectified, we will define the preferred

implementation here, but in order to provide temporary compatibility

with existing implementations based on reasonable interpretations of

RFCs 7530 and 8881. To enable such compatibility the term "SHOULD"

will be used, with the understanding that valid reasons to bypass

the recommendation, are limited to implementers' previous reliance

on these earlier specifications and the difficulty of changing them

now.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

When the recommendation is bypassed in this way, it is necessary to

understand, that, until the divergence is rectified, or the client

is given a way to determine the detail of the server's non-standard

behavior, client-side implementations may find it difficult to

implement a client-side implementation that correctly interoperates

with the existing server.

When mode bits involved in determining file access authorization are

subject to modification, the server MUST, when ACL-related

attributes have been set, modify the associated ACEs so as not to

conflict with the new value of the mode attribute.

The occasions to which this requirement applies, vary with the

attribute being set and the type of object being dealt with:

For all minor versions, any change to the mode attribute,

triggers this requirement

When the set_mode_masked attribute is being set on an object

which is not a directory, whether this requirement is triggered

depends on whether any of the nine low-order bits of the mode is

included in the mask.

When the set_mode_masked attribute is being set on a directory,

whether this requirement is triggered depends on whether any of

the nine low-order bits of the mode or the SVTX bit is included

in the mask of bit whose values are to be set.

When the requirement is triggered, ACEs need to be updated to be

consistent with the new mode attribute. In the case of AUDIT and

ALARM ACEs, which are outside of file access authorization, no

change is to be made.

For ALLOW and DENY ACEs, changes are necessary to avoid conflicts

with the mode in a number of areas:

The handling of ACEs that have consequences relating to ACL

inheritance.

The handling of ACEs with a who-value of OWNER@, GROUP@, or

EVERYONE@ need to be adapted to the new mode.

ACEs whose who-value is a named user or group, are to be retained

or not based on the mode being set as described below.

ACEs whose who-value is one of the other special values defined

in Section 5.9 are to be left unmodified.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

In order to deal with inheritance issues, the following SHOULD be

done:

ACEs that specify inheritance-only need to be retained,

regardless of the value of who specified, since inheritance

issues are outside of the semantic range of the mode attribute.

ACEs that specify inheritance, in addition to allowing or denying

authorization for the current object need to be converted into

inheritance-only ACEs. This needs to occur irrespective of the

value of who appearing in the ACE.

For NFSv4 servers that support the dacl attribute, at least the

first of the above MUST be done.

Other ACEs are to be treated are classified based on the ACE's who-

value:

ACEs whose who-value is OWNER@, GROUP@, or EVERYONE@ are referred

to as mode-directed ACEs and are subject to extensive

modification.

ACEs whose who-value is a named user or group are either left

alone or subject to extensive modification, as described below.

ACEs whose who-value is one of the other special values defined

in Section 5.9 are left as they are.

Mode-directed ACEs need to be modified so that they reflect the mode

being set.

In effecting this modification, the server will need to distinguish

mask bits deriving from mode attributes from those that have no such

connection. The former can be categorized as follows:

For non-directory objects, the mask bits ACE4_READ_DATA (from the

read bit in the mode), ACE4_EXECUTE (from the execute bit in the

mode), and ACE4_WRITE_DATA together with ACE4_APPEND_DATA (from

the write bit in the mode) are all derived from the set of three

mode bits appropriate to the current who-value.

For directories, analogous mask bits are included:

ACE4_LIST_DIRECTORY (from the read in the mode), ACE4_EXECUTE

(from the execute bit in the mode), and ACE4_ADD_FILE together

with ACE4_ADD_SUBDIRECTORY and ACE4_DELETE_CHILD> (from the write

bit in the mode) are all included based on the set of three mode

bits appropriate to the current who-value.

When the SVTX bit is set, ACE4_DELETE_CHILD is set, regardless of

the values of the low-order nine bit of the mode.

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

When named attributes are supported for the object whose mode is

subject to change, ACE4_READ_NAMED_ATTRIBUTES is set based on the

read bit and ACE4_WRITE_NAMED_ATTRIBUTES is set based on the

write bit based on the set of three mode bits appropriate to the

current who-value.

In the case of OWNER@, ACE4_WRITE_ACL, ACE4_WRITE_ATTRIBUTES

ACE4_WRITE_ACL, ACE4_WRITE_OWNER are all set.

The union of these groups of mode bit are referred to as the mode-

relevant mask bits.

[Author Aside]: Except for the case of ACE4_SYNCHRONIZE, the

handling of mask bits which are not mode-relevant is yet to be

clarified. For tracking purposes, the handling of mask bits

ACE4_READ_ATTRIBUTES, ACE4_WRITE_RETENTION,

ACE4_WRITE_RETENTION_HOLD, ACE4_READ_ACL will be dealt with as

Consensus Item #31.

If the mode is of forward-slope, then each set of three bits is

translated into a corresponding set of mode bits. Then, for each

ALLOW ACE with one of these who values, all mask bits in this class

are deleted and the computed mode bits for that who-value

substituted. For DENY ACEs, all mask bits in this class are reset,

and, if none remain, the ACE MAY be deleted.

In the case of reverse-slope modes, the following SHOULD be done:

For mode-directed ACEs all mode-relevant mask bits are reset,

and, if none remain, the ACE MAY be deleted.

Then, proceeding from owner to others, ALLOW ACEs are generated

based on the computed mode-relevant mask bits.

At each stage, if the mode-relevant mask bits for the current

stage includes mask bits not set for the previous stage, then a

DENY ACE needs to be added before the new ALLOW ACE. That ACE

will have a who-value based on the previous stage and a mask

consisting of the bit included in the current stage that were not

included in the previous stage.

In cases in which the above recommendation is not followed, the

server MUST follow a procedure which arrives at an ACL which behaves

identically for all cases involving forward-slope mode values.

When dealing with ACEs whose who-value is a named user or group,

they SHOULD be processed as follows:

DENY ACEs are left as they are.

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

* ¶

ALLOW ACES are subject to filtering to effect mode changes that

deny access to any principal other than the owner.

To determine the set of mode bits to which this filtering

applies, the mode bits for group are combined with those for

others, to get a set of three mode bits to determine which of the

mode privileges (read, write, execute) are denied to all

principals other than the owner, i.e. the set of bits not present

in either the bits for group or the bits for others.

Those three bits are converted to the corresponding set of mask

bits, according to the rules above.

All such mask bits are reset in the ACE, and, if none remain, the

ACE MAY be deleted.

In cases in which the above recommendation is not followed, the

server MUST follow a procedure which arrives at an ACL which behaves

identically for all cases involving forward-slope mode values. This

would be accomplished if the mask bits were reset based on the group

bits alone, as had been recommended in earlier specifications.

9.7. Setting ACL and Not Mode

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25d.

When setting the acl or dacl and not setting the mode or

mode_set_masked attributes, the permission bits of the mode need to

be derived from the ACL. In this case, the ACL attribute SHOULD be

set as given. The nine low-order bits of the mode attribute

(MODE4_R*, MODE4_W*, MODE4_X*) MUST be modified to match the result

of the method in Section 9.3. The three high-order bits of the mode

(MODE4_SUID, MODE4_SGID, MODE4_SVTX) SHOULD remain unchanged.

9.8. Setting Both ACL and Mode

When setting both the mode (includes use of either the mode

attribute or the mode_set_masked attribute) and the acl or dacl

attributes in the same operation, the attributes MUST be applied in

the following order order: mode (or mode_set_masked), then ACL. The

mode-related attribute is set as given, then the ACL attribute is

set as given, possibly changing the final mode, as described above

in Section 9.7.

9.9. Retrieving the Mode and/or ACL Attributes

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25e.

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

Some server implementations may provide for the existence of

"objects without ACLs", meaning that all permissions are granted and

denied according to the mode attribute and that no ACL attribute is

stored for that object. If an ACL attribute is requested of such a

server, the server SHOULD return an ACL that does not conflict with

the mode; that is to say, the ACL returned SHOULD represent the nine

low-order bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*)

as described in Section 9.3.

For other server implementations, the ACL attribute is always

present for every object. Such servers SHOULD store at least the

three high-order bits of the mode attribute (MODE4_SUID, MODE4_SGID,

MODE4_SVTX). The server SHOULD return a mode attribute if one is

requested, and the low-order nine bits of the mode (MODE4_R*,

MODE4_W*, MODE4_X*) MUST match the result of applying the method in

Section 9.3 to the ACL attribute.

9.10. Creating New Objects

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25f.

If a server supports any ACL attributes, it may use the ACL

attributes on the parent directory to compute an initial ACL

attribute for a newly created object. This will be referred to as

the inherited ACL within this section. The act of adding one or more

ACEs to the inherited ACL that are based upon ACEs in the parent

directory's ACL will be referred to as inheriting an ACE within this

section.

Implementors should base the behavior of CREATE and OPEN depending

on the presence or absence of the mode and ACL attributes by

following the directions below:

If just the mode is given in the call:

In this case, inheritance SHOULD take place, but the mode MUST

be applied to the inherited ACL as described in Section 9.6,

thereby modifying the ACL.

If just the ACL is given in the call:

In this case, inheritance SHOULD NOT take place, and the ACL as

defined in the CREATE or OPEN will be set without modification,

and the mode modified as in Section 9.7.

If both mode and ACL are given in the call:

In this case, inheritance SHOULD NOT take place, and both

attributes will be set as described in Section 9.8.

¶

¶

¶

¶

¶

1. ¶

¶

2. ¶

¶

3. ¶

¶

If neither mode nor ACL is given in the call:

In the case where an object is being created without any

initial attributes at all, e.g., an OPEN operation with an

opentype4 of OPEN4_CREATE and a createmode4 of EXCLUSIVE4,

inheritance SHOULD NOT take place (note that EXCLUSIVE4_1 is a

better choice of createmode4, since it does permit initial

attributes). Instead, the server SHOULD set permissions to deny

all access to the newly created object. It is expected that the

appropriate client will set the desired attributes in a

subsequent SETATTR operation, and the server SHOULD allow that

operation to succeed, regardless of what permissions the object

is created with. For example, an empty ACL denies all

permissions, but the server should allow the owner's SETATTR to

succeed even though WRITE_ACL is implicitly denied.

In other cases, inheritance SHOULD take place, and no

modifications to the ACL will happen. The mode attribute, if

supported, MUST be as computed in Section 9.3, with the

MODE4_SUID, MODE4_SGID, and MODE4_SVTX bits clear. If no

inheritable ACEs exist on the parent directory, the rules for

creating acl, dacl, or sacl attributes are implementation

defined. If either the dacl or sacl attribute is supported,

then the ACL4_DEFAULTED flag SHOULD be set on the newly created

attributes.

9.11. Use of Inherited ACL When Creating Objects

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25g.

If the object being created is not a directory, the inherited ACL

SHOULD NOT inherit ACEs from the parent directory ACL unless the

ACE4_FILE_INHERIT_ACE flag is set.

If the object being created is a directory, the inherited ACL should

inherit all inheritable ACEs from the parent directory, that is,

those that have the ACE4_FILE_INHERIT_ACE or

ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has

ACE4_FILE_INHERIT_ACE set but ACE4_DIRECTORY_INHERIT_ACE is clear,

the inherited ACE on the newly created directory MUST have the

ACE4_INHERIT_ONLY_ACE flag set to prevent the directory from being

affected by ACEs meant for non-directories.

When a new directory is created, the server MAY split any inherited

ACE that is both inheritable and effective (in other words, that has

neither ACE4_INHERIT_ONLY_ACE nor ACE4_NO_PROPAGATE_INHERIT_ACE

set), into two ACEs, one with no inheritance flags and one with

ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or sacl attribute,

4. ¶

¶

¶

¶

¶

¶

both of those ACEs SHOULD also have the ACE4_INHERITED_ACE flag

set.) This makes it simpler to modify the effective permissions on

the directory without modifying the ACE that is to be inherited to

the new directory's children.

9.12. Combined Authorization Models for NFSv4.2

The NFSv4 server implementation requirements described in the

subsections above apply to NFSv4.2 as well and NFSv4.2 clients can

assume that the server follows them.

NFSv4.2 contains an OPTIONAL extension, defined in [13], which is

intended to reduce the interference of modes, restricted by the

umask mechanism, with the acl inheritance mechanism. The extension

allows the client to specify the umask separately from the mask

attribute.

10. Labelled NFS Authorization Model

The labelled NFS feature of NFSv4.2 is designed to support Mandatory

Access control.

The attribute sec_label enables an authorization model focused on

Mandatory Access Control and is described in Section 10.

Not much can be said about this feature because the specification,

in the interest of flexibility, has left important features

undefined in order to allow future extension. As a result, we have

something that is a framework to allow Mandatory Access Control

rather than one to provide it. In particular,

The sec_label attribute, which provides the objects label has no

existing specification.

There is no specification of the of the format of the subject

label or way to authenticate them.

As a result, all authorization takes place on the client, and the

server simply accepts the client's determination.

This arrangements shares important similarities with AUTH_SYS. As

such it makes sense:

To require/recommend that an encrypted connection be used.

To require/recommend that client and server peers mutually

authenticate as part of connection establishment.

That work be devoted to providing a replacement without the above

issues.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

11. State Modification Authorization

Modification of locking and session state data should not be done by

a client other than the one that created the lock. For this form of

authorization, the server needs to identify and authenticate client

peers rather than client users.

Such authentication is not directly provided by any RPC

authentication flavor. However, RPC-based transports, when suitably

configured, can provide this authentication.

NFSv4.1 defines a number of ways to provide appropriate

authorization facilities. These will not be discussed in detail here

but the following points should be noted:

NFSv4.1 defines the MACHCRED mechanism which uses the RPCSEC_GSS

infrastructure to provide authentication of the clients peer.

However, this is of no value when AUTH_SYS is being used.

NFSv4.1 also defines the SSV mechanism which uses the RPCSEC_GSS

infrastructure to enable it to be reliably determined whether two

different client connections are connected to the same client. It

is unclear whether the word "authentication" is appropriate in

this case. As with MACHCRED, this is of no value when AUTH_SYS is

being used.

Because of the lack of support for AUTH_SYS and for NFSv4.0, it

is quite desirable for clients to use and for servers to require

the use of client-peer authentication as part of connection

establishment.

When unauthenticated clients are allowed, their state is exposed to

unwanted modification as part of disruption or denial-of-service

attacks. As a result, the potential burdens of such attacks are felt

principally by clients who choose not to provide such

authentication.

12. Other Uses of Access Control Lists

Whether the acl or sacl attributes are used, AUDIT and ALARM ACEs

provide security-related facilities separate from the the file

access authorization provide by ALLOw and DENY ACEs

AUDIT ACEs provide a means to audit attempts to acess specified

file by specified sets of principals.

ALARM ACEs provide a means to draw special attention to attempts

to acess specified files by specified sets of principals.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

12.1. V4.1 Attribute 59: sacl

The sacl attribute is like the acl attribute, but sacl allows only

AUDIT and ALARM ACEs. The sacl attribute supports automatic

inheritance (see Section 5.10).

13. Identification and Authentication

Various objects and subjects need to be identified for a protocol to

function. For it to be secure, many of these need to be

authenticated so that incorrect identification is not the basis for

attacks.

13.1. Identification vs. Authentication

It is necessary to be clear about this distinction which has been

obscured in the past, by the use of the term "RPC Authentication

Flavor" in connection with situation in which identification without

authentication occurred or in which there was neither identification

nor authentication involved. As a result, we will use the term "RPC

Flavors" instead

13.2. Items to be Identified

Some identifier are not security-relevant and can used be used

without authentication, given that, in the authorization decision,

the object acted upon needs only to be properly identified

File names are of this type.

Unlike the case for some other protocols, confusion of names that

result from internationalization issues, while an annoyance, are

not relevant to security. If the confusion between LATIN CAPITAL

LETTER O and CYRILLIC CAPITAL LETTER O, results in the wrong file

being accessed, the mechanisms described in Section 7 prevent in

appropriate access being granted.

Despite the above, it is desirable if file names together with

similar are not transferred in the clear as the information

exposed may give attackers useful information helpful in planning

and executing attacks.

The case of file handles is similar.

Identifiers that refer to state shared between client and server can

be the basis of disruption attacks since clients and server

necessarily assume that neither side will change the state corpus

without appropriate notice.

¶

¶

¶

¶

* ¶

¶

¶

* ¶

¶

While these identifiers do not need to be authenticated, they are

associated with higher-level entities for which change of the state

represented by those entities is subject to peer authentication.

Unexpected closure of stateids or changes in state sequence

values can disrupt client access as no clients have provision to

deal with this source of interference.

While encryption may make it more difficult to execute such

attacks attackers can often guess stateid's since server

generally not randomize them.

Similarly, modification to NFSv4.1 session state information can

result in confusion if an attacker changes the slot sequence by

assuring spurious requests. Even if the request is rejected, the

slot sequence is changed and clients may a difficult time getting

back in sync with the server.

While encryption may make it more difficult to execute such

attacks attackers can often guess slot id's and obtain sessinid's

since server generally do not randomize them.

it is necessary that modification of the higher-levell entities be

restricted to the client that created them.

For NFSv4.0, the relevant entity is the clientid.

for NFSv4.1, the relevant entity is the sessionid.

Identifiers describing the issuer of the request, whether in numeric

or string form always require authentication.

13.3. Authentication Provided by specific RPC Flavors

Different flavors differ quite considerably, as discussed below;

When AUTH_NONE is used, the user making the request is neither

authenticated nor identified to the server.

Also, the server is not authenticated to the client and has no

way to determine whether the server it is communicating with is

an imposter.

When AUTH_SYS is used, the user making is the request identified

but there no authentication of that identification.

¶

*

¶

¶

*

¶

¶

*¶

¶

* ¶

* ¶

¶

¶

*

¶

¶

*

¶

As in the previous case, the server is not authenticated to the

client and has no way to determine whether the server it is

communicating with is an imposter.

When RPCSEC_GSS is used, the user making the request is

authenticated as is the server peer responding.

13.4. Authentication Provided by the RPC Transport

Different transports differ quite considerably, as discussed below.

In contrast to the case of RPC flavors, any authentication happens

once, at connection establishment, rather than on each RPC request.

As a result, it is the client and server peers, rather than

individual users that is authenticated.

For most transports, such as TCP and RPC-over-RDMA version 1,

there is no provision for peer authentication.

As a result use of AUTH_SYS together with such transports is

inherently problematic.

Some transports provide for the possibility of mutual peer

authentication.

14. Security of Data in Flight

14.1. Data Security Provided by the Flavor-associated Services

The only flavor providing these facilities is RPCSEC_GSS. When this

flavor is used, data security can be negotiated between client and

server as described in Section 15.2. However, when data security is

provided at the transport level, as described in Section 14.2, the

negotiation of privacy and integrity support is unnecessary,

Other flavors, such as AUTH_SYS and AUTH_NONE have no such data

security facilities. When these flavor are used, the only data

security is provided by the transport.

14.2. Data Security Provided by the RPC Transport

Some transports provide data security for all transactions performed

on them, eliminating the need for that security to be provided or

negotiated by the selection of particular flavors, mechanism, or

services.

15. Security Negotiation

[Author Aside]: All unannotated paragraphs in this section are

considered to b part of Consensus Item #32a

¶

*

¶

¶

*

¶

¶

*

¶

¶

¶

¶

¶

As previously in NFSv4, we use the term "negotiation" to

characterize the process of the server providing a set of options

and the client selecting one.

The use of SECINFO, possibly with SECINFO_NONAME, remains the

primary means by which the security parameters are determined. The

addition of transports to flavors in providing security has resulted

in the following changes:

Transport-related security choices are typically decided at

connection-establishment so there needs to be provision for

negotiation at this point.

Despite the above, because the choices of flavor and transport

affect one another, SECINFO has been extended by the addition of

pseudo-flavors, while retaining the existing XDR, to allow

negotiation of transport choices and accompanying connection

establishment options, in addition to selection of flavors and

accompanying services. This allows server policies for such

matters to be different for different portions of the namespace.

15.1. Flavors and Pseudo-flavors

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #32b

The flavor field of the secinfo4 items returned by SECINFO and

SECINO_NONAME have always allowed pseudo flavors to be included.

However, previous treatments of these operations have not provided

information about how responses containing such pseudo-flavors are

to be interpreted.

Those pseudo-flavors now provide a means of extending the

negotiation process so it is capable of providing for the

negotiation of the use particular RPC transports and security-

related options for the connections established using those

transports.

The flavors AUTH_NONE, AUTH_SYS and RPCSEC_GSS continue to indicate

the acceptability of the corresponding method of user

authentication, user identification, or user non-identification,

when used with a particular RPC transport.

The flavor AUTH_TLS, which is not used as part of issuing requests

is not included in this list and is treated as a connection-type-

specifying pseudo-flavor.

secinfo4s for the flavor RPCSEC_GSS contains additional information

describing the specific security algorithm to be used and the

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

ancillary services to be provided (e.g. integrity, privacy) when

these services are not provided by the transport.

Such flavors are referred to as "identification-specifying flavors"

The classification below organizes the flavors and pseudo-flavors

used in security negotiation while Section 15.4 describes how the

set of secinfos in a response can be used by the client to select

acceptable combinations of security flavor, security mechanism,

security services, security-related transports, and security-related

connection characteristics.

The pseudo-flavors designating a particular transport type such

as XPT_TCP or XPT_RDMA.

These pseudo-flavors are referred to as "transport- specifying

flavors".

The pseudo-flavors designating restrictions on acceptable

connection characteristics include XPCH_ENCRYPT, XPCH_PEERAUTH,

and XPCH_SECURE.

Such pseudo-flavors are referred to as "transport-restriction

pseudo-flavors".

The pseudo-flavors denoting sets of allowable connection types.

While many connection types are designated by a combination of a

flavor designating a transport with on designating a set of

connection characteristics, there are pseudo-flavors, called

"conection-type pseido-flavror that designate a a set of

connection types directly.

These include the flavor AUTH_TLS which is equivalent to XP_TCP

combined with XPCH_ENCRYPT, and the pseudo-flavor XP_TCP_SECURE

equivalent to XP_TCP combined with XPCH_SECURE.

The special pseudo-flavors, XPBREAK, XPCLEAR and XPCURRENT

15.2. Negotiation of Security Flavors and Mechanisms

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #32c

For the current connection, this proceeds as it has previously, when

security-relevant transports were not available. Flavor entries,

including those including mechanism information are listed in order

of server preference and apply, by default, to the current

connection, which is normally is favored by the server.

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

¶

* ¶

¶

¶

When other transport-identifying pseudo-flavors appear before the

flavor entries, then the server is indicating that these transport

types are also acceptable, with the server preference following the

ordering of the entries. In this case, any flavor entries that

follow a transport entry specify that those flavor are usable with

the transport types or connection types denoted by that transport

entry.

15.3. Negotiation of RPC Transports and Characteristics

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #32d

First we define some necessary terminology.

A transport-specifying pseudo-flavor specifies one of a small set

of RPC transport types such as TCP or RDMA. There are also

pseudo-flavors that specify a set of transport types such as

XPT_ALL.

Connection characteristics are designations of security-relevant

characteristics or sets of characteristics that connections might

have.

There are pseudo-flavors associated with connection

characteristics such as XPCH_CLPEERAUTH, denoting client-peer

authentication and XPCH_ENCRYPT, denoting the presence of an

encrypted channel. The pseudo-flavor XPCH_SECURE denotes the

presence of peer mutual authentication together with the use of

an encrypted channel.

The combination of a transport type with a set of connection

characteristics is considered a connection type. While many

connection types are designated by a combination of a flavor

designating a transport with on designating a set of connection

characteristics, there are pseudo-flavors that designate a set of

connection types directly.

For example, the flavor AUTH_TLS is equivalent to XP_TCP combined

with XPCH_ENCRYPT and XPCH_CLPEERAUTH while the pseudo-flavor

XP_TCP_SECURE equivalent to XP_TCP combined with CONCH_SECURE.

A flavor specification designates a specific flavor, or, in the

case of RPCSEC_GSS, a flavor combined with additional mechanism

and service information.

A flavor assignment denotes the association of a specific flavor

specification with a connection type.

¶

¶

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

A secinfo response will designate a set of valid flavor assignments

with an implied server ordering derived from the order that the

entries appear in.

In interpreting the response array the client is to maintain sets of

designated transport types, connection characteristics and

connection types specified individually (i.e. without separately

specifying transport types and connection characteristics). When a

flavor specification is encountered, that flavor is considered valid

when used with all currently active connection types, defined by the

union of the individually specified connection types and the

Cartesian product of the current transport types and current

connection types.

The presumed ordering of these assignments is as follows:

When one of the connection types was specified directly by a

connection type, the position of that specification is compared

to that of either the other individually-specified connection

type or the earlier of the transport-type specification and the

connection characteristics specification.

In other cases, the position of the transport type specifications

are considered first withe the position of the connection

characteristics considered if necessary.

If neither of the above resolve issue, the position of the flavor

specification is considered.

The type of the current connection is considered to be specified

first, implicitly.

There are provisions, described in Section 15.4 to modify this

ordering, as may be necessary, for example, when the current

connection, while acceptable is, of lower server preference.

15.4. Overall Interpretation of SECINFO Response Arrays

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #32e.

This section summarizes the processing necessary on the client to

interpret the response to a SECINFO or SECINFO_NONAME request and

determine, at the specified part of the server's namespace:

The set of transport types acceptable to the server.

The set of connection types acceptable to the server.

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

* ¶

* ¶

For each acceptable connection type, the set of flavors

acceptable to the server.

For each acceptable connection type for which encryption is not

provided and for which the flavor RPCSEC_GSS is accepted, a set

of services to be required when using the flavor on connections

of that type.

For each of the items for which the set of acceptable elments has

more than one element, the server's preference order can be

communicated to the client.

This section provides the same information as Sections 15 through

15.3 but the presentation is in the form of an algorithm.

The algorithm needs to maintain the following information as part of

the context shared with the operations defined in Sections 15.4.2

and 15.4.3

The ordered set of currently specified transport types.

Because of the need to retain ordering information, a mask cannot

be used to represent this.

Because duplicates are not allowed, the size of this data can be

limited, based on the number of valid transport types.

The initial value is the empty list.

An array of sets of current transport restrictions.

Since there are three possible transport characteristics:

encryption, client-peer authentication, and server-peer

authentication, a given connection may have eight possible states

and a set of allowed characteristics represented by an eight-bit

mask of allowed combinations of chaacteristics.

The initial value is a single entry with all bits set, indicating

no current restrictions.

The ordered set of additional connection types, beyond the

Cartesian product of the current sets of transport types and of

connection restrictions.

Each entry consists of a transport type together with a

connection characteristics mask.

The initial value is a single-entry list whose only entry

consists of the transport type of the current connection combined

*

¶

*

¶

¶

¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

*

¶

¶

with a set of transport characteristics in effect for the current

connection and no other possibilities.

The pseudo-flavor most previously processed.

When this is not one of the special pseudo-flavors, the pseudo-

flavor type is sufficient.

The initial value is transport-restriction pseudo-flavor type

reflecting the fact that the state of the current connection is

the initial basis for flavor specification.

The output list showing, in order, the combinations of connection

types combined with flavors, or, in the case of RPCSEC_GSS, of

flavor triples.

15.4.1. Interpretation of SECINFO Response Arrays (Core)

[Author Aside]: This preliminary section, which is currently

incomplete, is considered Consensus Item #49a.

[Author Aside]: There are problems with the indenting in this

section. This may be due to to an xml2rfc bug or I may be using ul

incorrectly, or both. Will try to fix this for the next draft.

Processing of the response proceeds through each secinfo4 in the

response. For each such entry, the flavor value, which may be a

pseudo-flavor, controls what is to be done.

The current entry is fetched.

The pseudo-flavor for that entry controls what is done next.

If the pseudo-flavor specifies a transport type or a set of

transport types, the following is done:

If the previous pseudo-flavor was not a transport-

specifying flavor,

Connection type expansion, as described in Section

15.4.2 is performed.

If the flavor designates a single transport type,

The connection type is added to the current list, if it

is not already present in the list.

Otherwise, each included transport type is added to the

list in turn.

¶

* ¶

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the pseudo-flavor specifies a connection restriction, the

following is done:

If the previous pseudo-flavor was not a transport-

specifying flavor, is not a restriction-specifying flavor

and is not XPBREAK,

Connection type expansion, as described in Section

15.4.2 is performed.

If the previous pseudo-favor was XPBREAK,

A new restriction entry, initialized with all bits one,

is added to the list.

In any case, the newly-specified restrictions are anded

with the last entry in the list.

If the pseudo-flavor specifies a set of connection types or is

XPCURRENT, the following is done:

Inoformation specified by the current flavor is added to

the list of additional connection types, if that same set

of connection type is not already present.

If the pseudo-flavor is XPBREAK,

Nothing specific is done at this point.

If the pseudo-flavor is XPCLEAR,

The set of data maintained by algorithm, including the

flavor output is reset to its initial state.

In addition the set of additional connection types is

cleared to empty state, i.e. information about the current

connection is removed.

If the pseudo-flavor is an authentication flavor,

Flavor expansion, as described in Section 15.4.3 is

performed to combine the current flavor or flavor triple

with each of the currently specified connection types.

Then the current pseudo-flavor is saved as the previous pseudo-

flavor.

We then move on to the next entry.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

15.4.2. Connection Type Transcription

[Author Aside]: This section will be provided in a later draft as

part of Consensus Item #48a.

15.4.3. Flavor Transcription

[Author Aside]: This section will be provided in a later draft as

part of Consensus Item #48b.

15.5. SECINFO

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #33a.

The description in the sub-sections below, while it adheres to the

XDR appearing [6], [7], [8], [9] and [11]. will supersede the

descriptions in [7] and [8].

This is necessary to adapt the security negotiation process to the

presence of transport-level security services such as encryption and

peer authentication.

Similar changes are necessary in the parallel SECINFO_NONAME

operation introduced in NFSv4.1. These are expected to be done as

part of the rfc5661bis effort.

15.5.1. SECINFO ARGUMENTS

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #33b.

Figure 1

15.5.2. SECINFO RESULTS

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #33c.

¶

¶

¶

¶

¶

¶

¶

struct SECINFO4args {

 /* CURRENT_FH: directory */

 component4 name;

};

¶

Figure 2

15.5.3. SECINFO DESCRIPTION

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #33d.

The SECINFO operation is used by the client determine the

appropriate RPC authentication flavors, security mechanisms and

encrypting transports to access a specific directory filehandle,

file name pair. SECINFO should apply the same access approach used

for LOOKUP when evaluating the name. In consequence, if the

requester does not have the appropriate access to LOOKUP the name,

then SECINFO will behave the same way and return NFS4ERR_ACCESS.

/*

 * From RFC 2203

 */

enum rpc_gss_svc_t {

 RPC_GSS_SVC_NONE = 1,

 RPC_GSS_SVC_INTEGRITY = 2,

 RPC_GSS_SVC_PRIVACY = 3

};

struct rpcsec_gss_info {

 sec_oid4 oid;

 qop4 qop;

 rpc_gss_svc_t service;

};

/* RPCSEC_GSS has a value of '6' - See RFC 2203 */

union secinfo4 switch (uint32_t flavor) {

 case RPCSEC_GSS:

 rpcsec_gss_info flavor_info;

 default:

 void;

};

typedef secinfo4 SECINFO4resok<>;

union SECINFO4res switch (nfsstat4 status) {

 case NFS4_OK:

 /* CURRENTFH: consumed */

 SECINFO4resok resok4;

 default:

 void;

};

¶

¶

The result will contain an array that represents the security

flavor, security mechanisms and transports available, with an order

corresponding to the server's preferences, the most preferred being

first in the array. The client is free to pick whatever security

flavors, mechanisms and transports it both desires and supports, or

to pick in the server's preference order the first one it supports.

The array entries are represented by the secinfo4 structure. The

field 'flavor' will contain one of the following sorts of values:

a value of AUTH_NONE, AUTH_SYS (as defined in RFC 5531 [4]).

AUTH_TLS as described in ...

A pseudo-flavor defined in Section 18.2

RPCSEC_GSS (as defined in RFC 2203 [2]).

Any other security flavor or pseudo-flavor registered with IANA.

For the flavors other than RPCSEC_GSS, no additional security

information is returned. For a return value of RPCSEC_GSS, a

security triple is returned that contains the mechanism object

identifier (OID, as defined in RFC 2743 [3]), the quality of

protection (as defined in RFC 2743 [3]), and the service type (as

defined in RFC 2203 [2]). It is possible for SECINFO to return

multiple entries with flavor equal to RPCSEC_GSS with different

security triple values.

On success, the current filehandle is consumed, so that, if the

operation following SECINFO tries to use the current filehandle,

that operation will fail with the status NFS4ERR_NOFILEHANDLE.

If the name has a length of zero, or if the name does not obey the

UTF-8 definition in circumstances in which UTF-8 names are required,

the error NFS4ERR_INVAL will be returned.

See Sections 15.2 through 15.4 for additional information on the use

of SECINFO.

15.5.4. SECINFO IMPLEMENTATION (general)

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #33e.

The SECINFO operation is expected to be used by the NFS client when

the error value of NFS4ERR_WRONGSEC is returned from another NFS

operation. This signifies to the client that the server's security

policy is different from what the client is currently using. At this

point, the client is expected to obtain a list of possible security

flavors and choose what best suits its policies.

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

15.5.5. SECINFO IMPLEMENTATION (for NFSv4.0)

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #34a.

The server's security policies will determine when a client request

receives NFS4ERR_WRONGSEC. The operations that may receive this

error are LINK, LOOKUP, LOOKUPP, OPEN, PUTFH, PUTPUBFH, PUTROOTFH,

RENAME, RESTOREFH, and, indirectly, READDIR. LINK and RENAME will

only receive this error if the security used for the operation is

inappropriate for the saved filehandle. With the exception of

READDIR, these operations represent the point at which the client

can instantiate a filehandle into the current filehandle at the

server. The filehandle is either provided by the client (PUTFH,

PUTPUBFH, PUTROOTFH) or generated as a result of a name-to-

filehandle translation (LOOKUP and OPEN). RESTOREFH is treated

differently because the filehandle is a result of a previous SAVEFH.

Even though the filehandle, for RESTOREFH, might have previously

passed the server's inspection for a security match, the server will

check it again on RESTOREFH to ensure that the security policy has

not changed.

If the client is to resolve an error return of NFS4ERR_WRONGSEC, the

following will occur:

For LOOKUP and OPEN, the client will use SECINFO with the same

current filehandle and name as provided in the original LOOKUP or

OPEN to determine the acceptable combinations of transport types,

transport restrictions, and flavor-based triple use to make

requests directed at the specified portion of the server

namespace.

For LINK, PUTFH, RENAME, and RESTOREFH, the client will use

SECINFO and provide the parent directory filehandle and the

object name that corresponds to the filehandle originally

provided by the PUTFH or RESTOREFH, or, for LINK and RENAME, the

SAVEFH.

For LOOKUPP, PUTROOTFH, and PUTPUBFH, the client will be unable

to use the SECINFO operation since SECINFO requires a current

filehandle and none exist for these three operations. Therefore,

the client must iterate through the security triples expected to

be available at the client for use by the current connection

(i.e, because they are REQUIRED and attempt the PUTROOTFH or

PUTPUBFH operation repeatedly, once for each possible triple. In

the unfortunate event that none of the MANDATORY security triples

are supported by the client and server, the client should try

using others that are believed to be available. It is desirable

to do so in a manner which provides encryption or at least

¶

¶

¶

*

¶

*

¶

*

integrity support integrity. Often his will be possible if the

connection is encrypted. In other cases. the client can try using

AUTH_NONE, but because such forms lack integrity checks, there is

an element of risk in doing so. However the risk can be made

small if the server returns NFS4ERR_WRONGSEC when entering any

subdirectory of the root or public filehandle.

The READDIR operation will not directly return the NFS4ERR_WRONGSEC

error. However, if the READDIR request included a request for

attributes, it is possible that the READDIR request's security

triple does not match that of a directory entry. If this is the case

and the client has requested the rdattr_error attribute, the server

will return the NFS4ERR_WRONGSEC error in rdattr_error for the

entry. This will allow SECINFO to be issued for that entry with the

same current file handle as used for the READDIR and a name derived

from the entry for which the error was noted.

[Author Aside]: The following paragraph seems dubious since it would

best if the server tells the client to use, rather than leaving him

to guess, and the server will know what he supports. Would like to

delete this as part of Consensus Item #47a, unless compatibility

issues make that impossible.

[Previous Treatment (Item #47a)]: Note that a server MAY use the

AUTH_NONE flavor to signify that the client is allowed to attempt to

use authentication flavors that are not explicitly listed in the

SECINFO results. Instead of using a listed flavor, the client might

then, for instance, opt to use an otherwise unlisted RPCSEC_GSS

mechanism instead of AUTH_NONE. It may wish to do so in order to

meet an application requirement for data integrity or privacy. In

choosing to use an unlisted flavor, the client SHOULD always be

prepared to handle a failure by falling back to using AUTH_NONE or

another listed flavor. It cannot assume that identity mapping is

supported and should be prepared for the fact that its identity is

squashed.

15.5.6. SECINFO IMPLEMENTATION (for NFSv4.1 and v4.2)

[Author Aside]: All unannotated paragraphs in this section are

considered to be part of Consensus Item #33f.

As mentioned, the server's security policies will determine when a

client request receives NFS4ERR_WRONGSEC.

See Table 14 of [8] for a list of operations that can return

NFS4ERR_WRONGSEC. in the case of v4.2, there might be extensions

allowed to return NFS4ERR_WRONGSEC. In addition, when READDIR

returns attributes, the rdattr_error (Section 5.8.1.12 of [8]) can

contain NFS4ERR_WRONGSEC.

¶

¶

¶

¶

¶

¶

¶

Note that CREATE and REMOVE MUST NOT return NFS4ERR_WRONGSEC. The

rationale for CREATE is that unless the target name exists, it

cannot have a separate security policy from the parent directory,

and the security policy of the parent was checked when its

filehandle was injected into the COMPOUND request's operations

stream (for similar reasons, an OPEN operation that creates the

target MUST NOT return NFS4ERR_WRONGSEC). If the target name exists,

while it might have a separate security policy, that is irrelevant

because CREATE MUST return NFS4ERR_EXIST. The rationale for REMOVE

is that while that target might have a separate security policy, the

target is going to be removed, and so the security policy of the

parent trumps that of the object being removed. RENAME and LINK MAY

return NFS4ERR_WRONGSEC, but the NFS4ERR_WRONGSEC error applies only

to the saved filehandle (see Section 2.6.3.1.2 of [8]). Any

NFS4ERR_WRONGSEC error on the current filehandle used by LINK and

RENAME MUST be returned by the PUTFH, PUTPUBFH, PUTROOTFH, or

RESTOREFH operation that injected the current filehandle.

With the exception of LINK and RENAME, the set of operations that

can return NFS4ERR_WRONGSEC represents the point at which the client

can inject a filehandle into the "current filehandle" at the server.

The filehandle is either provided by the client (PUTFH, PUTPUBFH,

PUTROOTFH), generated as a result of a name-to-filehandle

translation (LOOKUP and OPEN), or generated from the saved

filehandle via RESTOREFH. As Section 2.6.3.1.1.1 of [8] states, a

put filehandle operation followed by SAVEFH MUST NOT return

NFS4ERR_WRONGSEC. Thus, the RESTOREFH operation, under certain

conditions (see Section 2.6.3.1.1 of [8]), is permitted to return

NFS4ERR_WRONGSEC so that security policies can be honored.

The READDIR operation will not directly return the NFS4ERR_WRONGSEC

error. However, if the READDIR request included a request for

attributes, it is possible that the READDIR request's security

triple did not match that of a directory entry. If this is the case

and the client has requested the rdattr_error attribute, the server

will return the NFS4ERR_WRONGSEC error in rdattr_error for the

entry.

To resolve an error return of NFS4ERR_WRONGSEC, the client does the

following:

For LOOKUP and OPEN, the client will use SECINFO with the same

current filehandle and name as provided in the original LOOKUP or

OPEN to enumerate the available security triples.

For the rdattr_error, the client will use SECINFO with the same

current filehandle as provided in the original READDIR. The name

passed to SECINFO will be that of the directory entry (as

¶

¶

¶

¶

*

¶

*

returned from READDIR) that had the NFS4ERR_WRONGSEC error in the

rdattr_error attribute.

For PUTFH, PUTROOTFH, PUTPUBFH, RESTOREFH, LINK, and RENAME, the

client will use SECINFO_NO_NAME { style =

SECINFO_STYLE4_CURRENT_FH }. The client will prefix the

SECINFO_NO_NAME operation with the appropriate PUTFH, PUTPUBFH,

or PUTROOTFH operation that provides the filehandle originally

provided by the PUTFH, PUTPUBFH, PUTROOTFH, or RESTOREFH

operation.

NOTE: In NFSv4.0, the client was required to use SECINFO, and had

to reconstruct the parent of the original filehandle and the

component name of the original filehandle. The introduction in

NFSv4.1 of SECINFO_NO_NAME obviates the need for reconstruction.

For LOOKUPP, the client will use SECINFO_NO_NAME { style =

SECINFO_STYLE4_PARENT } and provide the filehandle that equals

the filehandle originally provided to LOOKUPP.

16. Future Security Needs

[Author Aside]: All unannotated paragraphs in this section are

considered part of Consensus Item #35a.

[Author Aside]: This section is basically an outline for now, to be

filled out later based on Working Group input, particularly from

Chuck Lever who suggested this section and has ideas about many of

the items in it.

Security for data-at-rest, most probably based on facilities

defined within SAN.

Support for content signing.

Revision/extension of labelled NFS to provide true

interoperability and server-based authorization.

Work to provide more security for RDMA-based transports. This

would include the peer authentication infrastructure now being

developed as part of RPC-over-RDMA version 2. In addition, there

is a need for an RPC-based transport that provides for

encryption, which might be provided in number of ways.

Work, via extensions, to provide attributes describing server

behavior to the client. This is likely to have an important role

in resolving security issues connected with ACLs where there is

both a new preferred approach together with legacy

implementations built when the specifications wither offered no

¶

*

¶

¶

*

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

preferred approach or treated that preference as easily dispensed

with.

17. Security Considerations

17.1. Changes in Security Considerations

Beyond the needed inclusion of a threat analysis and the fact that

all minor versions are dealt with together, there are a number of

substantive changes in the approach to NFSv4 security presented in

RFCs 7530 and 8881 and that appearing in this document.

This document will not seek to speculate how the previous treatment,

now viewed as incorrect, came to be written, approved, and

published. However, it will, for the benefit of those familiar with

the previous treatment of these matters, draw attention to the

important changes listed here.

There is a vastly expanded range of threats being considered as

described in Section 17.1.1

New facilities available at the RPC transport level can be used

to deal with security issues, as described in Section 17.1.2

17.1.1. Wider View of Threats

Although the absence of a threat analysis in previous treatments

makes comparison most difficult, the security-related features

described in previous specifications and the associated discussion

in their security considerations sections makes it clear that

earlier specifications took a quite narrow view of threats to be

protected against.

One aspect of that narrow view that merits special attention is the

handling of AUTH_SYS, at that time in the clear, with no client peer

authentication.

With regard to specific threats, there is no mention in existing

security consideration sections of:

Denial-of-service attacks.

Client-impersonation attacks.

Server-impersonation attacks.

The handling of data security in-flight is even more troubling.

Although there was considerable work in the protocol to allow use

of encryption to be negotiated when using RPCSEC_GSS. The

¶

¶

¶

*

¶

*

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

*

existing security considerations do not mention the potential

need for encryption at all.

It is not clear why this was omitted but it is a pattern that

cannot repeated in this document.

The case of negotiation of integrity services is similar and uses

the same negotiation infrastructure.

In this case, use of integrity is recommended but not to prevent

the corruption of user data being read or written.

The use of integrity services is recommended in connection with

issuing SECINFO (and for NFSv4.1, SECINFO_NONAME). The presence

of this recommendation in the associated security considerations

sections has the unfortunate effect of suggesting that the

protection of user data is of relatively low importance.

17.1.2. Transport-layer Security Facilities

Such transport-level RPC facilities as RPC-over-TLS provide

important ways of proving better security for all the NFSv4 minor

versions.

In particular:

The presence of encryption by default will deal with security

issue regarding data-in-flight, for both RPCSEC_GSS and AUTH_SYS.

Peer authentication provided by the server eliminates the

possibility of a server-impersonation attack, even when using

AUTH_SYS.

When mutual authentication is part of connection establishment,

there is a possibility, where an appropriate trust relationship

exists, of treating the userid's presented in AUTH_SYS, as

effectively authenticated, based on the authentication of the

client peer.

17.1.3. Approach to Implementation Semantic Divergences

[Consensus Needed (Items #36a, #37a)]: For a variety of reasons,

there are many cases in which one approach to security is preferred

where others are allowed, if only to give time for implementers to

adapt to the preferred approach. In such cases the word "SHOULD is

used to introduce the preferred while others are allowed to allow

¶

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

compatibility by limiting the valid reasons to bypass the

recommendation. Such instances fall into two classes:

[Consensus Needed (Item #36a)]: In adapting to the availability

of security services provided by the RPC transport, allowance has

been made for implementations for which these new transport are

not available and for which, based on previous standards-track

guidance, AUTH_SYS us used, in the clear, without client-peer

authentication.

[Consensus Needed (Item #37a)]: In dealing with server

implementations that support both ACLs and the mode attribute,

previous specifications have allowed a wide range of possible

server behavior in coordinating these attributes. While now

clearly defining the recommended behavior in dealing with these

issues, allowance has been made to give times for implementations

to conform to the new recommendations.

[Consensus Needed (Items #36a, #37a)]: The threat analysis within

this Security Considerations section will not deal with older

servers for which allowance has been made but will explore the

consequences of the recommendations made in this document.

17.1.4. Compatibility and Maturity Issues

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #38a.

Given the need to drastically change the NFSv4 security approach

from that specified previously, it is necessary for us to be mindful

of:

The difficulty that might be faced in adapting to the newer

guidance because the delays involved in designing, developing,

and testing new transport- level security facilities such as RPC-

over-TLS.

The difficulty in discarding or substantially modifying previous

existing deployments and practices, developed on the basis of

previous normative guidance.

For these reasons, we will not use the term "MUST NOT" in some

situations in which the use of that term might have been justified

earlier. In such cases, previous guidance together with the passage

of time may have created a situation in which the considerations

mentioned above in this section may be valid reasons to defer, for a

limited time, correction of the current situation making the term

"SHOULD NOT" appropriate, since the difficulties cited would

constitute a valid reason to not allow what had been recommended

against.

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

17.1.5. Discussion of AUTH_SYS

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #39a.

An important change concerns the treatment of AUTH_SYS which is now

divided into two distinct cases given the possible availability of

support from the transport layer.

When such support is not available, AUTH_SYS SHOULD NOT be used,

since it makes the following attacks quite easy to execute:

The absence of authentication of the server to the client allow

server impersonation in which an imposter server can obtain data

to be written by the user and supply corrupted data to read

requests.

The absence of authentication of the client user to the server

allow server impersonation in which an imposter client can issue

requests and have them executed as a user designated by imposter

client, vitiating the server's authorization policy.

With no authentication of the client peer, common approaches,

such as using the source IP address can be easily defeated,

allowing unauthenticated execution of requests made by the pseudo

clients

The absence of any support to protect data-in-flight when

AUTH_SYS is used result in further serious security weaknesses.

In connection with the use of the term "SHOULD NOT" above, it is

understood that the "valid reasons" to use this form of access

reflect the Compatibility and Maturity Issue discussed above in

Section 17.1.4 and that it is expected that, over time, these will

become less applicable.

17.2. Security Considerations Scope

17.2.1. Discussion of Potential Classification of Environments

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #40a.

This document will not consider different security policies for

different sorts of environments. This is because,

Doing so would add considerable complexity to this document.

¶

¶

¶

*

¶

*

¶

¶

*

¶

¶

¶

¶

* ¶

The additional complexity would undercut our main goal here,

which is to discuss secure use on the internet, which remain an

important NFSv4 goal.

The ubiquity of internet access makes it hard to treat corporate

network separately from the internet per se.

While small networks might be sufficiently isolated to make it

reasonable use NFSv4 without serious attention to security

issues, the complexity of characterizing the necessary isolation

makes it impractical to deal with such cases in this document.

17.2.2. Discussion of Environments

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #40b.

Although the security goal for Nfsv4 has been and remains "secure

use on the internet", much use of NFSv4 occurs on more restricted IP

networks with NFS access from outside the owning organization

prevented by firewalls.

This security considerations section will not deal separately with

such environments since the threats that need to be discussed are

essentially the same, despite the assumption by many that the

restricted network access would eliminate the possibility of attacks

originating inside the network by attackers who have some legitimate

Nfsv4 access within it.

In organizations of significant size, this sort of assumption of

trusted access is usually not valid and this document will not deal

with them explicitly. In any case, there is little point in doing

so, since, if everyone can be trusted, there can be no attackers,

rendering threat analysis superfluous.

This does not mean that NFSv4 use cannot, as a practical matter, be

made secure through means outside the scope of this document

including strict administrative controls on all software running

within it, frequent polygraph tests, and threats of prosecution.

However, this document is not prepared to discuss the details of

such policies, their implementation, or legal issues associated with

them and treats such matters as out-of-scope.

Nfsv4 can be used in very restrictive IP network environments where

outside access is quite restricted and there is sufficient trust to

allow, for example, every node to have the same root password. The

case of a simple network only accessible by a single user is

similar. In such networks, many thing that this document says

"SHOULD NOT" be done are unexceptionable but the responsibility for

making that determination is one for those creating such networks to

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

take on. This document will not deal further with NFSv4 use on such

networks.

17.3. Major New Recommendations

17.3.1. Recommendations Regarding Security of Data in Flight

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #41a.

It is RECOMMENDED that requesters always issue requests with data

security (i.e. with protection from disclosure or modification in

flight) whether provided at the RPC request level or by the RPC

transport, irrespective of the responder's requirements.

It is RECOMMENDED that implementers provide servers the ability to

configure policies in which requests without data security will be

rejected as having insufficient security.

it is RECOMMENDED that servers use such policies over either their

entire local namespace or for all file systems except those clearly

designed for the general dissemination of non-sensitive data.

17.3.2. Recommendations Regarding Client Peer Authentication

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #41b.

It is RECOMMENDED that clients provide authentication material

whenever a connection is established with a server capable of using

it to provide client peer authentication.

It is RECOMMENDED that implementers provide servers the ability to

configure policies in which attempts to establish connections

without client peer authentication will be rejected.

it is RECOMMENDED that servers adopt such policies whenever requests

not using RPCSEC_GSS are allowed to be executed.

17.3.3. Issues Regarding Valid Reasons to Bypass Recommendations

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #41c.

Clearly, the maturity and compatibility issues mentioned in Section

17.1.4 are valid reasons to bypass the above recommendations, as

long as these issues continue to exist.

[Author Aside]: The question the working group needs to address is

whether other valid reasons exist.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[Author Aside]: In particular, some members of the group might feel

that the performance cost of encrypted transports constitutes, in

itself, a valid reason to ignore the above recommendations.

[Author Aside]: I cannot agree and feel that accepting that as a

valid reason would undercut Nfsv4 security improvement, and probably

would not be acceptable to the security directorate. However, I do

want to work out an a generally acceptable compromise. I propose

something along the following lines:

In dealing with these issues it needs to be understood that the

transport-based encryption facilities are designed to be compatible

with facilities to offload the work of encryption and decryption.

When such facilities are not available, at a reasonable cost, to

NFSv4 servers and clients anticipating heavy use of NFSv4, then the

lack of such facilities can be considered a valid reason to bypass

the above recommendations, as long as that situation continues.

17.4. Data Security Threats

Will be addressed in a later draft as part of Consensus Item #42a.

17.5. Authentication-based threats

17.5.1. Attacks based on the use of AUTH_SYS

Will be addressed in a later draft as part of Consensus Item #43a.

17.5.2. Attacks on Name/Userid Mapping Facilities

Will be addressed in a later draft as part of Consensus Item #44a.

17.6. Disruption and Denial-of-Service Attacks

17.6.1. Attacks Based on the Disruption of Client-Server Shared State

Will be addressed in a later draft as part of Consensus Item #45a.

17.6.2. Attacks Based on Forcing the Misuse of Server Resources

Will be addressed in a later draft as part of Consensus Item #46a.

18. IANA Considerations

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #33f.

Because of the shift from implementing security-related services

only in connection with RPCSEC_GSS to one in which transport-level

¶

¶

¶

¶

¶

¶

¶

¶

¶

security has a prominent role, a number if new values need to be

assigned.

These include new authstat values to guide selection of a Transports

acceptable to both client and server, presented in Section 18.1 and

new pseudo-flavors to be used in the process of security

negotiation, presented in Section 18.2.

18.1. New Authstat Values

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #33g.

The following new authstat values are necessary to enable a server

to indicate that the server's policy does not allows requests to be

made on the current connection because of security issues associated

with the rpc transport. In the event they are received, the client

needs to establish a new connection.

The value XP_CRYPT indicates that the server will not support

access using unencrypted connections while the current connection

is not encrypted.

The value XP_CPAUTH indicates that the server will not support

access using connections for which the client peer has not

authenticated itself as part of connection while the current

connection has not been set up in that way.

18.2. New Authentication Pseudo-Flavors

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #33h.

The new pseudo-flavors described in this section are to be made

available to allow their return as part of the response to SECINFO

operation described in Section 15.5 and for similar operations.

The following transport-specifying flavors are to be defined:

XPT_TCP denotes use of a TCP transport to support to RPC. The use

of TLS as provided by RPC-with-TLS is orthogonal to the transport

type, as is the use of optional authentication features. Such

facilities are treated as transport characteristics.

When RDMA support is layered on TCP, that fact is not relevant to

the transport type, which is still XPT_RDMA.

XPT_RDMA denotes use of any version of RPC-over-RDMA to support

RPC. Although Version 1 has no security-support, future version

may have such facilities.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

¶

*

¶

[1]

In any case, the specification of the presence or need for such

facilities are handled as transport characteristics.

XPT_ALL is currently equivalent to XPT_TCP followed by XPT_RDMA.

When new transport types are made available for use wit NFSv4, it

is intended that

The following transport-restricting flavors are to be defined:

XPCH_ENCRYPT restrict connections to those providing encryption.

XPCH_SVRAUTH restricts connections allowed to those that provide,

at connection time authentication of the server peer.

XPCH_CLAUTH restricts connections allowed to those that provide,

at connection time authentication of the server peer.

XPCH_PEERAUTH is equivalent to XPCH_SVRAUTH combined with

XPCH_CLAUTH.

XPCH_SECURE is equivalent to XPCH_ENCRYPT combined with

XPCH_PEERAUTH.

The follow connection-specifying flavors are to be defined:

AUTH_TLS is equivalent to XP_TCP combined with XPCH_ENCRYPT and

XPCH_CLPEERAUTH

XP_TCP_SECURE is equivalent to XP_TCP combined with XPCH_SECURE.

The following special flavors are to be defined:

XPCLEAR reset the state of processing to an empty state. This is

useful if the current connection type is not usable for the

specified region of the namespace or if it is of lower server

preference.

XPBREAK forces the use of a new set transport restrictions,

separate from previous ones and applying to the same set of

transport types.

XPCURRENT specifies that the type of the current connection is

usable for access, with the preference derived from its location

in the SECINFO response array.

19. References

19.1. Normative References

¶

*

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol

Specification", RFC 2203, DOI 10.17487/RFC2203, September

1997, <https://www.rfc-editor.org/info/rfc2203>.

Linn, J., "Generic Security Service Application Program

Interface Version 2, Update 1", RFC 2743, DOI 10.17487/

RFC2743, January 2000, <https://www.rfc-editor.org/info/

rfc2743>.

Thurlow, R., "RPC: Remote Procedure Call Protocol

Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,

May 2009, <https://www.rfc-editor.org/info/rfc5531>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Haynes, T., Ed. and D. Noveck, Ed., "Network File System

(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/

RFC7530, March 2015, <https://www.rfc-editor.org/info/

rfc7530>.

Haynes, T., Ed. and D. Noveck, Ed., "Network File System

(NFS) Version 4 External Data Representation Standard

(XDR) Description", RFC 7531, DOI 10.17487/RFC7531, March

2015, <https://www.rfc-editor.org/info/rfc7531>.

Noveck, D., Ed. and C. Lever, "Network File System (NFS)

Version 4 Minor Version 1 Protocol", RFC 8881, DOI

10.17487/RFC8881, August 2020, <https://www.rfc-

editor.org/info/rfc8881>.

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

"Network File System (NFS) Version 4 Minor Version 1

External Data Representation Standard (XDR) Description",

RFC 5662, DOI 10.17487/RFC5662, January 2010, <https://

www.rfc-editor.org/info/rfc5662>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,

November 2016, <https://www.rfc-editor.org/info/rfc7862>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 External Data Representation Standard (XDR)

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2203
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc5531
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7531
https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc5662
https://www.rfc-editor.org/info/rfc5662
https://www.rfc-editor.org/info/rfc7862

[12]

[13]

Description", RFC 7863, DOI 10.17487/RFC7863, November

2016, <https://www.rfc-editor.org/info/rfc7863>.

Myklebust, T. and C. Lever, "Towards Remote Procedure

Call Encryption By Default", Work in Progress, Internet-

Draft, draft-ietf-nfsv4-rpc-tls-11, 23 November 2020,

<https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-

rpc-tls-11>.

19.2. Informative References

Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,

and G. Judd, "Data Center TCP (DCTCP): TCP Congestion

Control for Data Centers", RFC 8257, DOI 10.17487/

RFC8257, October 2017, <https://www.rfc-editor.org/info/

rfc8257>.

Appendix A. Changes Made

This section summarizes the substantive changes between the

treatment of security in previous minor version specification

documents (i.e. RFCs 7530 and 8881) and the new treatment applying

to NFSv4 as a whole.

This is expected to be helpful to implementers familiar with

previous specifications but also has an important role in verifying

the working group consensus for these changes and in guiding the

search for potential compatibility issues.

A.1. Motivating Changes

A number of changes reflect the basic motivation for a new treatment

of NFSv4 security. These include the ability to obtain privacy and

integrity services from the RPC transport rather than as a service

ancillary to a specific authentication flavor.

This motivated a major reorganization of the treatment of security

together with a needed emphasis on the security of data in flight.

In addition, the security negotiation framework for NFSv4 has been

significantly enhanced to support the combined negotiation of

authentication-related services and transport characteristics.

Despite these major changes there are not expected to be

compatibility issues between peers supporting secure transport

characteristics and those without such support.

Another such change was in the treatment of AUTH_SYS, previously

described, inaccurately, as an "OPTIONAL means of authentication"

with the unfortunate use of the RFC2119 keyword obscuring the

negative consequences of the typical use of AUTH_SYS (in the clear;

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc7863
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpc-tls-11
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpc-tls-11
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8257

without client-peer authentication) for security by enabling the

execution of unauthenticated requests.

The new treatment avoids the inappropriate use of term

"authentication" for all activities triggered by the use of RPC

authentication flavors and clearly distinguishes those flavors

providing authentication from those providing identification only or

neither identification nor authentication.

A.2. Other Major Changes

The need to make the major changes discussed in Appendix A.1 has

meant that much text dealing with security has needed to be

significantly revised or rewritten. As a result of the process, may

issues involving unclear, inconsistent, or otherwise inappropriate

text were uncovered and needed to be dealt with.

While the author believes such changes are necessary, the fact that

we are changing a document adopted by consensus requires the working

group to be clear about the acceptability of the changes. This

applies to both the troublesome issues discussed in Section 3.4 and

to the other changes included below.

Because of concurrent re-organizations, the ordering of the list

follows the text of the current version which may differ

considerably from that in earlier versions of the I-D.

In order to deal better with the fact that ACLs have multiple

uses some significant structural changes have been made.

Section 5, a new top-level section describes the the structure of

ACLs,

In Section 7.2, makes clear that owner and owner group are

essentially REQUIRED attributes.

Also in Section 7.2, there is added clarity in the discussion of

support for multiple authorization approaches by eliminating use

of the subjective term "reasonable semantics".

In connection with this clarification, we have switched from

describing the needed co-ordination between modes and acls as

"goals" to describing them as "requirements" to give clients some

basis for expecting interopherability in handling these issues.

As a result of this shift to a prescriptive framework applying to

all minor versions it becomes possible to treat all minor

versions together. In earlier versions of this document, it had

been assumed that NFSv4.0 was free to ignore the relevant

¶

¶

¶

¶

¶

*

¶

¶

*

¶

*

¶

¶

prescriptions first put forth in RFC 5661 and only needed to

address the "goals" for this co-ordination.

Appendix B. Issues for which Consensus Needs to be Ascertained

The section helps to keep track of specific changes which the author

has made or intends to make to deal with issues found in RFCs 7530

and 7881. The changes listed here exclude those which are clearly

editorial but includes some that the author believes are editorial

but for which the issues are sufficiently complicated that working

group consensus on the issue is probably necessary.

These changes are presented in the table below, organized into a set

of "Consensus Items" identified by the numeric code appearing in

annotations in the proposed document text. For each such item, a

type code is assigned with the following codes defined:

"NM" denotes a change which is new material that is not purely

editorial and thus requires Working Group consensus for eventual

publication.

"BE" denotes a change which the author believes is editorial but

for which the change is sufficiently complex that the judgment is

best confirmed by the Working Group.

"BC" denotes a change which is a substantive change that the

author believes is correct. This does not exclude the possibility

of compatibility issues becoming an issue but is used to indicate

that the author believes any such issues are unlikely to prevent

its eventual acceptance.

"CI" denotes a change for which the potential for compatibility

issues is major concern with the expected result that working

group discussion of change will focus on clarifying our knowledge

of how existing clients and server deal with the issue and how

they might be affected by the change or the change modified to

accommodate them.

"NS" denotes a change which represents the author's best effort

to resolve a difficulty but for which the author is not yet

confident that it will be adopted in its present form,

principally because of the possibility of troublesome

compatibility issues.

When the document is promoted to a working group document, there

should be very few issues in this state and, for each such issue,

a clear plan to address the possibility of any compatibility

¶

*¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

problems, enabling resolution of the issue to be reasonably

anticipated.

"NE" denotes change based on an existing issue in the spec but

for which the replacement text is incomplete and needs further

elaboration.

There will be no changes in this state when promotion to a

working group document is requested.

"WI" denotes a potential change based on an existing issue in the

spec but for which replacement text is not yet available because

further working group input is necessary before drafting. It is

expected that replacement text will be available in a later draft

once that discussion is done.

There will be no changes in this state when promotion to a

working group document is requested.

"LD" denotes a potential change based on an existing issue in the

spec but for which replacement text is not yet available due to

the press of time. It is expected that replacement text will be

available in a later draft.

There will be no changes in this state when promotion to a

working group document is requested.

When asterisk is appended to a state of "NM", "BE" or "BE" it that

there has been adequate working group discussion leading one to

reasonably expect it will be adopted, without major change, in a

subsequent document revision.

Such general acceptance is not equivalent to a formal working group

consensus and it not expected to result in major changes to the

draft document,

On the other hand, once there is a working group consensus with

regard to a particular issue, the document will be modified to

remove associated annotations, with the previously conditional text

appearing just as other document text does. The issue will be

removed from this table although it will be mentioned in Appendices

A.2 or A.1

It is is expected that these designations will change as discussion

proceeds and new document versions are published. It is hoped that

most such shifts will be upward in the above list or result in the

deletion of a pending item, by reaching a consensus to accept or

reject it. This would enable, once all items are dealt with, an

eventual request for publication as an RFC, with this appendix

having been deleted.

¶

*

¶

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

Type ...References... Substance

1 NM* #1a in S 4

Outline of new approach to authetication/

identification, replacing confusion about

the matter in previous specifications.

2 NM* #2a in S 4

Introduction to and outline of changes

needed in negotiation framework to

support provision of security by the RPC

transport.

3 BE #3a in S 5.4

Conversion of mask bit descriptions from

being about "permissions" to being about

the action permitted, denied, or

specified as being audited or generating

alarms.

4 CI #4a in S 5.4
Elimination of uses of SHOULD believed

inappropriate in Section 5.4.

5 BE #5a in S 5.4

Explicit inclusion of ACCESS as an

operation affected in the mask bit

definitions.

6 CI

#6a in S 5.4

#6b in S 5.6

#6c in S 7.3.1

New/revised description of the role of

the "sticky bit" for directories, both

with respect to ACL handling and mode

handling.

7 BE #7a in S 5.4
Clarification of relationship between

READ_DATA and EXECUTE.

8 CI #8a in S 5.4
Revised discussion of relationship

between WRITE_DATA and APPEND_DATA.

9 BC #9a in S 5.4
Clarification of how ADD_DIRECTORY

relates to RENAME.

10 BC
#10a in S 5.4

#10b in S 5.5

Revisions in handling of the masks

WRITE_RETENTION and WRITE_RETENTION_HOLD.

11 CI

#11a in S 5.4

#11b in S 5.5

#11c in S 5.11

Explicit recommendation and requirements

for mask granularity, replacing the

previous treatment which gave the server

license to ignore most of the previous

section, placing clients in an

unfortunate situation.

12 BC
#12a in S 5.6

#12b in S 5.6.1

Revised treatment of directory entry

deletion.

13 BC #13a in 5.7

Attempt to put some reasonable limits on

possible non-support (or variations in

the support provided) for the ACE flags.

This is to replace a situation in which

the client has no real way to deal with

the freedom granted to server

implementations.

14 BC #14a in S 5.11
Explicit discussion of the case in which

aclsupport is not supported.

15 BC #15a in S 5.11

¶

¶

¶

¶

¶

¶

¶
¶

¶

¶

¶

¶

¶
¶

¶
¶

¶
¶

¶
¶

¶

¶ ¶

¶

¶

¶

¶

¶

¶ ¶

¶

¶

¶
¶

¶

Type ...References... Substance

#15b in S 7.1

#15c in S 7.2

Handling of the proper relationship

between support for ALLOW and DENY ACEs.

16 NM #16a in S 5.1
Discussion of coherence of acl, sacl, and

dacl attributes.

17 BC
#17a in S 7.1

#17b in S 7.2

Relationship of support for ALLOW and

DENY ACEs

18 BC
#18a in S 7.1

#18b in S 7.2
Need for support of owner, owner_group.

19 CI #19a in S 7.2
Revised discussion of coordination of

mode and the ACL-related attributes.

20 WI #20 in S 7.3.1
More closely align ACL_based and mode-

based semantics with regard to SVTX.

21 BC

#21a in S 7.3.1

#21b in S 9.3

#21c in S 9.6

Introduce the concept of reverse-slope

modes and deal properly with them. The

decision as to the proper handling is

addressed as Consensus Item #28.

22 BC #22a in S 8.1

Revise treatment of divergences between

AC/mode authorization and server

behavior, dividing the treatment between

cases in which something authorized is

still not allowed (OK), and those in

which something not authorized is allowed

(highly problematic from a security point

of view).

23 BC #23a in S 8.2
Revise discussion of client access to of

ACLs.

24 BE #24a in S 8.2 Delete bogus reference.

25 CI

#25a in S 3.3

#25b in S 9.1

#25d in S 9.7

#25e in S 9.9

#25f in S 9.10

#25g in S 9.11

Revised description of co-ordination of

acl and mode attributes to apply to NFSv4

as a whole. While this includes many

aspects of the shift to be more specific

about the co-ordination requirements

including addressing apparently

unmotivated uses of the terms "SHOULD"

and "SHOULD NOT", it excludes some

arguably related matters dealt with as

Consensus Items #26 and #27.

26 CI
#26a in S 9.2

#26 in S 9.6.3

Decide how ACEs with who values other

than OWNER@, Group, or EVERYONE@ are be

dealt with when setting mode.

27 CI

#27a in S 9.2

#27b in S 9.3

#27c in S 9.4

Concerns the possibility of establishing

one way of computing a mode from an acl

that clients can depend on, rather than

two or an unbounded number.

28 WI
#28a in S 9.3

#28 in S 9.6.3

Decide how to address flaws in mapping

to/from reverse- slope modes.

29 BC #29 in S 9.6.3

¶

¶ ¶

¶
¶

¶

¶ ¶

¶

¶
¶

¶
¶

¶
¶

¶

¶

¶
¶

¶

¶

¶
¶

¶ ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶
¶

¶

¶

¶
¶

¶

¶ ¶

¶

Type ...References... Substance

Address the coordination of mode and ACL-

based attributes in unified way for all

minor versions.

30 CI

#30a in S 9.6.1

#30b in S 9.6.2

#30c in S 9.6.3

New proposed treatment of setting mode

incorporating some consequences of

anticipated decisions regarding other

consensus items (#26, #28, #29)

31 WI #31a in S 9.6.3

Need to deal with mask bits

ACE4_READ_ATTRIBUTES,

ACE4_WRITE_RETENTION,

ACE4_WRITE_RETENTION_HOLD, ACE4_READ_ACL

to reflect the semantics of the mode

attribute.

32 BC

#32a in S 15

#32b in S 15.1

#32c in S 15.2

#32d in S 15.3

#32e in S 15.4

Expanded negotiation framework to

accomodate multiple transport types and

services derivable from transport

characteristics, i.e. encryption and peer

authentication.

33 BE

#33a in S 15.5

#33b in S 15.5.1

#33c in S 15.5.2

#33d in S 15.5.3

#33e in S 15.5.4

#33f in S 18

#33g in S 18.1

#33h in S 18.2

Reorganization of description of SECINFO

op to apply to all minor versions.

Assumes basics of proposal for Item #32.

34 BC
#34a in S 15.5.6

Revision to NFSv4.0 SECINFO

implementation section to be compatible

with expanded approach to negotiation.

Assumes basics of proposals for Items #32

and #33.

35 NE #35a in S 16
Now has preliminary work on future

security needs.

36 CI
#36a in S 17.1.3

Threat analysis only dealing with

RECOMMENDED behavior regarding use of

transport security facilities and

handling of AUTH_SYS.

37 CI
#37a in S 17.1.3

Threat analysis only dealing with

RECOMMENDED behavior with regard to acl

support including ACL/mode coordination.

38 CI
#38a in S 17.1.4

Address the need to temporarily allow

unsafe behavior mistakenly allowed by

previous specifications

¶

¶

¶

¶
¶

¶

¶

¶

¶

¶

¶

¶ ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶
¶

¶

¶

¶
¶

¶
¶

Type ...References... Substance

39 CI
#39a in S 17.1.5

Define new approach to AUTH_SYS.

40 CI

#40a in S 17.2.1

#40a in S 17.2.2

Discussion of scope for security

considerations and the corresponding

threat analysis.

41 CI

#41a in S 17.3.1

#41b in S 17.3.2

#41c in S 17.3.3

Discuss major new security

recommendations regarding protection of

data in flight and client peer

authentication. Also, covers the

circumstances under which such

recommendations can be bypassed.

42 LD #42a in S 17.4
Placeholder for threat analysis section

regarding security of data in flight.

43 LD
#43a in S 17.5.1 Placeholder for threat analysis section

dealing with the use of AUTH_SYS.

44 LD
#44a in S 17.5.2

Placeholder for threat analysis section

dealing with attacks on userid/name

mapping.

45 LD
#45a in S 17.6.1

Placeholder for threat analysis section

dealing with disruption attacks based on

attacks on shared state.

46 LD
#46a in S 17.6.2

Placeholder for threat analysis section

dealing with attacks on shared state

design to cause misuse of resources.

47 CI
#47a in S 15.5.5

Dubious paragraph which should be deleted

if there are no compatibility issues that

make that impossible.

48 CI

#48a in S 15.4.2

#48b in S 15.4.3

Missing pieces of secinfo processing

algorithm that didn't get done in -02.

49 NE
#49a in S 15.4.1 Main secinfo processing algorithm that

needs to finished in -02.

Table 3

The following table summarizes the issues in each particular state,

dividing them into those associated with the motivating changes for

this new document and those that derive from other issues, that were

uncovered later, once work on a new treatment of NFSv4 security had

begun.

Type Cnt Issues

NM*(M) 2 1, 2

BE(M) 1 33

BC(M) 2 32, 34

CI(M) 7 36, 38, 39, 40, 41, 47, 48

¶
¶

¶

¶
¶

¶

¶

¶ ¶

¶
¶

¶ ¶

¶
¶

¶
¶

¶
¶

¶
¶

¶

¶

¶

¶ ¶

¶

¶

¶

¶

¶

Type Cnt Issues

NE(M) 2 35, 49

LD(M) 5 42, 43, 44, 45, 46

All(M) 19 As listed above.

NM(O) 1 16

BE(O) 4 3, 5, 7, 24

BC(O) 12 9, 10, 12, 13, 14, 15, 17, 18, 21, 22, 23, 29

CI(O) 11 4, 6, 8, 11, 19, 25, 26, 27, 28, 30, 37

WI(O) 2 20, 31

All(O) 30 As described above

All 49 Grand total for above table.

Table 4

Acknowledgments

The author wishes to thank Tom Haynes for his helpful suggestion to

deal with security for all NFSv4 minor versions in the same

document.

The author wishes to draw people's attention to Nico Williams'

remark that NFSv4 security was not so bad, except that there was no

provision for authentication of the client peer. This perceptive

remark, which now seems like common sense, did not seem so when

made, but it has served as a beacon for those putting NFSv4 security

on a firmer footing. We appreciate this perceptive guidance.

The author wishes to acknowledge the important role of the authors

of RPC-with-TLS, Chuck Lever and Trond Myklebust, in moving the NFS

security agenda forward and thank them for all their efforts to

improve NFS security.

The author wishes to thank Chuck Lever for his many helpful comments

about nfsv4 security issues, his explanation of many unclear points,

and and much important guidance he provided that is reflected in

this document.

The author wishes to thank Rick Macklem for his role in clarifying

possible server policies regarding RPC-over-TLS and bringing

possible approaches to the attention of the working group.

Author's Address

David Noveck (editor)

NetApp

1601 Trapelo Road, Suite 16

Waltham, MA 02451

United States of America

Phone: +1-781-572-8038

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

tel:+1-781-572-8038

Email: davenoveck@gmail.com

mailto:davenoveck@gmail.com

	Security for the NFSv4 Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Overview
	1.1. Document Motivation
	1.2. Document Annotation

	2. Requirements Language
	2.1. Keyword Definitions
	2.2. Special Considerations

	3. Introduction to this Update
	3.1. Transport-based Security Features
	3.2. Handling of Multiple Minor Versions
	3.3. Handling of Minor-version-specific features
	3.4. Features Needing Extensive Clarification
	3.5. Process Going Forward

	4. Introduction to NFSv4 Security
	5. Structure of Access Control Lists
	5.1. Access Control Entries
	5.2. ACE Type
	5.3. ACE Access Mask
	5.4. Uses of Mask Bits
	5.5. Requirements and Recommendations Regarding Mask Granularity
	5.6. Handling of Deletion
	5.6.1. Previous Handling of Deletion

	5.7. ACE flag bits
	5.8. Details Regarding ACE Flag Bits
	5.9. ACE Who
	5.10. Automatic Inheritance Features
	5.11. Attribute 13: aclsupport
	5.12. Attribute 12: acl

	6. Authorization in General
	7. User-based File Access Authorization
	7.1. Attributes for User-based File Access Authorization
	7.2. Handling of Multiple Parallel File Access Authorization Models
	7.3. Posix Authorization Model
	7.3.1. Attribute 33: mode
	7.3.2. NFSv4.1 Attribute 74: mode_set_masked

	7.4. ACL-based Authorization Model
	7.4.1. Processing Access Control Entries
	7.4.2. V4.1 Attribute 58: dacl

	8. Common Considerations for Both File access Models
	8.1. Server Considerations
	8.2. Client Considerations

	9. Combining Authorization Models
	9.1. Background for Combined Authorization Model
	9.2. Needed Attribute Coordination
	9.3. Computing a Mode Attribute from an ACL
	9.4. Alternatives in Computing Mode Bits
	9.5. Setting Multiple ACL Attributes
	9.6. Setting Mode and not ACL (overall)
	9.6.1. Setting Mode and not ACL (vestigial)
	9.6.2. Setting Mode and not ACL (Discussion)
	9.6.3. Setting Mode and not ACL (Proposed)

	9.7. Setting ACL and Not Mode
	9.8. Setting Both ACL and Mode
	9.9. Retrieving the Mode and/or ACL Attributes
	9.10. Creating New Objects
	9.11. Use of Inherited ACL When Creating Objects
	9.12. Combined Authorization Models for NFSv4.2

	10. Labelled NFS Authorization Model
	11. State Modification Authorization
	12. Other Uses of Access Control Lists
	12.1. V4.1 Attribute 59: sacl

	13. Identification and Authentication
	13.1. Identification vs. Authentication
	13.2. Items to be Identified
	13.3. Authentication Provided by specific RPC Flavors
	13.4. Authentication Provided by the RPC Transport

	14. Security of Data in Flight
	14.1. Data Security Provided by the Flavor-associated Services
	14.2. Data Security Provided by the RPC Transport

	15. Security Negotiation
	15.1. Flavors and Pseudo-flavors
	15.2. Negotiation of Security Flavors and Mechanisms
	15.3. Negotiation of RPC Transports and Characteristics
	15.4. Overall Interpretation of SECINFO Response Arrays
	15.4.1. Interpretation of SECINFO Response Arrays (Core)
	15.4.2. Connection Type Transcription
	15.4.3. Flavor Transcription

	15.5. SECINFO
	15.5.1. SECINFO ARGUMENTS
	15.5.2. SECINFO RESULTS
	15.5.3. SECINFO DESCRIPTION
	15.5.4. SECINFO IMPLEMENTATION (general)
	15.5.5. SECINFO IMPLEMENTATION (for NFSv4.0)
	15.5.6. SECINFO IMPLEMENTATION (for NFSv4.1 and v4.2)

	16. Future Security Needs
	17. Security Considerations
	17.1. Changes in Security Considerations
	17.1.1. Wider View of Threats
	17.1.2. Transport-layer Security Facilities
	17.1.3. Approach to Implementation Semantic Divergences
	17.1.4. Compatibility and Maturity Issues
	17.1.5. Discussion of AUTH_SYS

	17.2. Security Considerations Scope
	17.2.1. Discussion of Potential Classification of Environments
	17.2.2. Discussion of Environments

	17.3. Major New Recommendations
	17.3.1. Recommendations Regarding Security of Data in Flight
	17.3.2. Recommendations Regarding Client Peer Authentication
	17.3.3. Issues Regarding Valid Reasons to Bypass Recommendations

	17.4. Data Security Threats
	17.5. Authentication-based threats
	17.5.1. Attacks based on the use of AUTH_SYS
	17.5.2. Attacks on Name/Userid Mapping Facilities

	17.6. Disruption and Denial-of-Service Attacks
	17.6.1. Attacks Based on the Disruption of Client-Server Shared State
	17.6.2. Attacks Based on Forcing the Misuse of Server Resources

	18. IANA Considerations
	18.1. New Authstat Values
	18.2. New Authentication Pseudo-Flavors

	19. References
	19.1. Normative References
	19.2. Informative References

	Appendix A. Changes Made
	A.1. Motivating Changes
	A.2. Other Major Changes

	Appendix B. Issues for which Consensus Needs to be Ascertained
	Acknowledgments
	Author's Address

