
Workgroup: NFSv4

Updates: 8881, 7530 (if approved)

Published: 24 December 2021

Intended Status: Standards Track

Expires: 27 June 2022

Authors: D. Noveck, Ed.

NetApp

Security for the NFSv4 Protocols

Abstract

This document describes the core security features of the NFSv4

family of protocols, applying to all minor versions. The discussion

includes the use of security features provided by RPC on a per-

connection basis.

This preliminary version of the document, is intended, in large

part, to result in working group discussion regarding existing NFSv4

security issues and to provide a framework for addressing these

issues and obtaining working group consensus regarding necessary

changes.

When a successor document is eventually published as an RFC, it will

supersede the description of security appearing in existing minor

version specification documents such as RFC 7530 and RFC 8881.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 June 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8881
https://www.rfc-editor.org/rfc/rfc7530
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November

10, 2008. The person(s) controlling the copyright in some of this

material may not have granted the IETF Trust the right to allow

modifications of such material outside the IETF Standards Process.

Without obtaining an adequate license from the person(s) controlling

the copyright in such materials, this document may not be modified

outside the IETF Standards Process, and derivative works of it may

not be created outside the IETF Standards Process, except to format

it for publication as an RFC or to translate it into languages other

than English.

Table of Contents

1. Overview

1.1. Document Motivation

1.2. Document Annotation

2. Requirements Language

2.1. Keyword Definitions

2.2. Special Considerations

3. Introduction to this Update

3.1. Per-connection Security Features

3.2. Handling of Multiple Minor Versions

3.3. Handling of Minor-version-specific features

3.4. Features Needing Extensive Clarification

3.5. Process Going Forward

4. Introduction to NFSv4 Security

4.1. NFSv4 Security Terminology

4.2. NFSv4 Security Scope Limitations

5. Structure of NFSv4 Access Control Lists

5.1. Access Control Entries

5.2. ACE Type

5.3. ACE Access Mask

5.4. Uses of Mask Bits

5.5. Requirements and Recommendations Regarding Mask Granularity

5.6. Handling of Deletion

5.6.1. Previous Handling of Deletion

5.7. ACE flag bits

5.8. Details Regarding ACE Flag Bits

¶

¶

https://trustee.ietf.org/license-info

5.9. ACE Who

5.10. Automatic Inheritance Features

5.11. Attribute 13: aclsupport

5.12. Attribute 12: acl

6. Authorization in General

7. User-based File Access Authorization

7.1. Attributes for User-based File Access Authorization

7.2. Handling of Multiple Parallel File Access Authorization

Models

7.3. Posix Authorization Model

7.3.1. Attribute 33: mode

7.3.2. NFSv4.1 Attribute 74: mode_set_masked

7.4. ACL-based Authorization Model

7.4.1. Processing Access Control Entries

7.4.2. V4.1 Attribute 58: dacl

8. Common Considerations for Both File access Models

8.1. Server Considerations

8.2. Client Considerations

9. Combining Authorization Models

9.1. Background for Combined Authorization Model

9.2. Needed Attribute Coordination

9.3. Computing a Mode Attribute from an ACL

9.4. Alternatives in Computing Mode Bits

9.5. Handling of UNIX ACLs

9.6. Setting Multiple ACL Attributes

9.7. Setting Mode and not ACL (overall)

9.7.1. Setting Mode and not ACL (vestigial)

9.7.2. Setting Mode and not ACL (Discussion)

9.7.3. Setting Mode and not ACL (Proposed)

9.8. Setting ACL and Not Mode

9.9. Setting Both ACL and Mode

9.10. Retrieving the Mode and/or ACL Attributes

9.11. Creating New Objects

9.12. Use of Inherited ACL When Creating Objects

9.13. Combined Authorization Models for NFSv4.2

10. Labelled NFS Authorization Model

11. State Modification Authorization

12. Other Uses of Access Control Lists

12.1. V4.1 Attribute 59: sacl

13. Identification and Authentication

13.1. Identification vs. Authentication

13.2. Items to be Identified

13.3. Authentication Provided by specific RPC Auth Flavors

13.4. Authentication Provided by other RPC Security Services

14. Security of Data in Flight

14.1. Data Security Provided by Services Associated with Auth

Flavors

14.2. Data Security Provided for a Connection by RPC

15. Security Negotiation

15.1. Dealing with Multiple Connections

16. Future Security Needs

17. Security Considerations

17.1. Changes in Security Considerations

17.1.1. Wider View of Threats

17.1.2. Connection-oriented Security Facilities

17.1.3. Necessary Security Changes

17.1.4. Compatibility and Maturity Issues

17.1.5. Discussion of AUTH_SYS

17.2. Security Considerations Scope

17.2.1. Discussion of Potential Classification of Environments

17.2.2. Discussion of Environments

17.2.3. Insecure Environments

17.3. Major New Recommendations

17.3.1. Recommendations Regarding Security of Data in Flight

17.3.2. Recommendations Regarding Client Peer Authentication

17.3.3. Recommendations Regarding Superuser Semantics

17.3.4. Issues Regarding Valid Reasons to Bypass

Recommendations

17.4. Threat Analysis

17.4.1. Threat Analysis Scope

17.4.2. Threats based on Credential Compromise

17.4.3. Threats Based on Rouge Clients

17.4.4. Threats Based on Rouge Servers

17.4.5. Data Security Threats

17.4.6. Authentication-based threats

17.4.7. Disruption and Denial-of-Service Attacks

18. IANA Considerations

18.1. New Authstat Values

18.2. New Authentication Pseudo-Flavors

19. References

19.1. Normative References

19.2. Informative References

Appendix A. Changes Made

A.1. Motivating Changes

A.2. Other Major Changes

Appendix B. Issues for which Consensus Needs to be Ascertained

Acknowledgments

Author's Address

1. Overview

This document is intended to form the basis for a new description of

NFSv4 security applying to all NFSv4 minor versions. The motivation

for this new document and the need for major improvements in NFSv4

security are explained in Section 1.1.¶

Because this document anticipates making major changes in material

covered in previous standards-track RFCs, extensive working group

discussion will be necessary to make sure that there is a working

group consensus to make the changes being proposed. These changes

include the major improvements mentiontioned above and changes

necessary to suitably describe features currently in an

unsatisfactory state as described in Section 3.4

1.1. Document Motivation

A new treatment of security is necessary because:

Previous treatments paid insufficient attention to security

issues regarding data in flight.

The presentation of AUTH_SYS as an "'OPTIONAL' means of

authentication" obscured the significant security problems that

come with its use.

The security considerations sections of existing minor version

specifications contain no threat analyses and focus on particular

security issues in a way that obscures, rather than clarifying,

the security issues that need to be addressed.

The availability of RPC-with-TLS (described in [12]) provides

facilities that NFSv4 clients and servers will need to use to

provide security for data in flight and mitigate the lack of user

authentication when AUTH_SYS is used.

1.2. Document Annotation

The first version of this preliminary document contained many notes

with headers in brackets, requesting comments regarding confusing or

otherwise dubious passages in existing documents and noting other

choices that need to made. Comments about and working group

discussion of these issues will be important in arriving at an

adequate RFC candidate. In this version, those specific items have

been removed and are replaced by the sorts of items described below

which show the troublesome existing text, explain the issues with

it, and and provide a proposed replacement.

In order to make further progress on these difficult issues,

including many whose resolution will probably involve compatibility

issues with existing implementations, the author has tried his best

to resolve these issues, even though there is no assurance that the

resolution adopted by consensus will match the author's current best

efforts. To provide a possible resolution that might be the basis of

discussion while not foreclosing other possibilities, proposed

changes are organized into a series of consensus items, which are

listed in Appendix B.

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

For such pending issues, the following annotations will be used:

A paragraph headed "[Author Aside]:", provides the author's

comments about possible changes and will probably not appear in

an eventual RFC.

This paragraph can specify that certain changes within the

current section are to be implicitly considered as part of a

specific consensus item.

The paragraph can indicate that all unannotated material in the

current section is to be considered either the previous treatment

or the proposed replacement text for a specific consensus item.

A paragraph headed "[Consensus Needed (Item #NNx)]:", provides

the author's preferred treatment of the matter and will only

appear in the eventual RFC if working group consensus on the

matter is obtained allowing the necessary changes to be made

permanent, without being conditional on a future consensus.

The item id, represented above by "NNx" consists of a number

identifying the specific consensus item and letter which is

unique to appearance of that consensus item in a particular

section. In cases in which a pending item is cited with no part

of the discussion appearing in the current section, an item id of

the form "#NN" is used.

A paragraph headed "[Previous Treatment]:", indicates text that

is provided for context but which the author believes, need not

appear in the eventual RFC, because it is expected to be

superseded by a corresponding consensus item

The corresponding consensus item is often easily inferred, but

can be specified explicitly, as it is for items associated with

the consensus item itself.

Each of the annotations above can be modified by addition of the

phrase, "Including List" to indicate that it applies to a following

bulleted list as well as the current paragraph or the phase "Entire

Bulleted Item" to indicate it applies to all paragraphs within a

specific bulleted item.

2. Requirements Language

2.1. Keyword Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as specified in BCP 14 [1] [5] when,

and only when, they appear in all capitals, as shown here.

¶

*

¶

¶

¶

*

¶

¶

*

¶

¶

¶

¶

2.2. Special Considerations

Because this document needs to revise previous treatments of its

subject, it will need to cite previous treatments of issues that now

need to be dealt with in a different way. This will take the form

of quotations from documents whose treatment of the subject is being

obsoleted, most often direct but sometimes indirect as well.

Paragraphs headed "[Previous Treatment] or otherwise annotated as

having that status, as described in Section 1, can be considered

quotations in this context.

Such treatments in quotations will involve use of these BCP14-

defined terms in two noteworthy ways:

The term may have been used inappropriately (i.e not in accord

with RFC2119 [1]), as has been the case for the "RECOMMENDED"

attributes, which are in fact OPTIONAL.

In such cases, the surrounding text will make clear that the

quoted text does not have a normative effect.

Some specific issues relating to this case are described below

Section 7.1.

The term may been used in accord with RFC2119 [1], although the

resulting normative statement is now felt to be inappropriate.

In such cases, the surrounding text will need to make clear that

the text quoted is no longer to be considered normative, often by

providing new text that conflicts with the quoted, previously

normative, text.

An important instance of this situation is the description of

AUTH_SYS as an "'OPTIONAL' means of authentication". For detailed

discussion of this case, see Sections 13 and 17.1.5

3. Introduction to this Update

There are a number of noteworthy aspects to the updated approach to

NFSv4 security presented in this document:

There is a major rework of the security framework to take

advantage of work done in RPC-with-TLS, as described in Section

1.1.

NFSv4 security is still built on RPC, as had been done

previously. However, it is now able to take advantage of

security-related facilities provide on a per-connection basis For

more information about this transformation, see Section 3.1.

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

*

¶

¶

For an overview of changes made so far as part of this rework,

see Appendix A.1.

This document deals with all minor versions together, although

there is a need for exceptions to deal with, for example, pNFS

security.

For more detail about how minor version differences will be

addressed, see Sections 3.2 and 3.3.

There is a new Security Considerations section including a threat

analysis.

There has been extensive work to clarify the multiple types of

authorization within NFSv4 and deal more completely with the co-

ordination of ACL-based and mode-based file access authorization.

3.1. Per-connection Security Features

There are a number of security-related facilities that can be

provided on a per-connection basis, eliminating the need to provide

such support on a per-request basis, based on the RPC auth flavor

used.

These will initially be provided, in mosr cases, by RPC-with-TLS but

similar facilities might be provided by new versions of existing

transports or new RPC transports.

The transport or a layer above it might provide encryption of

requests and replies, eliminating the need for privacy and

integrity services to be negotiated later and applied on a per-

request basis.

While clients might choose to establish connections with such

encryption, servers can establish policies allowing access to

certain pieces of the namespace using such security facilities,

or limiting access to those providing privacy, allowing the use

of either per-connection encryption or privacy services provided

by RPCSEC_GSS.

The transport or a layer above it might provide mutual

authentication of the client and server peers as part of the

establishment of the connection This authentication is distinct

from the the mutual authentication of the client user and server

peer, implemented within the GSSSEC_RPC framework.

This form of authentication is of particular importance when when

the server allows the use of the auth flavors AUTH_SYS and

AUTH_NONE, which have no provision for the authentication of the

user requesting the operation.

¶

*

¶

¶

*

¶

*

¶

¶

¶

*

¶

¶

*

¶

¶

While clients might choose, on their own,to establish connections

with such peer authentication, servers can establish policies a

limiting access to certain pieces of the namespace without such

peer authentication or only allowing it when using RPCSEC_GSS.

To enable server policies to be effectively communicated to clients,

the security negotiation framework now allows connection

characteristics to be specified using pseudo-flavors returned as

part of the response to SECINFO and SECINFO_NONAME. See Section 15

for details.

3.2. Handling of Multiple Minor Versions

In some cases, there are differences between minor versions in that

there are security-related features, not present in all minor

versions.

To deal with this issue, this document will focus on a few major

areas listed below which are common to all minor versions.

File access authorization (discussed in Section 7) is the same in

all minor versions together with the identification/

authentication infrastructure supporting it (discussed in Section

13) provided by RPC and applying to all of NFS.

An exception is made regarding labelled NFS, an optional feature

within NFSv4.2, described in RFC7862 [10]. This is discussed as a

version-specific feature in this document in Section 10

Features to secure data in-flight, all provided by RPC, together

with the negotiation infrastructure to support them are common to

all NFSv4 minor versions, are discussed in Section 15

However, the use of SECINFO_NONAME, together with changes needed

for connection-based encryption, paralleling those proposed here

for SECINFO, is treated as a version-specific feature and, while

mentioned here, will be fully documented in new NFSv4.1

specification documents.

The protection of state data from unauthorized modification is

discussed in Section 11) is the same in all minor versions

together with the identification/ authentication infrastructure

supporting it (discussed in Section 13 by security services such

as those provided by RPC-with-TLS.

It needs to be noted that state protection based on RPCSEC_GSS is

treated as a version-specific feature and will continue to be

described by RFC8881[8] or its successors. Also, it needs to be

noted that the use of state protection was not discussed in

RFC7530 [6].

¶

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

¶

3.3. Handling of Minor-version-specific features

There are a number of areas in which security features differ among

minor versions, as discussed below. In some cases, a new feature

requires specific security support while in others one version will

have a new feature related to enhancing the security infrastructure.

How such features are dealt with in this document depends on the

specific feature.

In addition to SECINFO, whose enhanced description appears in

this document, NFSv4.1 added a new SECINFO_NONAME operation,

useful for pNFS file as well as having some non-pNFS uses.

While the enhanced description of SECINFO mentions

SECINFO_NONAME, this is handled as one of a number of cases in

which the description has to indicate that different actions need

to be taken for different minor versions.

The definitive description of SECINFO_NONAME, now appearing in

RFC8881 [8] needs to be modified to match the description of

SECINFO appearing in this document. It is expected that this will

be done as part of the rfc5661bis process.

The security implications of the security negotiation facilities

as a whole will be addressed in the security considerations

section of this document.

The OPTIONAL pNFS feature added in NFSv4.1 has its own security

needs which parallel closely those of non-pNFS access but are

distinct, especially when the storage access protocol used are

not RPC protocols. As a result, these needs and the means to

satisfy them are not discussed in this document.

The definitive description of pNFS security will remain in

RFC8881 [8] and its successors (i.e. the rfc5661bis document

suite). However, because pNFS security relies heavily on the

infrastructure discussed here, it is anticipated that the new

treatment of pNFS security will deal with many matters by

referencing the overall NFS security document.

The security considerations section of rfc5661bis will deal with

pNFS security issues.

In addition to the state protection facilities described in this

document, NFS has another set of such facilities that are only

implemented in NFSv4.1.

¶

¶

*

¶

¶

¶

¶

*

¶

¶

¶

*

¶

While this document will discuss the security implications of

protection against state modification, it will not discuss the

details of the NFSv4.1-specific features to accomplish it.

The additional NFSv4.1 acl attributes, sacl and dacl, are

discussed in this document, together with the ACL inheritance

features they enable.

As a result, the responsibility for the definitive description of

these attributes will move to overall NFS security document, with

the fact that they are not available in NFSv4.0 duly noted. While

these attributes will continue to be mentioned in NFSv4.1

specification documents, the detailed description appearing in

RFC8881 [8] will be removed in successor documents.

Both NFSv4.0 and NFSv4.1 specifications discussed the

coordination of the values the mode and ACL-related attributes.

While the treatment in RFC8881 [8] is more detailed, the

differences in the approaches are quite minor.

[Consensus Item #25a]: This document will provide a unified

treatment of these issues, which will note any differences of

treatment that apply to NFSv4.0. Changes applying to NFSv4.2 will

also be noted.

As a result, this document will override the treatment within

RFC7530 [6] and RFC8881 [8]. This material will be removed in the

rfc5661bis document suite and replaced by a reference to the

treatment in the NFSv4 security RFC.

The protocol extension defined in RFC8257 [15], now part of

NFSv4.2, is also related to the issue of co-ordination of acl and

mode attributes and will be discussed in that context.

Nevertheless, the description in RFC8257 [15] will remain

definitive.

The NFSv4.1 attribute set-mode-masked attribute is mentioned

together with the other attributes implementing the POSIX

authorization model.

Because this attribute. while related to security, does not

substantively modify the security properties of the protocol, the

full description of this attribute, will continue to be the

province of the NFSv4.1 specification proper.

There is a brief description of the v4.2 Labelled NFS feature in

Section 10. Part of that description discusses the limitations in

the description of that feature within RFC7862 [10].

¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

Because of some limitations in the description, it is not

possible to provide an appropriate security considerations

section for that feature in this document.

As a result, the responsibility for providing an appropriate

Security Considerations section remains, unrealized for now, with

the NFSv4.2 specification document and its possible successors.

3.4. Features Needing Extensive Clarification

For a number of authorization-related features, the existing

descriptions are inadequate for various reasons:

In the description of the the use of the mode attribute in

implementing the POSIX-based authorization model, critical pieces

of the semantics are not mentioned, while, ironically, the

corresponding semantics for ACL-based authorization are

discussed.

This includes the authorization of file deletion and of

modification of the mode, owner and owner-group attributes. For

ACL-based authorization, there is a an attempt to provide the

description.

The situation for authorization of RENAME is similar, although,

in this case, the corresponding semantics for the ACL case are

also absent.

The description of authorization for ACLs is more complete but it

needs further work, because the previous specifications make

extensive efforts, in my view misguided, to allow an enormous

range of server behaviors, making it hard for a client to know

what the effect of many actions, and the corresponding security-

related consequences, might be.

Troublesome in this connection are the discussion of ACE mask

bits which essentially treats every mask bit, as its own OPTIONAL

feature, the use of "SHOULD" and "SHOULD NOT" in situations which

it is unclear what valid reasons to ignore the recommendation

might be, and cases in which it is is simply stated that some

servers do some particular thing, leaving the unfortunate

implication that clients need to be prepared for a vast range of

server behaviors.

This approach essentially treated ACLs in a manner appropriate to

an experimental feature.

Similar issues apply to descriptions related to the need to co-

ordinate the values of the mode attribute and the ACL-related

attributes.

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

*

¶

Although the need for such coordination is recognized. There are

multiple modes of mapping an ACL to a corresponding mode together

with multiple sources of uncertainty about the reverse mapping.

In addition, certain of the mapping algorithms have flaws in that

their behavior under unusual circumstances give results that

appear erroneous.

Dealing with these issues is not straightforward, because the

appropriate resolution will depend on:

The actual existence of server implementations with non-preferred

semantics.

In some cases in which "SHOULD" was used, there may not have been

any actual severs choosing to ignore the recommendation,

eliminating the possibility of compatibility issues when changing

the "SHOULD" to a formulation that restricts the server's

choices.

The difficulty of modifying server implementations to eliminate

or narrow the effect of non-standard semantics.

One aspect of that difficulty might be client or application

expectations based on existing server implementations, even if

the existing specifications give the client no assurance that

that server's behavior is mandated by the standard.

Whether the existing flaw in some existing recommended actions to

be performed by the server is sufficiently troublesome to justify

changing the specification at this point.

This sort of information will be used in deciding whether to:

Narrow the scope of allowable server behavior to those actually

used by existing severs.

Limiting the negative effects of unmotivated SHOULDs by limiting

valid reasons to ignore the recommendation to the difficulty of

changing existing implementations.

This would give significant guidance to future implementations,

while forcing clients to live with the uncertainty about existing

servers

Tie a more restricted set of semantics to nominally unrelated

OPTIONAL features such as implementation of dacl and sacl.

This would provide a way to allow the development of newer

servers to proceed in a way that

¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

¶

Provide means that clients to use to determine, experimentally,

what semantics are provided by the server.

Would need to be supported by a requirement/assurance that a

server behave uniformly, at least within the scope of a single

file system.

Allow the provision of other ways for the client to know the

semantics choices made by the server.

Despite the difficulty of addressing these issues, if the protocol

is to be secure and ACLs are to be widely available, these problems

have to be addressed. While there has not been significant effort to

provide client-side ACL APIs and there might not be for a while, we

cannot have a situation if which the security specification makes

that development essentially impossible.

3.5. Process Going Forward

Because of the scope of this document, and the fact that it is

necessary to modify previous treatments of the subject previously

published as Proposed Standards, it is necessary that the process of

determining whether there is Working Group Consensus to submit it

for publication be more structured than that used for the antecedent

documents.

In order to facilitate this process, the necessary changes which

need to be made, beyond those clearly editorial in nature, are

listed in Appendix B. As working group review and discussion of this

document and its successors proceeds, there will be occasion to

discuss each of these changes, identified by the annotations

described in Section 1.2.

Based on working group discussions, successive document versions

will do one of the following for some set of consensus items:

Deciding that the replacement text is now part of a new working

group consensus.

When this happens, future drafts of the document will be modified

to remove the previous treatment, treat the proposed text as

adopted, and remove Author Asides or replace them by new text

explaining why a new treatment of the matter has been adopted or

pointing the reader to an explanation in Appendix A.

At this point, the consensus item will be removed from Appendix B

and an explanation for the change will be added to Appendix A.

*

¶

¶

*

¶

¶

¶

¶

¶

*

¶

¶

¶

Deciding that the general approach to the issue, if not

necessarily the specific current text has reached the point of

"general acceptance" as defined in Appendix B

In this case, to facilitate discussion of remaining issues, the

text of the document proper will remain as it is.

At this point, the consensus item will be marked within the table

in Appendix B as having reached general acceptance, indicating

the need to prioritize discussion in the next document cycle,

aimed at arriving at final text to address the issue.

In addition, an explanation for the change will be added to

Appendix A.

Deciding that modification of the existing text is necessary to

facilitate eventual consensus, based on the working group's

input.

In this case, there will be changes to the document proper in the

next draft revision. In some cases, because of the need for a

coherent description, text outside the consensus item may be

affected.

The table in Appendix B will be updated to reflect the new item

status while Appendix A is not expected to change.

Deciding that the item is best dropped in the next draft.

In this case, the changes to the document proper will be the

inverse of those when a change is accepted by consensus. The

previous treatment will be restored as the current text while the

proposed new text will vanish from the document at the next draft

revision. The Author Aside will be the basis for an explanation

of the consequences of not dealing with the issue.

At this point, the consensus item will be removed from Appendix

B.

The changes that the working group will need to reach consensus on,

either to accept (as-is or with significant modifications) or reject

can be divided into three groups.

A large set of changes, all addressing issues mentioned in

Section 1.1, were already present in the initial I-D so that

there has been the opportunity for working group discussion of

them, although that discussion has been quite limited so far.

As a result, a small set of these changes is marked, in Appendix

B, as having reached general acceptance.

*

¶

¶

¶

¶

*

¶

¶

¶

* ¶

¶

¶

¶

*

¶

¶

That subset of these changes changes, together with the

organizational changes to support them are described in Appendix

A.1.

Another large set of changes were made in draft -02. These mostly

concern the issues mentioned in Section 3.4 None of these changes

is yet considered to have reached general acceptance.

The organizational changes to support these changes are described

in Appendix A.2.

There remain a set of potential changes for which a need is

expected but for which no text is yet available.

Such changes have associated Author Asides and are listed in

Appendix B.

The text for these changes is expected to be made available in

future document revisions and they will be processed then, in the

same way as other changes will be processed now.

If and when such changes reach general acceptance, they will be

explained in the appropriate subsection of Appendix A.

4. Introduction to NFSv4 Security

Because the basic approach to security issues is so similar for all

minor versions, this document applies to all NFSv4 minor versions.

The details of the transition to an NFSv4-wide document are

discussed in Sections 3.2 and 3.3.

NFSv4 security is built on facilities provided by the RPC layer,

including various auth flavors and and other security-related

services provided by RPC.

[Consensus Needed, Including List (Item #1a)}: Support for multiple

auth flavors can be provided. Not all of these actually provide

authentication, as discussed in Section 13.

Support for RPCSEC_GSS is REQUIRED, although use of other auth

flavors is provided for.

This auth flavor provides for mutual authentication of the

principal making the request and the server performing it.

This auth flavor allows the client to request the provision of

encryption-based services to provide privacy or integrity for

specific requests. Although such services are often provided, on

a per-connectio basis, by RPC, this support is useful, when such

services are not supported or are otherwise unavailable.

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

¶

AUTH_SYS, provides identification of the principal making the

request but SHOULD NOT be used unless the client peer sending the

request can be authenticated and there is protection against the

modification of the request in flight.

Both of the above require specific RPC support such as that

provided by RPC-with-TLS [12].

AUTH_NONE does not provide identification of the principal making

the request so would only be used for requests for which there is

no such principal or for which it would irrelevant.

The restrictions mentioned above for AUTH_SYS apply to AUTH_NONE

as well.

[Consensus Needed, Including List (Item #1a)}: There are important

services that can be provided by RPC, when RPC-with-TLS or similar

transport-level facilities are available.

Such services can provide data security to all requests on the

connection. This is to be preferred to data security provided by

the RPC auth flavor because it provides protection to the request

headers, because it applies to requests using all authentication

flavors, and because it is more likely to be offloadable.

These services can authenticate the server to the client peer.

This is desirable since that authentication applies even when

AUTH_SYS or AUTH_NONE is used.

The client-peer can be authenticated to the server at the time

the connection is set up. This is essential to allow AUTH_SYS to

be used with a modicum of security, based on the server's level

of trust with regard to the client peer.

[Consensus Needed (Item #2a)}: Because important security-related

services depend on the security services, rather the auth flavor,

the process of security negotiation, described in Section 15, has

been extended to provide for the negotiation of a appropriate

connection characteristics at connection time if the server's policy

limits the range of transports being used and also when use of a

particular auth flavor on a connection with inappropriate security

characteristics causes NFS4ERR_WRONGSEC to be returned,

[Consensus Needed (Item #1a)}: The authentication provided by RPC,

is used to provide the basis of authorization, which is discussed in

general in Section 6. This includes file access authorization,

discussed in Sections 7 through 9 and state modification

authorization, discussed in Section 11

*

¶

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

File access is controlled by the server support for and client use

of certain recommended attributes, as described in Section 7.1.

Multiple file access model are provided for and the considerations

discussed in Section 8 apply to all of them.

The mode attribute provides a POSIX-based authorization model, as

described in Section 7.3

The ACL-related attributes acl, sacl, and dacl (the last two

introduced in NFSv4.1) support a finer grained authorization

model and provide additional securiy-related services. The

structure of ACLs is described in Section 5.

The ACL-based authorization model is described in Section 7.4

The additional security-related services are described in Section

12. These also rely on the authentication provided by RPC.

Because there are two different approaches to file-access

authorization, servers might implement both, in which case the

associated attributes need to be coordinated as described in

Section 9.

NFSv4.2 provides an file access authorization model oriented

toward Mandatory Access Control. It is described in Section 10.

For reasons described there, its security properties are hard to

analyze in detail and this document will not consider it as part

of the NFSv4 threat analysis.

Authorization of locking state modification is discussed in Section

11. This form of authorization relies on the authentication of the

client peer as opposed to file access authorization, which relies on

authentication of the client principal.

4.1. NFSv4 Security Terminology

In this section, we will define the security-related terminology

used in this document. This is particularly important for NFSv4

because many of the terms terms related to security in previous

specification may be hard to understand because their meanings have

changed or have been used inconsistently, resulting in confusion.

The following terms are listed in alphabetical order:

"Access Control" denotes any control implemented by a server peer

to limit or regulate file system access to file system objects.

It includes but is not limited to authorization decisions. Access

control features can be divided into those wich are

"Dicretionary" or "Mandatory" as described below.

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

"ACL" or "Access Control List" denotes a structure used, like the

mode (see below), to defines the privileges that individual users

have with respect to a given file. These structures provide more

options than modes with regard to the association of privileges

with specific users or group and often provide a finer-graned

privilege structure as well. This specification will have need to

refer to two types of ACLs.

The ACLs present in the acl, sacl, and dacl attributes are called

"NFSv4 ACLs". This ACL format, was modeled on the the semantics

of the SMB ACL format which provide a privilege model

substantially finer-grained than that provided by POSIX modes.

[Consensus needed (Item #56a)]: Another ACL type derives from an

attempt to define, within POSIX, a UNIX-oriented approach to ACLs

which was published as a draft (POSIX 1003.1e draft 17), but

subsequently withdrawn. Despite the withdrawal of this draft and

the working group's decision to adopt a native NFsv4 ACL format

based on SMB ACLs, this document will have to discuss these ACLs,

which we will term "UNIX ACLs" because many server file systems

do not support the finer-grained privilege model needed by the

the NFSv4 ACL model and because many clients are built on systems

whose only ACL-related API is based on the UNIX ACL model.

"authentication" refers to a reliable determination that one

making a request is in fact who he purports to be. Often this

involves cryptographic means of demonstrating identity.

This is to be distinguished from "identification" which simply

provides a specified identity without any evidence to verify that

the identification is accurate.

In the past, these terms have been confused, most likely because

of confusion engendered by th use of the term "authentication

flavor" including flavors for which only identification is

provided or which do not provide even identification.

"authorization" refers to the process of determining whether a

request is authorized, depending on the resources (e.g. files) to

be accessed, the identity of the entity on whose behalf the

request was issued, and the particular action to be performed.

Depending on the type of request, the entity whose identity is

referenced can be a user, a peer, or a combination of both.

Authorization is distinct from authentication. However,

performing authorization based on identities which have not been

authenticated makes secure operation impossible since use of

unauthenticated identities allows acceptance of requests that are

*

¶

¶

¶

*

¶

¶

¶

*

¶

¶

not properly authorized if the sender has the ability, as it

typically does, to pretend to be an authorized user/peer.

"client" refers to the entity responsible for setting up a

connection. In most cases the client and the requester reside on

the same node but this not always the case for NFSv4 because of

the possibility of callback requests in which the server makes

some request of the client.

"confidentiality" refers to the assurance provided, typically

through encryption, that the contents of requests and responses

are not inadvertently disclosed to unauthorized parties.

"Discretionary Access Control" denotes forns of acces control,

that rely on a user, such as the owner, specifyling the

privileges that varous users are to have.

"Mandatory Access Control" denotes forms of access control that

reflecct choices made by the server peer and based on its policy

and that are typicall based on the identity of the client peer

rather than the specfic user making a request. While such access

control is discussedin this document, it is important to note

that many forms of mandatory access control are discussed by

other NFsv4 documents and that there forms that are not

standardized.

[Consensus Needed, Entire Bulleted Item (Item #21a)]: "Mode"

designates a set of twelve flag bits used by POSIX-based systems

to control access to the file with which it is associated. In

NFSv4, there are represented by an OPTIONAL attribute, which, in

practical terms, is always supported by servers and expected by

clients.

The three high-order flags are generally accessed only by the

client while low-order bits are divided into three three-bit

fields, which give, in order of decreasing numeric value, the

privileges to be associated with, the owner of the file, other

users in the group owning the file, and users not in the above

two categories.

In most cases, the privileges associated with each successive

group are no greater than those for the previous group. Modes

whose privileges are of this form are referred to as "forward-

slope modes" because the privilege level proceeds downward as

successive groups of users are specified. Cases in which the

contrary possibility is realized are referred to as "reverse-

slope modes".

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

"peer" refer to the entity which is charged with requesting or

performing a specified request as opposed to the entity on whose

behalf the request is requested or performed, the principal;

"principal" refers to the specific entity 9e.g. user) on whose

behalf a request is being made.

"privacy", has in the past been used to refer, to what is now

referred to as "confidentiality".

over time, this usage has changed so that the word most often

refers to applicability of data to a single individual and

person's right to prevent its unauthorized disclosure

As a result, many references to "privacy" in previous are no

longer appropriate and really refer to confidentiality.

The NFSv4 protocol has no way to determine whether particular

data items raise privacy concerns (In the new sense). NFSv4

provides confidentiality whatever type of data is being accessed

so that private data is kept private.

"integrity" refers to the assurance that data in a request has

not been modified in the process of transmission. Such an

assurance is generally provided b means of a cryptographic hash

of the requests or response.

"requester" is the entity making a request, whether that entity

is on the client-side, as it most often is (forward-direction

request) or the server side, in th case of callback (reverse-

direction requests)

"responder" is the entity performing a request, whether that

entity is on the server side, as it most often is (forward-

direction request) or the client side, in the case of callbacks

(reverse-direction requests.

"server" refers to the entity to which the client connects. In

most cases the client and the responder reside on the same node

but this not always the case for NFSv4 because of the possibility

of callback requests in which the server makes some request of

the client.

4.2. NFSv4 Security Scope Limitations

This document describes the security features of the NFSv4 protocol

and is unable to address security threats that are inherently

outside the control of the protocol implementors. Such matters as

out of this document's scope.

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

As a way of clarifying the threats that this document, and the

threat analysis in Section 17.4 can and cannot deal with, we list

below the potential threats discussed Section 3.1 of [14] and review

how, if at all, it is discussed in the current document. In cases in

which the threat is dealt with in this document, distinctions are to

be made between cases in which the issues have been dealt with

directly or have been delegated to a lower layer on which the

protocol is built and whether the issue has been addressed by the

changes to NFSv4 security made by this document.

Regarding the possibility of "Credential Theft or Compromise",

this is not a matter that the NFSv4 protocols concern themselves

with or can address directly, despite its importance for

security. Depending on the auth flavor chosen, either the client

(for AUTH_SYS) or a third-party (for RPCSEC_GSS), usually

Kerberos, will be responsible for credential verification.

Since experience has shown that credential compromise (e.g.

through "phishing" attacks) is a common occurrence, this problem

cannot be ignored, even though it the NFSv4's reliance on RPC

facilities for authentication might be thought to make it out-of-

scope as it would be RPC if had an effective solution to the

issue. However, that the urgency of the situation this issue is

such that will be discussed in Section 17.4.2, even though no

definitive solutions to this issue are likely before this

document is completed and published.

Regardless of such issues, the likelihood of such compromise has

had a role in decisions made regarding the acceptance and use of

"superuser" credentials. The possibility of such compromise is

also relevant to implementation of means to synchronize

credentials when they are managed by the client, as described in

Section 17.4.6.1

Regarding the possibility of "Cracking Encryption", prevention of

this is responsibility of the NFSv4 protocols but it is one which

has been delegated to RPC, so that its discussion in Security

Considerations will rely on and ... to manage encryption so

as to limit the possibility of such unwanted encryption key

discovery.

Regarding the possibility of "Infection of Malware and

Ransomware", NFSv4 has no direct role in preventing such

infection, but does have an important role in limiting its

consequences, by limiting the the ability of Malware to access or

modify data, through the file access authorization model

supported by NFSv4 to limit access to authorized users. Of

course, malware will be able to execute on behalf of the user

¶

*

¶

¶

¶

*

¶

*

mistakenly invoking it but the authorization model will server to

limit the potential damage.

The possibility of vertical privilege escalation is of concern as

regard the possible elevation to "superuser" privileges. For this

reason, this document recommends that any such escalation not be

effective on the server, even if it happens on local clients for

which NFSv4 has no role.

Execution of a ransomeware-based attack requires the attacker to

have the ability to read existing data and replacing it with an

encrypted version together with the ability to temporarily hide

the encryption from ongoing operations by intercepting requests

to read encrypted data and substitute the unencrypted data.

Regarding the possibility of "Backdoors and Unpatched

Vulnerabilities", it needs to be noted that the NFSv4 protocols

do not specify any backdoors even though it is possible that

might choose to provide such backdoors. Since it is not practical

to specifically prohibit the existence of such backdoors nor

would they be enforceable if written, this document will not

attempt to do so. Instead, Section 17.2.3 will note the

possibility of such backdoors and recommend against any such

implementation, and include implementations containing backdoors

in the category of insecure use that will not be dealt with in

Section 17.4.

Although it is expected that vulnerabilities will be due to

incorrect implementations and thus outside the scope of this

document, the possibility of a protocol design errors cannot be

excluded. In dealing with such eventualities, it is likely that

complete remediation would require co-ordinated changes on the

client and server

Regarding the possibility of "Privilege Escalation", NFSv4 has

dealt with the possibility of vertical escalation by not allowing

a client-local escalation to superuser privileges to be effective

on the server.

With regard to horizontal "escalation", NFSv4 provides for the

use of various means RPC authentication of principals but relies

on the client operating system to make sure that one user

principal cannot masquerade as another.

Regarding the possibility of "Human Error and Deliberate

Misconfiguration", the approach taken is to limit the need for

the server to make complicated decisions regarding the security

requirements of each section of its namespace, with many

opportunities for misconfiguration, if the chosen security

¶

¶

¶

*

¶

¶

*

¶

¶

*

requirements are insufficiently restrictive. This is in contrast

to previous specifications which made such configuration the

centerpiece of the security approach.

Although it is possible to create configurations where certain

data, generally publicly accessible, are to be made available

without encryption, this is expected to be a rarely used option

with the possibility of in-transit modification kept in mind

before adopting such use.

Regarding the possibility of "Physical Theft of Storage Media",

this a matter which, while of concern to those deploying NFSv4

server, will be considered out-of-scope since there is nothing

that the protocol could do to deal with this threat.

Regarding the possibility of "Network Eavesdropping", when the

protocol implementation follows the recommendations in this

document, the protocol's use of RPC facilities is designed,

through the consistent use of encryption to make it difficult for

an attacker to have access to the data being transmitted, to

modify it, or inject requests into an existing data stream.

The possibility of an attacker with access to the network

creating a new connection is best considered as a case of the

attacker pretending to be a client and is addressed in Section

17.4.3.

Regarding the possibility of "Insecure Images, Software and

Firmware", while attention to such matters is important for those

deploying NFSv4, it is important to note that these are matters

outside the control the NFSv4, which has to assume that the

infrastructure it is built is working properly. As a result, this

document will not deal with the possibility of such threats.

5. Structure of NFSv4 Access Control Lists

NFSv4 Access Control Lists consisting of multiple Access Control

Elements, while originally designed to support a more flexible

authorization model, have multiple uses within NFSv4, with the use

of each element depending on its type, as defined in Section 5.2

They may be used to provide a more flexible authorization model

as described in Section 7.4. This involves use of Access Control

Entries of the ALLOW and DENY types.

They may be used to provide the security-related services

described in Section 12. This involves use of Access Control

Entries of the AUDIT and ALARM types.

¶

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

Subsections of this section define the structure of NFSv4 ACLs and

discuss ACL-related matters that apply to multiple uses of NFSv4

ACLs, including the definitions of the acl and aclsupport

attributes.

Matters that relate to only a single one of these use classes,

including the definition of the NFSv4.1-specific attributes dacl and

sacl, are discussed in subsections of Sections 7.4 or 12.

5.1. Access Control Entries

The attributes acl, sacl (v4.1 only) and dacl (v4.1 only) each

contain an array of Access Control Entries (ACEs) that are

associated with the file system object. The client can set and get

these attributes attribute, the server is responsible for using the

ACL-related attributes to perform access control. The client can use

the OPEN or ACCESS operations to check access without modifying or

explicitly reading data or metadata.

The NFS ACE structure is defined as follows:

typedef uint32_t acetype4;

typedef uint32_t aceflag4;

typedef uint32_t acemask4;

struct nfsace4 {

 acetype4 type;

 aceflag4 flag;

 acemask4 access_mask;

 utf8str_mixed who;

};

5.2. ACE Type

The constants used for the type field (acetype4) are as follows:

const ACE4_ACCESS_ALLOWED_ACE_TYPE = 0x00000000;

const ACE4_ACCESS_DENIED_ACE_TYPE = 0x00000001;

const ACE4_SYSTEM_AUDIT_ACE_TYPE = 0x00000002;

const ACE4_SYSTEM_ALARM_ACE_TYPE = 0x00000003;

All four are permitted in the acl attribute. For NFSv4.1 and beyond,

only the ALLOWED and DENIED types may be used in the dacl attribute,

and only the AUDIT and ALARM types.x used in the sacl attribute.

¶

¶

¶

¶

¶

¶

¶

¶

Value Abbreviation Description

ACE4_ACCESS_ALLOWED_ACE_TYPE ALLOW

Explicitly grants the

ability to perform the

action specified in

acemask4 to the file or

directory.

ACE4_ACCESS_DENIED_ACE_TYPE DENY

Explicitly denies the

ability to perform the

action specified in

acemask4 to the file or

directory.

ACE4_SYSTEM_AUDIT_ACE_TYPE AUDIT

Log (in a system-

dependent way) any

attempt to perform, for

the file or directory,

any of the actions

specified in acemask4.

ACE4_SYSTEM_ALARM_ACE_TYPE ALARM

Generate an alarm (in a

system-dependent way) any

attempt to perform, for

the file or directory,

any of the actions

specified in acemask4.

Table 1

The "Abbreviation" column denotes how the types will be referred to

throughout the rest of this document.

5.3. ACE Access Mask

The bitmask constants used for the access mask field of the ACE are

as follows:

¶

¶

const ACE4_READ_DATA = 0x00000001;

const ACE4_LIST_DIRECTORY = 0x00000001;

const ACE4_WRITE_DATA = 0x00000002;

const ACE4_ADD_FILE = 0x00000002;

const ACE4_APPEND_DATA = 0x00000004;

const ACE4_ADD_SUBDIRECTORY = 0x00000004;

const ACE4_READ_NAMED_ATTRS = 0x00000008;

const ACE4_WRITE_NAMED_ATTRS = 0x00000010;

const ACE4_EXECUTE = 0x00000020;

const ACE4_DELETE_CHILD = 0x00000040;

const ACE4_READ_ATTRIBUTES = 0x00000080;

const ACE4_WRITE_ATTRIBUTES = 0x00000100;

const ACE4_WRITE_RETENTION = 0x00000200;

const ACE4_WRITE_RETENTION_HOLD = 0x00000400;

const ACE4_DELETE = 0x00010000;

const ACE4_READ_ACL = 0x00020000;

const ACE4_WRITE_ACL = 0x00040000;

const ACE4_WRITE_OWNER = 0x00080000;

const ACE4_SYNCHRONIZE = 0x00100000;

Note that some masks have coincident values, for example,

ACE4_READ_DATA and ACE4_LIST_DIRECTORY. The mask entries

ACE4_LIST_DIRECTORY, ACE4_ADD_FILE, and ACE4_ADD_SUBDIRECTORY are

intended to be used with directory objects, while ACE4_READ_DATA,

ACE4_WRITE_DATA, and ACE4_APPEND_DATA are intended to be used with

non-directory objects.

5.4. Uses of Mask Bits

[Author Aside]: Because this section has been moved to be part of a

general description of ACEs, not limited to authorization, the

descriptions no longer refer to permissions but rather to actions.

This is best considered a purely editorial change, but, to allow for

possible disagreement on the matter, it will be considered, here and

in Appendix B, as consensus item #3.

[Author Aside]: In a large number of places, SHOULD is used

inappropriately, since there appear to be no valid reasons to allow

a server to ignore what might well be a requirement. Such changes

are not noted individually below. However, they will be considered,

here and in Appendix B, as consensus item #4a.

[Author Aside}: In a significant number of cases the ACCESS

operation is not listed as a operation affected by the mask bit.

These additions are not noted individually below. However, they will

be considered, here and in Appendix B, as consensus item #5a.

¶

¶

¶

¶

¶

[Author Aside, Including List]: In a number of cases, there are

additional changes which go beyond editorial or arguably do so.

These will be marked as their own consensus items usually with an

accompanying author aside but without necessarily citing the

previous treatment. These include:

Revisions were necessary to clarify the relationship between

READ_DATA and EXECUTE. These are part of consensus item #7a.

Revisions were necessary to clarify the relationship between

WRITE_DATA and APPEND_DATA. These are part of consensus item #8a.

Clarification of the handling of RENAME by ADD_SUBDIRECTORY. This

is part of consensus item #9a.

Revisions in handling of the masks WRITE_RETENTION and

WRITE_RETENTION_HOLD. These are parts of consensus items #10a.

[Author Aside]: Because of the need to address sticky-bit issues as

part of of the ACE mask descriptions, it is appropriate to introduce

the subject here.

[Consensus Item (Item #6a)]: Despite the fact that NFSv4 ACLs and

mode bits are separate means of authorization, it has been

necessary, even if only for the purpose of providing compatibility

with earlier implementations, to introduce the issue here, since

reference to this mode bit are necessary to resolve issues regard

directory entry deletion, as is done in Section 5.6.

[Consensus Item, Including List (Item #6a): The full description of

the role of the sticky-bit appears in Section 7.3.1. In evaluating

and understanding the relationship between the handling of this bit

when NFSv4 ACLs are used and when they are not, the following points

need to be kept in mind:

This is troublesome in that it combines data normally assigned to

two different authorization models and breaks the overall

architectural arrangement in which the mask bits represent the

mode bits but provide a finer granularity of control.

It might have been possible to conform to the existing

architectural model if a new mask bit were created to represent

to directory sticky bit. It is probably too late to so now, even

though it would be allowed as an NFSv4.2 extension.

The new treatment in Section 5.6 is more restrictive than the

previous one appearing in Section 5.6.1. This raises potential

compatibility issues since the new treatment, while designed to

address the same issues was designed to match existing Unix

handling of this bit.

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

This handling initially addresses REMOVE and does not address

directory sticky bit semantics with regard to RENAME. Whether it

will do so is still uncertain.

The handling of this mode bit was not documented in previous

specifications. However, there is a preliminary attempt to do so

in Section 7.3.1. The reason for doing so, is that given the Unix

orientation of the mode attribute, it is likely that servers

currently implement this, even though there is no NFSv4

documentation of this semantics

This treatment needs to be checked for compatibility issues and

also to establish a model that we might adapt to the case of

NFSv4 ACLs.

In the long term, it would make more sense to allow the client

rather than the server to have the primary role in determining

the semantics for things like this. That does not seem possible

right now but it is worth considering.

ACE4_READ_DATA

READ

OPEN

ACCESS

The action of reading the data to the data of the file.

[Previous Treatment (Item #7a)]: Servers SHOULD allow a user

the ability to read the data of the file when only the

ACE4_EXECUTE access mask bit is allowed.

[Author Aside]: The treatment needs to be clarified to make it

appropriate to all ACE types.

[Consensus Needed (Item #7a)]: When used to handle READ or

OPEN operations, the handling MUST be identical whether this

bit, ACE4_EXECUTE, or both are present, as the server has no

way of determining whether a file is being read for execution

are not. The only occasion for different handling is in

construction of a corresponding mode or in responding to the

ACCESS operation.

ACE4_LIST_DIRECTORY

*

¶

*

¶

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

READDIR

The action of listing the contents of a directory.

ACE4_WRITE_DATA

WRITE

OPEN

ACCESS

SETATTR of size

[Author Aside]: Needs to be revised to deal with issues

related to the interaction of WRITE_DATA and APPEND_DATA.

[Consensus Needed (Item #8a)]: The action of modifying

existing data bytes within a file's current data.

[Consensus Needed (Item #8a)]: As there is no way for the

server to decide, in processing an OPEN or ACCESS request,

whether subsequent WRITEs will extend the file or not, the

server will, in processing an OPEN treat masks containing only

WRITE_DATA, only APPEND_DATA, or both identically.

[Consensus Needed (Item #8a)]: In processing a WRITE request,

the server is presumed to have the to determine whether the

current request extends the file and whether it modifies bytes

already in the file.

[Consensus Needed (Item #8a)]: ACE4_WRITE_DATA is required to

process a WRITE which spans pre-existing byte in the file,

whether the file is extended or not.

ACE4_ADD_FILE

CREATE

LINK

OPEN

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Discussion:

Operation(s) affected:

Discussion:

RENAME

The action of adding a new file in a directory. The CREATE

operation is affected when nfs_ftype4 is NF4LNK, NF4BLK,

NF4CHR, NF4SOCK, or NF4FIFO. (NF4DIR is not included because

it is covered by ACE4_ADD_SUBDIRECTORY.) OPEN is affected when

used to create a regular file. LINK and RENAME are always

affected.

ACE4_APPEND_DATA

WRITE

ACCESS

OPEN

SETATTR of size

[Author Aside]: Also needs to be revised to deal with issues

related to the interaction of WRITE_DATA and APPEND_DATA.

The action of modifying a file's data, but only starting at

EOF. This allows for the specification of append-only files,

by allowing ACE4_APPEND_DATA and denying ACE4_WRITE_DATA to

the same user or group.

[Consensus Needed (Item #8a)]: As there is no way for the

server to decide, in processing an OPEN or ACCESS request,

whether subsequent WRITEs will extend the file or not, the

server will treat masks containing only WRITE_DATA, only

APPEND_DATA or both, identically.

[Consensus Needed (Item #8a)]: If the server is processing a

WRITE request and the area to be written extends beyond the

existing EOF of the file then the state of APPEND_DATA mask

bit is consulted to determine whether the operation is

permitted or whether alarm or audit activities are to be

performed. If a file has an NFSv4 ACL allowing only

APPEND_DATA (and not WRITE_DATA) and a WRITE request is made

at an offset below EOF, the server MUST return NFS4ERR_ACCESS.

[Consensus Needed (Item #8a)]: If the server is processing a

WRITE request and the area to be written does not extend

beyond the existing EOF of the file then the state of

APPEND_DATA mask bit does not need to be consulted to

determine whether the operation is permitted or whether alarm

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

or audit activities are to be performed. In this case, only

the WRITE_DATA mask bit needs to be checked to determine

whether the WRITE is authorized.

ACE4_ADD_SUBDIRECTORY

CREATE

RENAME

[Author Aside]: The RENAME cases need to be limited to the

renaming of directories, rather than saying, "The RENAME

operating is always affected."

[Consensus Needed (Item #9a)]: The action of creating a

subdirectory in a directory. The CREATE operation is affected

when nfs_ftype4 is NF4DIR. The RENAME operation is always

affected when directories are renamed and the target directory

NFSv4 ACL contains the mask ACE4_ADD_SUBDIRECTORY.

ACE4_READ_NAMED_ATTRS

OPENATTR

The action of reading the named attributes of a file or of

looking up the named attribute directory. OPENATTR is affected

when it is not used to create a named attribute directory.

This is when 1) createdir is TRUE, but a named attribute

directory already exists, or 2) createdir is FALSE.

ACE4_WRITE_NAMED_ATTRS

OPENATTR

The action of writing the named attributes of a file or

creating a named attribute directory. OPENATTR is affected

when it is used to create a named attribute directory. This is

when createdir is TRUE and no named attribute directory

exists. The ability to check whether or not a named attribute

directory exists depends on the ability to look it up;

therefore, users also need the ACE4_READ_NAMED_ATTRS

permission in order to create a named attribute directory.

ACE4_EXECUTE

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

READ

OPEN

ACCESS

REMOVE

RENAME

LINK

CREATE

The action of reading a file in order to execute it.

Servers MUST allow a user the ability to read the data of the

file when only the ACE4_EXECUTE access mask bit is allowed.

This is because there is no way to execute a file without

reading the contents. Though a server may treat ACE4_EXECUTE

and ACE4_READ_DATA bits identically when deciding to permit a

READ or OPEN operation, it MUST still allow the two bits to be

set independently in NFSv4 ACLs, and distinguish between them

when replying to ACCESS operations. In particular, servers

MUST NOT silently turn on one of the two bits when the other

is set, as that would make it impossible for the client to

correctly enforce the distinction between read and execute

permissions.

As an example, following a SETATTR of the following NFSv4 ACL:

nfsuser:ACE4_EXECUTE:ALLOW

A subsequent GETATTR of acl attribute for that file will

return:

nfsuser:ACE4_EXECUTE:ALLOW

and MUST NOT return:

nfsuser:ACE4_EXECUTE/ACE4_READ_DATA:ALLOW

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

ACE4_EXECUTE

LOOKUP

The action of traversing/searching a directory.

ACE4_DELETE_CHILD

REMOVE

RENAME

The action of deleting a file or directory within a directory.

See Section 5.6 for information on now ACE4_DELETE and

ACE4_DELETE_CHILD are to interact.

ACE4_READ_ATTRIBUTES

GETATTR of file system object attributes

VERIFY

NVERIFY

READDIR

The action of reading basic attributes (non-ACLs) of a file.

On a UNIX system, such basic attributes can be thought of as

the stat-level attributes. Allowing this access mask bit would

mean that the entity can execute "ls -l" and stat. If a

READDIR operation requests attributes, this mask need s to be

be allowed for the READDIR to succeed.

ACE4_WRITE_ATTRIBUTES

SETATTR of time_access_set, time_backup, time_create,

time_modify_set, mimetype, hidden, system.

The action of changing the times associated with a file or

directory to an arbitrary value. Also permission to change the

mimetype, hidden, and system attributes. A user having

ACE4_WRITE_DATA or ACE4_WRITE_ATTRIBUTES will be allowed to

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

set the times associated with a file to the current server

time.

ACE4_WRITE_RETENTION

SETATTR of retention_set, retentevt_set.

The action of modifying the durations for event and non-event-

based retention. Also includes enabling event and non-event-

based retention.

[Author Aside]: The use of "MAY" here ignores the potential

for harm which unexpected modification of the associated

attributes might cause for security/compliance.

[Previous Treatment]: A server MAY behave such that setting

ACE4_WRITE_ATTRIBUTES allows ACE4_WRITE_RETENTION.

[Consensus Needed (Items #10a, #11a)]: Options for coarser-

grained treatment involving this mask bit are discussed in

Section 5.5

ACE4_WRITE_RETENTION_HOLD

SETATTR of retention_hold.

The action of modifying the administration retention holds.

[Previous Treatment]: A server MAY map ACE4_WRITE_ATTRIBUTES

to ACE_WRITE_RETENTION_HOLD.

[Author Aside]: The use of "MAY" here ignores the potential

for harm which unexpected modification of the associated

attributes might cause for security/compliance.

[Consensus Needed (Items #10a, #11a)]: Options for coarser-

grained treatment of this mask bit are discussed in Section

5.5

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

Operation(s) affected:

Discussion:

ACE4_DELETE

REMOVE

The action of deleting the associated file or directory. See

Section 5.6 for information on how ACE4_DELETE and

ACE4_DELETE_CHILD are to interact.

ACE4_READ_ACL

GETATTR of acl, dacl, or sacl

NVERIFY

VERIFY

The action of reading the NFSv4 ACL.

ACE4_WRITE_ACL

SETATTR of acl and mode

The action of modifying the acl or mode attributes.

ACE4_WRITE_OWNER

SETATTR of owner and owner_group

The action of modifying the owner or owner_group attributes.

On UNIX systems, this done by executing chown() and chgrp().

ACE4_SYNCHRONIZE

NONE

Permission to use the file object as a synchronization

primitive for interprocess communication. This permission is

not enforced or interpreted by the NFSv4.1 server on behalf of

the client.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Typically, the ACE4_SYNCHRONIZE permission is only meaningful

on local file systems, i.e., file systems not accessed via

NFSv4.1. The reason that the permission bit exists is that

some operating environments, such as Windows, use

ACE4_SYNCHRONIZE.

For example, if a client copies a file that has

ACE4_SYNCHRONIZE set from a local file system to an NFSv4.1

server, and then later copies the file from the NFSv4.1 server

to a local file system, it is likely that if ACE4_SYNCHRONIZE

was set in the original file, the client will want it set in

the second copy. The first copy will not have the permission

set unless the NFSv4.1 server has the means to set the

ACE4_SYNCHRONIZE bit. The second copy will not have the

permission set unless the NFSv4.1 server has the means to

retrieve the ACE4_SYNCHRONIZE bit.

5.5. Requirements and Recommendations Regarding Mask Granularity

This is new section which replaces material formerly in the previous

section, cited here as "Previous Treatment. The new material,

constituting the remainder of the section is proposed to replace it.

All such unannotated material is to be considered as part of

consensus item #11b.

[Previous Treatment (Item #11b)]: Server implementations need not

provide the granularity of control that is implied by this list of

masks. For example, POSIX-based systems might not distinguish

ACE4_APPEND_DATA (the ability to append to a file) from

ACE4_WRITE_DATA (the ability to modify existing contents); both

masks would be tied to a single "write" permission bit. When such a

server returns attributes to the client that contain such masks, it

would show ACE4_APPEND_DATA and ACE4_WRITE_DATA if and only if the

the write permission bit is enabled.

[Previous Treatment (Item #11b)]: If a server receives a SETATTR

request that it cannot accurately implement, it should err in the

direction of more restricted access, except in the previously

discussed cases of execute and read. For example, suppose a server

cannot distinguish overwriting data from appending new data, as

described in the previous paragraph. If a client submits an ALLOW

ACE where ACE4_APPEND_DATA is set but ACE4_WRITE_DATA is not (or

vice versa), the server should either turn off ACE4_APPEND_DATA or

reject the request with NFS4ERR_ATTRNOTSUPP.

[Author Aside]: Giving servers a general freedom to to not support

the masks defined in this section creates an unacceptable level of

potential interoperability problems. With regard to the specific

example given, it is hard to imagine a server incapable of

¶

¶

¶

¶

¶

distinguishing a write to an offset within existing file and one

beyond it. This applies whether the server in question is

implemented within a POSIX-based system or not. It is true that a

server that used the unmodified POSIX interface to interact with the

file system, rather than a purpose-built VFS, would face this

difficulty, but it not clear that that fact justifies the client

compatibility issues that accommodating this behavior in the

protocol would generate. A further difficulty with the previous

treatment is that it at variance with the approach to other cases in

which ACEs are stored with the understanding that implementations of

other protocols might be responsible for enforcement.

[Author Aside]: A replacement clearly needs to be based on the idea

that these mask bits were included in NFSv4 for a reason, and that

exceptions need to be justified, and take interoperability issues

into account. The treatment below attempts to do that.

All implementations of the acl, dacl, and sacl attributes SHOULD

follow the definitions provided above in Section 5.4, which allow

finer-grained control of the actions allowed to specific users than

is provided by the mode attribute. Valid reasons to bypass this

guidance include the need for compatibility with clients expecting a

coarser-grained implementation.

The specific cases in which servers may validly provide coarser-

grained implementations are discussed below.

Servers not providing the mask granularity described in Section 5.4

MUST NOT treat masks other than described in that section except as

listed below.

Servers that do not distinguish between WRITE_DATA and

APPEND_DATA need to make it clear to clients that support for

append-only files is not present. To do that, requests to set

NFSv4 ACLs where the handling for these two masks are different

for any specified user or group are to be rejected with

NFS4ERR_ATTRNOTSUPP.

[Consensus Needed (Items #10b, #11b)]: Servers that combine

either of the masks WRITE_RETENTION or WRITE_RETENTION_HOLD with

WRITE_ATTRIBUTES need to make it clear to clients that the finer-

grained treatment normally expected is not available. To do that,

requests to set NFSv4 ACLs in which the two combined masks are

explicitly assigned different permission states (i.e. one is

ALLOWED while the other is DENIED) for any specific user or group

are to be rejected with NFS4ERR_ATTRNOTSUPP.

The above are in line with the requirement that attempts to set

NFSv4 ACLs that the server cannot enforce, it needs to be clear that

¶

¶

¶

¶

¶

*

¶

*

¶

there are cases in which such ACLs need to be set with the

expectation that enforcement will be done by the local file system

or by another file access protocol. In particular,

In handling the mask bit SYNCHRONIZE, the server is not

responsible for enforcement and so can accept NFSv4 ACLs it has

no way of enforcing.

When mask bits refers to an OPTIONAL feature that the server does

not support such as named attributes or retention attributes, the

server is allowed to accept NFSv4 ACLs containing mask bits

associated with the unimplemented feature, even though there is

no way these cold be enforced. The expectation is that the files

might be accessed by other protocols having such support or might

be copied, together with associated ACLs to servers capable of

enforcing them.

5.6. Handling of Deletion

[Author Aside]: This section, exclusive of subsections contains a

proposal for the revision of the ACL-based handling of requests to

delete directory entries. All unannotated material within it is to

be considered part of consensus item #12a.

[Author Aside]: The associated previous treatment is to be found in

Section 5.6.1

This section describes the handling requests of that involve

deletion of a directory entry. It needs to be noted that:

Modification or transfer of a directory, as happens in RENAME is

not covered.

The deletion of the file's data is dealt with separately as this,

like a truncation to length zero, requires ACE4_WRITE_DATA.

In general, the recognition of such an operation for authorization/

auditing/alarm depends on either of two bits mask bits being set:

ACE4_MASK_DELETE on the file being deleted and

ACE4_MASK_DELETE_CHILD on the directory from which the entry is

being deleted.

In the case of authorization, the above applies even when one of the

bits is allowed and the other is explicitly denied.

[Consensus Items, Including List (#6b, #12a): When neither of the

mask bits is set, the result is normally negative. That is,

permission is denied and no audit or alarm event is recognized.

However, in the case of authorization, the server MAY make

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

¶

permission dependent on the setting of MODE4_SVTX if the mode

attribute is supported, as follows:

If that bit not set, allow the removal if and only if

ACE4_ADD_FILE is permitted.

If that bit is set, allow the removal if and only if

ACE4_ADD_FILE is permitted and the requester is the owner of the

target.

5.6.1. Previous Handling of Deletion

[Author Aside]: This section contains the former content of Section

5.6. All unannotated paragraphs within it are to be considered the

Previous Treatment associated with consensus item #12b.

[Author Aside, Including List]: Listed below are some of the reasons

that I have tried to replace the existing treatment rather than

address the specific issues mentioned here and in later asides.

The fact that there is no clear message about what servers are to

do and about whether behavior clients might rely rely on. This

derives in turn from the use of "SHOULD" in contexts in which it

is clearly not appropriate, combined with non-normative reports

of what some systems do, and the statement that the approach

suggested is a way of providing "something like traditional UNIX-

like semantics".

The complexity of the approach without any indication that there

is a need for such complexity makes me doubtful that anything was

actually implemented, especially since the text is so wishy-washy

about the need for server implementation. The probability that it

would be implemented so widely that clients might depend on it is

even more remote.

The fact that how audit and alarm issues are to be dealt with is

not addressed at all.

The fact that this treatment combines ACL data with mode bit

information in a confused way without any consideration of the

fact that the mode attribute is OPTIONAL.

Two access mask bits govern the ability to delete a directory entry:

ACE4_DELETE on the object itself (the "target") and

ACE4_DELETE_CHILD on the containing directory (the "parent").

Many systems also take the "sticky bit" (MODE4_SVTX) on a directory

to allow unlink only to a user that owns either the target or the

parent; on some such systems the decision also depends on whether

the target is writable.

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Servers SHOULD allow unlink if either ACE4_DELETE is permitted on

the target, or ACE4_DELETE_CHILD is permitted on the parent. (Note

that this is true even if the parent or target explicitly denies one

of these permissions.)

If the ACLs in question neither explicitly ALLOW nor DENY either of

the above, and if MODE4_SVTX is not set on the parent, then the

server SHOULD allow the removal if and only if ACE4_ADD_FILE is

permitted. In the case where MODE4_SVTX is set, the server may also

require the remover to own either the parent or the target, or may

require the target to be writable.

This allows servers to support something close to traditional UNIX-

like semantics, with ACE4_ADD_FILE taking the place of the write

bit.

5.7. ACE flag bits

The bitmask constants used for the flag field are as follows:

const ACE4_FILE_INHERIT_ACE = 0x00000001;

const ACE4_DIRECTORY_INHERIT_ACE = 0x00000002;

const ACE4_NO_PROPAGATE_INHERIT_ACE = 0x00000004;

const ACE4_INHERIT_ONLY_ACE = 0x00000008;

const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;

const ACE4_FAILED_ACCESS_ACE_FLAG = 0x00000020;

const ACE4_IDENTIFIER_GROUP = 0x00000040;

const ACE4_INHERITED_ACE = 0x00000080;

[Author Aside]: Although there are multiple distinct issues that

might need to be changed, in the interest of simplifying the review,

all such issues within this section will be considered part of

Consensus Item #13a with a single revised treatment addressing all

the issues noted.

[Previous Treatment]: A server need not support any of these flags.

[Author Aside]: It is hard to understand why such broad license is

granted to the server, leaving the client to deal, without an

explicit non-support indication, with 256 possible combinations of

supported and unsupported flags. If there were specific issues with

some flags that makes it reasonable for a server not to support

them, then these need to be specifically noted. Also problematic is

the use of the term "need not", suggesting that the server does not

need any justification for choosing these flags, defined by the

protocol. At least it needs to be said that the server SHOULD

support the defined ACE flags. After all they were included in the

protocol for a reason.

¶

¶

¶

¶

¶

¶

¶

¶

ACE4_FILE_INHERIT_ACE

ACE4_DIRECTORY_INHERIT_ACE

[Previous Treatment]: If the server supports flags that are similar

to, but not exactly the same as, these flags, the implementation may

define a mapping between the protocol-defined flags and the

implementation-defined flags.

[Author Aside]: The above dealing how an implementation might store

the bits it supports, while valid, is out-of-scope and need to be

deleted.

[Previous Treatment]: For example, suppose a client tries to set an

ACE with ACE4_FILE_INHERIT_ACE set but not

ACE4_DIRECTORY_INHERIT_ACE. If the server does not support any form

of ACL inheritance, the server should reject the request with

NFS4ERR_ATTRNOTSUPP. If the server supports a single "inherit ACE"

flag that applies to both files and directories, the server may

reject the request (i.e., requiring the client to set both the file

and directory inheritance flags). The server may also accept the

request and silently turn on the ACE4_DIRECTORY_INHERIT_ACE flag.

]Author Aside]: What is the possible for justification for accepting

a request asking you do something and then, without notice to the

client do, something else. I believe there is none.

Consensus Needed (Item #13a)]: Servers SHOULD support the flag bits

defined above as described in Section 5.8. When a server which does

not support all the flags bits receives a request to set an NFSv4

ACL containing an ACE with an unsupported flag bit set the server

MUST reject the request with NFS4ERR_ATTRNOTSUPP.

Consensus Needed (Item #13a)]: The case of servers which do not

provide support for particular flag combinations is to be treated

similarly. If a server supports a single "inherit ACE" flag that

applies to both files and directories, receives a request set an

NFSv4 ACL with ACE ACE4_FILE_INHERIT_ACE set but

ACE4_DIRECTORY_INHERIT_ACE not set, it MUST reject the request with

NFS4ERR_ATTRNOTSUPP.

5.8. Details Regarding ACE Flag Bits

Any non-directory file in any sub-directory will get this ACE

inherited.

Can be placed on a directory and indicates that this ACE is to be

added to each new directory created.

If this flag is set in an ACE in an NFSv4 ACL attribute to be set

on a non-directory file system object, the operation attempting

to set the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

ACE4_NO_PROPAGATE_INHERIT_ACE

ACE4_INHERIT_ONLY_ACE

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG and ACE4_FAILED_ACCESS_ACE_FLAG

ACE4_IDENTIFIER_GROUP

Can be placed on a directory. This flag tells the server that

inheritance of this ACE is to stop at newly created child

directories.

Can be placed on a directory but does not apply to the directory;

ALLOW and DENY ACEs with this bit set do not affect access to the

directory, and AUDIT and ALARM ACEs with this bit set do not

trigger log or alarm events. Such ACEs only take effect once they

are applied (with this bit cleared) to newly created files and

directories as specified by the ACE4_FILE_INHERIT_ACE and

ACE4_DIRECTORY_INHERIT_ACE flags.

If this flag is present on an ACE, but neither

ACE4_DIRECTORY_INHERIT_ACE nor ACE4_FILE_INHERIT_ACE is present,

then an operation attempting to set such an attribute SHOULD fail

with NFS4ERR_ATTRNOTSUPP.

The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and

ACE4_FAILED_ACCESS_ACE_FLAG (FAILED) flag bits may be set only on

ACE4_SYSTEM_AUDIT_ACE_TYPE (AUDIT) and ACE4_SYSTEM_ALARM_ACE_TYPE

(ALARM) ACE types. If during the processing of the file's NFSv4

ACL, the server encounters an AUDIT or ALARM ACE that matches the

principal attempting the OPEN, the server notes that fact, and

the presence, if any, of the SUCCESS and FAILED flags encountered

in the AUDIT or ALARM ACE. Once the server completes the ACL

processing, it then notes if the operation succeeded or failed.

If the operation succeeded, and if the SUCCESS flag was set for a

matching AUDIT or ALARM ACE, then the appropriate AUDIT or ALARM

event occurs. If the operation failed, and if the FAILED flag was

set for the matching AUDIT or ALARM ACE, then the appropriate

AUDIT or ALARM event occurs. Either or both of the SUCCESS or

FAILED can be set, but if neither is set, the AUDIT or ALARM ACE

is not useful.

The previously described processing applies to ACCESS operations

even when they return NFS4_OK. For the purposes of AUDIT and

ALARM, we consider an ACCESS operation to be a "failure" if it

fails to return a bit that was requested and supported.

Indicates that the "who" refers to a GROUP as defined under UNIX

or a GROUP ACCOUNT as defined under Windows. Clients and servers

MUST ignore the ACE4_IDENTIFIER_GROUP flag on ACEs with a who

value equal to one of the special identifiers outlined in Section

5.9.

¶

¶

¶

¶

¶

¶

ACE4_INHERITED_ACE

Indicates that this ACE is inherited from a parent directory. A

server that supports automatic inheritance will place this flag

on any ACEs inherited from the parent directory when creating a

new object. Client applications will use this to perform

automatic inheritance. Clients and servers MUST clear this bit in

the acl attribute; it may only be used in the dacl and sacl

attributes.

5.9. ACE Who

The "who" field of an ACE is an identifier that specifies the

principal or principals to whom the ACE applies. It may refer to a

user or a group, with the flag bit ACE4_IDENTIFIER_GROUP specifying

which.

There are several special identifiers that need to be understood

universally, rather than in the context of a particular DNS domain.

[Author Aside, including list]: so far, so good, but the following

problems need to be addressed:

Lack of clarity about which special identifiers can be understood

by NFSv4.

Confusion of "authentication" and "identification".

[Previous treatment (Item #50a)]: Some of these identifiers cannot

be understood when an NFS client accesses the server, but have

meaning when a local process accesses the file. The ability to

display and modify these permissions is permitted over NFS, even if

none of the access methods on the server understands the

identifiers.

[Consensus Needed (Item #50a)]: These identifiers, except for

OWNER@, GROUP@, EVERONE@, cannot be reliably understood when an NFS

client accesses the server, but might have meaning when a local

process accesses the file or when protocols other than NFSv4 are

used As a result, when ACEs containing these who values are

encountered, the server is free to make its own judgment as to

whether any particular request will be treated as matching.

[Consensus Needed (Item #50a)]: The ability to display and modify

these permissions is provide for by NFSv4, even though they are not

useful when processing NFSv4 requests,

Who Description

OWNER The owner of the file.

GROUP The group associated with the file.

¶

¶

¶

¶

*

¶

* ¶

¶

¶

¶

Who Description

EVERYONE

[Previous treatment (Item #50a)]: The world, including

the owner and owning group.

[Consensus Needed (Item #50a)]: All requesters,

including the owner, members of the owning group, and

requests for which no user information is available.

INTERACTIVE Accessed from an interactive terminal.

NETWORK Accessed via the network.

DIALUP Accessed as a dialup user to the server.

BATCH Accessed from a batch job.

ANONYMOUS
[Consensus Needed (Item #50a)]: Accessed without any

authentication of the user principal.

AUTHENTICATED
[Consensus Needed (Item #50a)]: Any authenticated user

(opposite of ANONYMOUS).

SERVICE Accessed from a system service.

Table 2

To avoid conflict, these special identifiers are distinguished by an

appended "@" and will appear in the form "xxxx@" (with no domain

name after the "@"), for example, ANONYMOUS@.

{Previous treatment (Item #51a)]: The ACE4_IDENTIFIER_GROUP flag

MUST be ignored on entries with these special identifiers. When

encoding entries with these special identifiers, the

ACE4_IDENTIFIER_GROUP flag SHOULD be set to zero.

[Author Aside]: I don't understand what might be valid reasons to

ignore this or how a server would respond in the case the that it

was ignored.

[Consensus Needed (Item #51a)]: The ACE4_IDENTIFIER_GROUP flag MUST

be ignored on entries with these special identifiers. When encoding

entries with these special identifiers, the ACE4_IDENTIFIER_GROUP

flag MUST be set to zero.

It is important to note that "EVERYONE@" is not equivalent to the

UNIX "other" entity. This is because, by definition, UNIX "other"

does not include the owner or owning group of a file. "EVERYONE@"

means literally everyone, including the owner or owning group.

5.10. Automatic Inheritance Features

The acl attribute consists only of an array of ACEs, but the sacl

(Section 12.1) and dacl (Section 7.4.2) attributes also include an

additional flag field.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

struct nfsacl41 {

 aclflag4 na41_flag;

 nfsace4 na41_aces<>;

};

The flag field applies to the entire sacl or dacl; three flag values

are defined:

const ACL4_AUTO_INHERIT = 0x00000001;

const ACL4_PROTECTED = 0x00000002;

const ACL4_DEFAULTED = 0x00000004;

and all other bits are to be cleared. The ACE4_INHERITED_ACE flag

can be set in the ACEs of the sacl or dacl (whereas it always needs

to be cleared in the acl).

Together these features allow a server to support automatic

inheritance, which we now explain in more detail.

Inheritable ACEs are normally inherited by child objects only at the

time that the child objects are created; later modifications to

inheritable ACEs do not result in modifications to inherited ACEs on

descendants.

However, the dacl and sacl provide an OPTIONAL mechanism that allows

a client application to propagate changes to inheritable ACEs to an

entire directory hierarchy.

A server that supports this feature performs inheritance at object

creation time in the normal way, and SHOULD set the

ACE4_INHERITED_ACE flag on any inherited ACEs as they are added to

the new object.

A client application such as an ACL editor may then propagate

changes to inheritable ACEs on a directory by recursively traversing

that directory's descendants and modifying each NFSv4 ACL

encountered to remove any ACEs with the ACE4_INHERITED_ACE flag and

to replace them by the new inheritable ACEs (also with the

ACE4_INHERITED_ACE flag set). It uses the existing ACE inheritance

flags in the obvious way to decide which ACEs to propagate. (Note

that it may encounter further inheritable ACEs when descending the

directory hierarchy and that those will also need to be taken into

account when propagating inheritable ACEs to further descendants.)

The reach of this propagation may be limited in two ways: first,

automatic inheritance is not performed from any directory ACL that

¶

¶

¶

¶

¶

¶

¶

¶

¶

has the ACL4_AUTO_INHERIT flag cleared; and second, automatic

inheritance stops wherever an ACL with the ACL4_PROTECTED flag is

set, preventing modification of that ACL and also (if the ACL is set

on a directory) of the ACL on any of the object's descendants.

This propagation is performed independently for the sacl and the

dacl attributes; thus, the ACL4_AUTO_INHERIT and ACL4_PROTECTED

flags may be independently set for the sacl and the dacl, and

propagation of one type of acl may continue down a hierarchy even

where propagation of the other acl has stopped.

New objects are to be created with a dacl and a sacl that both have

the ACL4_PROTECTED flag cleared and the ACL4_AUTO_INHERIT flag set

to the same value as that on, respectively, the sacl or dacl of the

parent object.

Both the dacl and sacl attributes are Recommended, and a server MAY

support one without supporting the other.

A server that supports both the old acl attribute and one or both of

the new dacl or sacl attributes MUST do so in such a way as to keep

all three attributes consistent with each other. Thus, the ACEs

reported in the acl attribute will be the union of the ACEs reported

in the dacl and sacl attributes, except that the ACE4_INHERITED_ACE

flag will be cleared from the ACEs in the acl. And of course a

client that queries only the acl will be unable to determine the

values of the sacl or dacl flag fields.

When a client performs a SETATTR for the acl attribute, the server

SHOULD set the ACL4_PROTECTED flag to true on both the sacl and the

dacl. By using the acl attribute, as opposed to the dacl or sacl

attributes, the client signals that it may not understand automatic

inheritance, and thus cannot be trusted to set an ACL for which

automatic inheritance would make sense.

When a client application queries an NFSv4 ACL, modifies it, and

sets it again, it needs to leave any ACEs marked with

ACE4_INHERITED_ACE unchanged, in their original order, at the end of

the NFSv4 ACL. If the application is unable to do this, it needs to

set the ACL4_PROTECTED flag. This behavior is not enforced by

servers, but violations of this rule may lead to unexpected results

when applications perform automatic inheritance.

If a server also supports the mode attribute, it SHOULD set the mode

in such a way that leaves inherited ACEs unchanged, in their

original order, at the end of the ACL. If it is unable to do so, it

SHOULD set the ACL4_PROTECTED flag on the file's dacl.

Finally, in the case where the request that creates a new file or

directory does not also set permissions for that file or directory,

¶

¶

¶

¶

¶

¶

¶

¶

and there are also no ACEs to inherit from the parent's directory,

then the server's choice of ACL for the new object is

implementation-dependent. In this case, the server SHOULD set the

ACL4_DEFAULTED flag on the ACL it chooses for the new object. An

application performing automatic inheritance takes the

ACL4_DEFAULTED flag as a sign that the ACL is to be completely

replaced by one generated using the automatic inheritance rules.

5.11. Attribute 13: aclsupport

A server need not support all of the above ACE types. This attribute

indicates which ACE types are supported for the current file system.

The bit mask constants used to represent the above definitions

within the aclsupport attribute are as follows:

const ACL4_SUPPORT_ALLOW_ACL = 0x00000001;

const ACL4_SUPPORT_DENY_ACL = 0x00000002;

const ACL4_SUPPORT_AUDIT_ACL = 0x00000004;

const ACL4_SUPPORT_ALARM_ACL = 0x00000008;

[Author Aside]: Even though support aclsupport is OPTIONAL, there

has been no mention of the possibility of it not being supported.

[Consensus Needed (Item #14a)]: If this attribute is not supported

for a server, the client is entitled to assume that if the acl

attribute is supported, support for ALLOW and DENY ACEs is present.

Thus, if such a server supports the the sacl attribute, clients are

not likely to use it if aclsupport is not supported by the server.

[Previous Treatment]: Servers that support either the ALLOW or DENY

ACE type SHOULD support both ALLOW and DENY ACE types.

[Author Aside]: It needs to be made clearer what the harm is that is

to be prevented by this. Further if such harm exists, it is not

clear what are the valid reasons not do this?

[Consensus Needed (Item #15a)]: There is little point in

implementing a server which supports either ALLOW or DENY ACE types

without supporting both. For reasons explained in Section 7.1 the

ACL-based authorization cannot be used if only a single ACE type is

available.

Clients are not to attempt to set an ACE unless the server claims

support for that ACE type. If the server receives a request to set

an ACE that it cannot store, it MUST reject the request with

NFS4ERR_ATTRNOTSUPP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[Previous Treatment (Item #12c)]: If the server receives a request

to set an ACE that it can store but cannot enforce, the server

SHOULD reject the request with NFS4ERR_ATTRNOTSUPP.

[Author Aside]: Beyond the issues with the use of SHOULD, it is

better to centralize this material and be clearer about the whole

issue of ACL enforcement.

[Consensus Needed (Item #12c)]: The case of ACEs that cannot be

enforced is similar, with the details of enforcement discussed in

Section 5.5.

Support for any of the ACL attributes is OPTIONAL, although

Recommended. However, a server (NFSv4.1 and above) that supports

either of the new ACL attributes (dacl or sacl) MUST allow use of

the new ACL attributes to access all of the ACE types that it

supports. In other words, if a server which supports sacl or dacl

supports ALLOW or DENY ACEs, then it MUST support the dacl

attribute, and if it supports AUDIT or ALARM ACEs, then it MUST

support the sacl attribute.

5.12. Attribute 12: acl

The acl attribute, as opposed to the sacl and dacl attributes,

consists only of an ACE array and does not support automatic

inheritance.

The acl attribute is recommended and there is no requirement that a

server support it. However, when the dacl attribute is supported, it

is a good idea to provide support for the acl attribute as well, in

order to accommodate clients that have not been upgraded to use the

dacl attribute.

[Author Aside]: Although it has generally been assumed that changes

to sacl and dacl attributes are to be visible in the acl and vice

versa, NFSv4.1 specification do not appear to document this fact.

[Consensus Item, Including List (Item #16a)]: For NFSv4.1 servers

that support Both the acl attribute and one or more of the sacl and

dacl attributes, changes to the ACE's need to be immediately

reflected in the other supported attributes:

The result of reading the dacl attribute MUST consist of a set of

ACEs that are exactly the same as the ACEs ALLOW and DENY ACEs

within the the acl attribute, in the same order.

The result of reading the sacl attribute MUST consist of a set of

ACEs that are exactly the same as the ACEs AUDIT and ALARM ACEs

within the the acl attribute, in the same order.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

The result of reading the acl attribute MUST consist of a set of

ACEs that are exactly the same as the union of ACEs within the

sacl and dacl attributes. Two ACEs that both appear in one of the

sacl or dacl attributes will appear in the same order in the acl

attribute.

6. Authorization in General

There are three distinct methods of checking whether NFSv4 requests

are authorized:

The most important methods of authorization is used to effect

user-based file access control, as described in Section 7. These

methods are often termed "Discretionary access control" because

they rely on attributes set by particular users, to control

acceptable file access.

This requires the identification of the user making the request.

Because of the central role of such access control in providing

NFSv4 security, server implementations SHOULD NOT use such

identifications when they are not authenticated. In this context,

valid reasons to do otherwise are limited to the compatibility

and maturity issues discussed in Section 17.1.4

NFSv4.2, via the labelled NFS feature, provides an additional

potential requirement for request authorization. The labelled NFS

provides "Mandatory access control" not under the control of

individual users.

For reasons made clear in Section 10, there is no realistic

possibility of the server using the data defined by existing

specifications of this feature to effect request authorization.

While it is possible for clients to provide this authorization,

the lack of detailed specifications makes it impossible to

determine the nature of the identification used and whether it

can appropriately be described as "authentication".

Since undesired changes to server-maintained locking state (and,

for NFSv4.1, session state) can result in denial of service

attacks (see Section 17.4.7), server implementations SHOULD take

steps to prevent unauthorized state changes. This can be done by

implementing the state authorization restrictions discussed in

Section 11. Because these restrictions apply on a per-peer basis

rather than being affected by the identity of the user making the

request, it is better to consider them as part of "Mandatory

access control".

*

¶

¶

*

¶

¶

*

¶

¶

*

¶

7. User-based File Access Authorization

7.1. Attributes for User-based File Access Authorization

NFSv4.1 provides for multiple authentication models, controlled by

the support for particular recommended attributes implemented by the

server, as discussed below:

Consensus Needed (Item #18a)]: The attributes owner,

owning_group, and mode enable use of a POSIX-based authorization

model, as described in Section 7.3. When all of these attributes

are supported, this authorization model can be implemented.

Consensus Needed (Item #18a)]:When none of these attributes or

only a proper subset of them are supported, this authorization

model is unavailable.

[Consensus Needed (Item #17a)]: The acl attribute (or the

attribute dacl in NFSv4.1) can provide an ACL-based authorization

model as described in Section 7.4 as long as support for ALLOW

and DENY ACEs is provided.

[Consensus Needed (Items #17a, #18a)]: When some of these ACE

types are not supported or the owner or owning_group attribute is

not supported, this authorization model is unavailable, since

there are some modes that cannot be represented as a

corresponding NFSv4 ACL, when using only a single ACE type. See

Section 9.2 for details.

7.2. Handling of Multiple Parallel File Access Authorization Models

NFSv4 ACLs and modes represent two well-established models for

specifying user-based file access permissions. NFSv4 provides

support for either or both depending on the attributes supported by

the server and, in cases in which both NFSv4 ACLs and the mode

attribute are supported, the actual attributes set for a particular

object.

[Consensus Needed (item #18b)]: When the attributes mode, owner,

owner group are all supported, the posix-based authorization

model, described in Section 7.3 can be used.

[Consensus Needed (Items #17b, #18b)]: When the acl (or dacl)

attribute is supported together with both of the ACE types ALLOW

and DENY, the acl based authorization model, described in Section

7.4 can be used as long as the attributes owner and owner_group

are also supported.

[Consensus Needed (item #18b)]: While formally recommended

(essentially OPTIONAL) attributes, it appears that the owner and

¶

*

¶

¶

*

¶

¶

¶

*

¶

*

¶

owner_group attributes need to be available to support any file

access authorization model. As a result, this document will not

discuss the possibility of servers that do not support both of these

attributes and clients have no need to support such servers.

When both authorization models can be used, there are difficulties

that can arise because the ACL-based model provides finer-grained

access control than the POSIX model. The ways of dealing with these

difficulties appear later in this section while more detail on the

appropriate handling of this situation, which might depend on the

minor version used, appears in Section 9.

The following describe NFSv4's handling in supporting multiple

authorization models for file access.

If a server supports the mode attribute, it needs to provide the

appropriate POSIX semantics if no ACL-based attributes have ever

been assigned to object. These semantics include the restriction

of the ability to modify the mode, owner and owner-group to the

current owner of the file.

If a server supports ACL attributes, it needs to provide NFSv4

ACL semantics as described in this document for all objects for

which the ACL attributes have actually been set. This includes

the ACL-based restrictions on the authorization to modify the

mode, owner and owner_group attributes.

On servers that support the mode attribute, if ACL attributes

have never been set on an object, via inheritance or explicitly,

the behavior is to be the behavior mandated by POSIX, including

the those provisions that restrict the setting of authorization-

related attributes.

On servers that support the mode attribute, if the ACL attributes

have been previously set on an object, either explicitly or via

inheritance:

[Previous Treatment]: Setting only the mode attribute should

effectively control the traditional UNIX-like permissions of

read, write, and execute on owner, owner_group, and other.

[Author Aside]: It isn't really clear what the above paragraph

means, especially as it governs the handling of aces

designating specific users and groups which are not the owner

and have no overlap with the owning group

{Consensus Needed (Item #19a)]: Setting only the mode

attribute, will result in the access of the file being

controlled just it would be if the existing acl did not exist,

with file access decisions as to read made in accordance with

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

-

¶

¶

the mode set. The ALLOW and DENY aces in the ACL will reflect

the modified security although there is no need to modify

AUDIT and ALARM aces or mask bits not affected by the mode

bits, such as SYNCHRONIZE.

[Author Aside]: the above may need to modified to reflect the

resolution of Consensus Item #??.

[Previous Treatment]: Setting only the mode attribute should

provide reasonable security. For example, setting a mode of

000 should be enough to ensure that future OPEN operations for

OPEN4_SHARE_ACCESS_READ or OPEN4_SHARE_ACCESS_WRITE by any

principal fail, regardless of a previously existing or

inherited ACL.

[Author Aside]: We need to get rid of or provide some some

replacement for the subjective first sentence. While the

specific example give is unexceptionable, it raises questions

in other cases as to what would constitutes "reasonable

semantics". While the resolution of such questions would be

subject to dispute, the author believes that consensus item

#19a deals with the matter adequately. As a result he

proposes, that the that this bullet be removed and the second-

level list collapsed to single paragraph.

Although RFCs 7530 [6] and 8881 [8] present different

descriptions of the specific semantic requirements relating to

the interaction of mode and ACL attributes, the difference are

quite small, with the most important ones deriving from the

absence of the set_mode_masked attribute. The unified treatment

in Section 9 will indicate where version-specific differences

exist.

7.3. Posix Authorization Model

7.3.1. Attribute 33: mode

The NFSv4.1 mode attribute is based on the UNIX mode bits. The

following bits are defined:

¶

¶

-

¶

¶

*

¶

¶

const MODE4_SUID = 0x800; /* set user id on execution */

const MODE4_SGID = 0x400; /* set group id on execution */

const MODE4_SVTX = 0x200; /* save text even after use */

const MODE4_RUSR = 0x100; /* read permission: owner */

const MODE4_WUSR = 0x080; /* write permission: owner */

const MODE4_XUSR = 0x040; /* execute permission: owner */

const MODE4_RGRP = 0x020; /* read permission: group */

const MODE4_WGRP = 0x010; /* write permission: group */

const MODE4_XGRP = 0x008; /* execute permission: group */

const MODE4_ROTH = 0x004; /* read permission: other */

const MODE4_WOTH = 0x002; /* write permission: other */

const MODE4_XOTH = 0x001; /* execute permission: other */

Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal

identified by the owner attribute. Bits MODE4_RGRP, MODE4_WGRP, and

MODE4_XGRP apply to principals belonging to the group identified in

the owner_group attribute but who are not identified by the owner

attribute. Bits MODE4_ROTH, MODE4_WOTH, and MODE4_XOTH apply to any

principal that does not match that in the owner attribute and does

not belong to a group matching that of the owner_group attribute.

These nine bits are used in providing authorization information.

[Previous Treatment]: The bits MODE4_SUID, MODE4_SGID, and

MODE4_SVTX do not provide authorization information and do not

affect server behavior. Instead, they are acted on by the client

just as they would be for corresponding mode bits obtained from

local file systems.

[Consensus needed (Item #6c)]: For objects which are not

directories, the bits MODE4_SUID, MODE4_SGID, and MODE4_SVTX do not

provide authorization information and do not affect server behavior.

Instead, they are acted on by the client just as they would be for

corresponding mode bits obtained from local file systems.

[Consensus needed (Item #6c)]: For directories, the bits MODE4_SUID

and MODE4_SGID, do not provide authorization information and do not

affect server behavior. Instead, they are acted on by the client

just as they would be for corresponding mode bits obtained from

local file systems. The mode bit MODE_SVTX does have an

authorization-related role as described later in this section

¶

¶

¶

¶

¶

[Consensus Needed, Including List (Item #6c]): When handling RENAME

and REMOVE operations the check for authorization depends on the

setting of MODE_SVTX for the directory.

When MODE_SVTX is not set on the directory, authorization

requires write permission on both the file being renamed and the

source directory.

When MODE_SVTX is not on the directory, authorization requires,

in addition that the requesting principal be the owner of the

file to be named or removed.

[Consensus needed (Item #6c)]: It needs to be noted that this

approach is similar to the ACL-based approach documented in Section

5.6. However there are some semantic differences whose motivation

remains unclear and the specification does not mention RENAME, as it

needs to.

[Author Aside]: Bringing the above into more alignment with the ACL-

based semantics is certainly desirable but the necessary work has

not been done yet. For tracking purposes, that realignment will be

considered Consensus Item #20.

Bits within a mode other than those specified above are not defined

by this protocol. A server MUST NOT return bits other than those

defined above in a GETATTR or READDIR operation, and it MUST return

NFS4ERR_INVAL if bits other than those defined above are set in a

SETATTR, CREATE, OPEN, VERIFY, or NVERIFY operation.

[Consensus Needed (Item #21b)]: As will be seen in Sections 9.3 and

9.7, many straightforward ways of dealing with mode that work well

with forward-slope modes need adjustment to properly deal with

reverse-slope modes, as defined in Section 4.1

7.3.2. NFSv4.1 Attribute 74: mode_set_masked

The mode_set_masked attribute is a write-only attribute that allows

individual bits in the mode attribute to be set or reset, without

changing others. It allows, for example, the bits MODE4_SUID,

MODE4_SGID, and MODE4_SVTX to be modified while leaving unmodified

any of the nine low-order mode bits devoted to permissions.

When minor versions other than NFSv4.0 are used, instances of use of

the set_mode_masked attribute such that none of the nine low-order

bits are subject to modification, then neither the acl nor the dacl

attribute needs to be automatically modified as discussed in

Sections 9.7 and 9.9.

The mode_set_masked attribute consists of two words, each in the

form of a mode4. The first consists of the value to be applied to

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

the current mode value and the second is a mask. Only bits set to

one in the mask word are changed (set or reset) in the file's mode.

All other bits in the mode remain unchanged. Bits in the first word

that correspond to bits that are zero in the mask are ignored,

except that undefined bits are checked for validity and can result

in NFS4ERR_INVAL as described below.

The mode_set_masked attribute is only valid in a SETATTR operation.

If it is used in a CREATE or OPEN operation, the server MUST return

NFS4ERR_INVAL.

Bits not defined as valid in the mode attribute are not valid in

either word of the mode_set_masked attribute. The server MUST return

NFS4ERR_INVAL if any such bits are set to one in a SETATTR. If the

mode and mode_set_masked attributes are both specified in the same

SETATTR, the server MUST also return NFS4ERR_INVAL.

7.4. ACL-based Authorization Model

7.4.1. Processing Access Control Entries

To determine if a request succeeds, the server processes each

nfsace4 entry of type ALLOW or DENY in turn as ordered in the array.

Only ACEs that have a "who" that matches the requester are

considered. An ACE is considered to match a given requester if at

least one of the following is true:

The "who' designates a specific user which is the user making the

request.

The "who" specifies "OWNER@" and the user making the request is

the owner of the file.

The "who" designates a specific group and the user making the

request is a member of that group.

The "who" specifies "GROUP@" and the user making the request is a

member of the group owning the file.

The "who" specifies "EVERYONE@".

The "who" specifies "INTERACTIVE@", "NETWORK@", "DIALUP@",

"BATCH@", or "SERVICE@" and the requester, in the judgment of the

server, feels that designation appropriately describes the

requester.

The "who" specifies "ANONYMOUS@" or "AUTHENTICATED@" and the

requestor's authentication status matches the who, using the

definitions in Section 5.9

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

Each ACE is processed until all of the bits of the requester's

access have been ALLOWED. Once a bit (see below) has been ALLOWED by

an ACCESS_ALLOWED_ACE, it is no longer considered in the processing

of later ACEs. If an ACCESS_DENIED_ACE is encountered where the

requester's access still has unALLOWED bits in common with the

"access_mask" of the ACE, the request is denied. When the ACL is

fully processed, if there are bits in the requester's mask that have

not been ALLOWED or DENIED, access is denied.

Unlike the ALLOW and DENY ACE types, the ALARM and AUDIT ACE types

do not affect a requester's access, and instead are for triggering

events as a result of a requester's access attempt. AUDIT and ALARM

ACEs are processed only after processing ALLOW and DENY ACEs if any

exist. This is necessary since the handling of AUDIT and ALARM ACEs

are affected by whether the access attempt is successful.

[Previous Treatment]: The NFSv4.1 ACL model is quite rich. Some

server platforms may provide access-control functionality that goes

beyond the UNIX-style mode attribute, but that is not as rich as the

NFS ACL model. So that users can take advantage of this more limited

functionality, the server may support the acl attributes by mapping

between its ACL model and the NFSv4.1 ACL model. Servers must ensure

that the ACL they actually store or enforce is at least as strict as

the NFSv4 ACL that was set. It is tempting to accomplish this by

rejecting any ACL that falls outside the small set that can be

represented accurately. However, such an approach can render ACLs

unusable without special client-side knowledge of the server's

mapping, which defeats the purpose of having a common NFSv4 ACL

protocol. Therefore, servers should accept every ACL that they can

without compromising security. To help accomplish this, servers may

make a special exception, in the case of unsupported permission

bits, to the rule that bits not ALLOWED or DENIED by an ACL must be

denied. For example, a UNIX-style server might choose to silently

allow read attribute permissions even though an ACL does not

explicitly allow those permissions. (An ACL that explicitly denies

permission to read attributes should still be rejected.)

[Author Aside]: While the NFSv4.1 provides that many might not need

or use, it is the one that the working group adopted by the working

group, and I have to assume that alternatives, such as the withdrawn

POSIX ACL proposal were considered but not adopted. The phrase

"unsupported permission bits" with no definition of the bit whose

support might be dispensed with, implies that the server is free to

support whatever subset of these bits it chooses. As a result,

clients would not be able to rely on a functioning server

implementation of this OPTIONAL attribute. If there are specific

compatibility issues that make it necessary to allow non-support of

specific mask bits, then these need to be limited and the client

needs guidance about determining the set of unsupported mask bits.

¶

¶

¶

¶

[Previous Treatment]: The situation is complicated by the fact that

a server may have multiple modules that enforce ACLs. For example,

the enforcement for NFSv4.1 access may be different from, but not

weaker than, the enforcement for local access, and both may be

different from the enforcement for access through other protocols

such as SMB (Server Message Block). So it may be useful for a server

to accept an ACL even if not all of its modules are able to support

it.

[Author Aside]: The following paragraph does not provide helpful

guidance and takes no account of the need of the the client to be

able to rely on the server implementing protocol-specifying

semantics and giving notice in those cases in which it is unable to

so

[Previous Treatment]: The guiding principle with regard to NFSv4

access is that the server must not accept ACLs that appear to make

access to the file more restrictive than it really is.

7.4.2. V4.1 Attribute 58: dacl

The dacl attribute is like the acl attribute, but dacl allows only

ALLOW and DENY ACEs. The dacl attribute supports automatic

inheritance (see Section 5.10).

8. Common Considerations for Both File access Models

[Author Aside, Including List]: This subsections within this section

are derived from Section 6.3 of 8881, entitled "Common Methods.

However, its content is different because it has been rewritten to

deal with issues common to both file access models, which now

appears to have not been the original intention. Nevertheless, the

following changes have been made:

The section "Server Considerations" has been revised to deal with

both the mode and acl attributes, since the points being made

apply, in almost all cases, to both attributes.

The section "Client Considerations" has been heavily revised,

since what had been there did not make any sense to me.

The section "Computing a Mode Attribute from an ACL" has been

moved to Section 9.3 since it deals with the co-ordination of the

posix and acl authorization models.

8.1. Server Considerations

The server uses the mode attribute or the acl attribute applying the

algorithm described in Section 7.4.1 to determine whether an ACL

allows access to an object.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

[Author Aside, Including List]: The list previously in this section

(now described as "Previous Treatment" combines two related issues

in a way which obscures the very different security-related

consequences of two distinct issues:

In some cases an operation will be authorized but is not allowed

for reasons unrelated to authorization.

This has no negative effect on security.

The converse case does have troubling effects on security which

are mentioned in this section and discussed in more detail in

Section 17

[Author Aside, Including List]: The items in that list have been

dealt with as follows:

The first and sixth items fit under the first (i.e. less

troublesome) of these issues. They have have been transferred

into an appropriate replacement list.

The third item is to be deleted since it does not manifest either

of these issues. In fact, it refers to the semantics already

described in Section 5.4. is already described in ...

The second, fourth and fifth items need to be addressed in a new

list dealing with the potentially troublesome issues arising from

occasions in which the access semantics previously described are

relaxed, for various reasons.

Included are cases in which previous specifications explicitly

allowed this by using the term "MAY" and others in which the

existence of servers manifesting such behavior was reported, with

the implication that clients need to prepared for such behavior.

[Previous Treatment, Including List (Items #22a, #41a, #52a)]:

However, these attributes might not be the sole determiner of

access. For example:

In the case of a file system exported as read-only, the server

will deny write access even though an object's file access

attributes would grant it.

Server implementations MAY grant ACE4_WRITE_ACL and ACE4_READ_ACL

permissions to prevent a situation from arising in which there is

no valid way to ever modify the ACL.

All servers will allow a user the ability to read the data of the

file when only the execute permission is granted (e.g., if the

ACL denies the user the ACE4_READ_DATA access and allows the user

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

ACE4_EXECUTE, the server will allow the user to read the data of

the file).

Many servers implement owner-override semantics in which the

owner of the object is allowed to override accesses that are

denied by the ACL. This may be helpful, for example, to allow

users continued access to open files on which the permissions

have changed.

Many servers provide for the existence of a "superuser" that has

privileges beyond an ordinary user. The superuser may be able to

read or write data or metadata in ways that would not be

permitted by the ACL or mode attributes.

A retention attribute might also block access otherwise allowed

by ACLs (see Section 5.13 of RFC8881 [8]).

[Consensus Needed, Including List (Item #22a)]: It needs to be noted

that, even when an operation is authorized, it may be denied for

reasons unrelated to authorization. For example:

In the case of a file system exported as read-only, the server

will deny write access even though an object's file access

attributes would authorize it.

A retention attribute might also block access otherwise allowed

by ACLs (see Section 5.13 of RFC8881 [8]).

[Consensus Needed, (Item #22a)]: There are also cases in which the

converse issue arises, so that an operation which is not authorized

as specified by the mode and ACL attributes is, nevertheless,

executed as if it were authorized. Because previous NFSv4

specifications have cited the cases listed below without reference

to the security problems that they create, it is necessary to

discuss them here to provide clarification of the security

implications of following this guidance, which is now superseded.

These cases are listed below and discussed in more detail in Section

17.1.3.

[Consensus Needed, Including List (Item #22a, #41a, #52a)]: In the

following list, the treatment used in RFC8881 [8] is quoted, while

the corresponding text in RFC7530 [6]is essentially identical.

RFC8881 [8] contains the following, which is now superseded:

Server implementations MAY grant ACE4_WRITE_ACL and

ACE4_READ_ACL permissions to prevent a situation from arising

in which there is no valid way to ever modify the ACL.

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

¶

¶

* ¶

¶

While, as a practical matter, there do need to be provisions to

deal with this issue, the "MAY" above is too broad,in that it

describes the motivation without any limits providing appropriate

restriction on the steps that might be taken to deal with the

issue. See Section 17.1.3 for the updated treatment of this

issue.

RFC8881 [8] contains the following, which is now superseded:

Many servers implement owner-override semantics in which the

owner of the object is allowed to override accesses that are

denied by the ACL. This may be helpful, for example, to allow

users continued access to open files on which the permissions

have changed.

Regardless of the truth of the first sentence above, either when

it was written or today, it needs to be stressed that the fact

that a server manifests a particular behavior does not imply that

it is valid according to the protocol specification. In this

case, the supposed "owner-override semantics" clearly are not

valid, since they contradict the specification of both the mode-

based and ACL-based approaches to file access authorization.

With regard to the second sentence of the quotation above, it is

not clear whether it is helpful or hurtful to allow continued

access to open files which have become inaccessible due to

changes in security and it is not clear that the working group

will make a decision on the matter in this document, despite the

obvious security implications. In any case, the resolution is

unlikely to depend on whether the owner is involved.

RFC8881 [8] contains the following, which is now superseded:

Many servers have the notion of a "superuser" that has

privileges beyond an ordinary user. The superuser may be able

to read or write data or metadata in ways that would not be

permitted by the ACL or mode attributes.

While many (or almost all) systems in which NFSv4 servers are

embedded, have provisions for such privileged access to be

provided, it does not follow that NFSv4 servers, as such, need to

have provision for such access.

Providing such access as part of the NFSv4 protocols, would

necessitate a major revision of the semantics of ACL including

such troublesome matters as the proper handling of AUDIT and

ALARM ACEs in the face of such privileged access.

Because of the effect such unrestricted access might have in

facilitating and perpetuating attacks, Section 17.1.3 will the

¶

* ¶

¶

¶

¶

* ¶

¶

¶

¶

new approach to this issue, while Section 17.4.1, will explain

how such access is addressed in the threat analysis.

8.2. Client Considerations

[Previous Treatment]: Clients SHOULD NOT do their own access checks

based on their interpretation of the ACL, but rather use the OPEN

and ACCESS operations to do access checks. This allows the client to

act on the results of having the server determine whether or not

access is to be granted based on its interpretation of the ACL.

[Author Aside]: With regard to the use of "SHOULD NOT" in the

paragraph above, it is not clear what might be valid reasons to

bypass this recommendation. Perhaps "MUST NOT" or "are not advised

to" would be more appropriate.

[Consensus Needed (Item #23a)]: Clients are not expected to do their

own access checks based on their interpretation of the ACL, but

instead use the OPEN and ACCESS operations to do access checks. This

allows the client to act on the results of having the server

determine whether or not access is to be granted based on its

interpretation of the ACL.

[Previous Treatment]: Clients must be aware of situations in which

an object's ACL will define a certain access even though the server

will not enforce it. In general, but especially in these situations,

the client needs to do its part in the enforcement of access as

defined by the ACL.

[Author Aside]: Despite what is said later, the only such case I

know of is the use of READ and EXECUTE where the client, but not the

server, has any means of distinguishing these. I don't know of any

others. If there were, how could ACCESS or OPEN be used to verify

access?

[Consensus Needed (Item #23a)]; Clients need to be aware of

situations in which an object's ACL will define a certain access

even though the server is not in position to enforce it because the

server does not have the relevant information, such as knowing

whether a READ is for the purpose of executing a file. Because of

such situations, the client needs to do be prepared to do its part

in the enforcement of access as defined by the ACL.

To do this, the client will send the appropriate ACCESS operation

prior to servicing the request of the user or application in order

to determine whether the user or application is to be granted the

access requested.

[Previous Treatment (Item #24a)]: For examples in which the ACL may

define accesses that the server doesn't enforce, see Section 8.1.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[Author Aside]: The sentence above is clearly wrong since that

section is about enforcement the server does do. The expectation is

that it will be deleted as part of Consensus Item #24a.

9. Combining Authorization Models

9.1. Background for Combined Authorization Model

Both RFCs 7530 [6] and 8881 [8] contain material relating to the

need, when both mode and ACL attributes are supported, to make sure

that the values are appropriately co-ordinated. Despite the fact

that these discussions are different, they are compatible and differ

in only a small number of areas relating to the existence absence of

the set-mode-masked attribute.

Such co-ordination is necessary is necessary since it is expected

that servers providing both sets of attributes will encounter users

who have no or very limited knowledge of one and need to work

effectively when other users changes that attribute. As a result,

these attributes cannot each be applied independently since that

would create an untenable situation in which some users who have the

right to control file access would find themselves unable to do so.

[Author Aside]: From this point on, all paragraphs in this section,

not other annotated are to be considered part of Consensus Item

#25b. The description in this section of changes to be made reflects

the author's proposal to address this issue and related issues. It

might have to be adjusted based on working group decisions.

As a result, in this document, we will have a single treatment of

this issue, in Sections 9.2 through 9.12. In addition, an NFSv4.2-

based extension related to attribute co-ordination will be described

in Section 9.13.

The current NFSv4.0 and NFSv4.1 descriptions of this co-ordination

share an unfortunate characteristic in that they are both written to

give server implementations a broad latitude in implementation

choices while neglecting entirely the need for clients and users to

have a reliable description of what servers are to do in this area.

As a result, one of the goals of this new combined treatment will be

to limit the uncertainty that the previous approach created for

clients, while still taking proper account of the possibility of

compatibility issues that a more tightly drawn specification might

give rise to.

¶

¶

¶

¶

¶

¶

¶

The various ways in which these kinds of issues have been dealt with

are listed below together with a description of the needed changes

proposed to address each issue.

In some cases, the term "MAY" is used in contexts where it is

inappropriate, since the allowed variation has the potential to

cause harm in that it leaves the client unsure exactly what

security-related action will be performed by the server.

The new treatment will limit use use of MAY to cases in which it

is truly necessary, in order to give clients proper notice of

cases in which server behavior cannot be determined and limit the

work necessary to deal with a large array of possible behaviors.

There are also cases in which no RFC2119-defined keywords are

used but it is stated that certain server implementations do a

particular thing, leaving the impression that that action is to

be allowed, just as if "MAY" had been used.

If the flexibility is necessary, MAY will be used. In other

cases, SHOULD will be used with the understanding that

maintaining compatibility with clients that have adapted to a

particular approach to this issue is a valid reason to bypass the

recommendation. However, in no case will it be implied, as it is

in the current specifications, that the server MAY do whatever it

chooses, with the client having no option but to adapt to that

choice.

There was a case, in Section 9.2, in which the term "SHOULD" was

explicitly used intentionally, without it being made clear what

the valid reasons to ignore the guidance might be, although there

was a reference to servers built to support the now-withdrawn

draft definition of POSIX ACLs, which are referred to in this

document as "UNIX ACLs", ass described in Section 4.1. A

discussion of the issues for support of for these ACLs appears in

Section 9.5.

[Author Aside]: Despite the statement, now cited in Section 9.2,

that this was to accommodate implementations "POSIX" ACLs, it now

appears that this was not complete. I've been given to understand

that this was the result of two groups disagreeing on the

appropriate mapping from ACLs, and specifying both, using the

"intentional" "SHOULD" essentially as a MAY, with the text now

in Section 9.2 discouraging such use as potentially confusing,

not intended to be taken seriously. Since the above information

might not be appropriate in a standards-track RFC, we intend to

retain this as an Author Aside which the working group might

consider as it discusses how to navigate our way out of this

situation.

¶

*

¶

¶

*

¶

¶

*

¶

¶

The new approach will use the term "RECOMMENDED" without use of

the confusing term "intentional". The valid reasons to bypass the

recommendation will be clearly explained as will be the

consequences of choosing to do other than what is recommended.

There are many case in which the terms "SHOULD" and "SHOULD NOT"

are used without any clear indication why they were used. In this

situation it is possible that the "SHOULD" was essentially

treated as a "MAY" but also possible that servers chose to follow

the recommendation.

In order to deal with the many uses of these terms in Section 9

and included subsections, which have no clear motivation, it is

to be assumed that the valid reasons to act contrary to the

recommendation given are the difficulty of changing

implementations based on previous analogous guidance, which may

have given the impression that the server was free to ignore the

guidance for any reason the implementer chose. This allows the

possibility of more individualized treatment of these instances

once compatibility issues have been adequately discussed.

[Author Aside]: In each subsection in which the the

interpretation of these term in the previous paragraph applies

there will be an explicit reference to Consensus Item #25, to

draw attention to this change, even in the absence of modified

text.

9.2. Needed Attribute Coordination

On servers that support both the mode and the acl or dacl

attributes, the server needs to keep the two consistent with each

other. The value of the mode attribute (with the exception of the

high-order bits reserved for client use as described in Section

7.3.1) are to be determined entirely by the value of the ACL, so

that use of the mode is never required for anything other than

setting and interrogating the three high-order bits. See Sections

9.7 through 9.9 for detailed discussion.

[Previous Treatment (Item #25c)]: When a mode attribute is set on an

object, the ACL attributes may need to be modified in order to not

conflict with the new mode. In such cases, it is desirable that the

ACL keep as much information as possible. This includes information

about inheritance, AUDIT and ALARM ACEs, and permissions granted and

denied that do not conflict with the new mode.

[Author Aside]: one the things that this formulation leaves

uncertain, is whether, if the ACL specifies permission for a named

user group or group, it "conflicts" with the node. Ordinarily, one

might think it does not, unless the specified user is the owner of

¶

*

¶

¶

¶

¶

¶

the file or a member of the owning group, or the specified group is

the owning group. However, while some parts of the existing

treatment seem to agree with this, other parts, while unclear, seem

to suggest otherwise, while the treatment in Section 9.7 is directly

in conflict.

[Previous Treatment (Item #26a)]: The server that supports both mode

and ACL must take care to synchronize the MODE4_*USR, MODE4_*GRP,

and MODE4_*OTH bits with the ACEs that have respective who fields of

"OWNER@", "GROUP@", and "EVERYONE@".

[Author Aside]: This sentence ignores named owners and group, giving

the impressions that there is no need to change them.

[Previous Treatment (Item #26a)]: This way, the client can see if

semantically equivalent access permissions exist whether the client

asks for the owner, owner_group, and mode attributes or for just the

ACL.

[Author Aside, Including List:] The above sentence, while hard to

interpret for a number a reasons, is worth looking at in detail

because it might suggest an approach different from the one in the

previous sentence from the initial paragraph for The Previous

Treatment of Item #26a.

The introductory phrase "this way" adds confusion because it

suggests that there are other valid ways of doing this, while not

giving any hint about what these might be.

It is hard to understand the intention of "client can see if

semantically equivalent access permissions" especially as the

client is told elsewhere that he is not to interpret the ACL

himself.

If this sentence is to have any effect at all it, it would be to

suggest that the result be the same "whether the client asks for

the owner, owner_group, and mode attributes or for just the ACL."

If these are to be semantically equivalent it would be necessary

to delete ACEs for named users, which requires a different

approach form the first sentence of the original paragraph.

{Consensus Needed, Including List (Items #26a, #28a)]: A server that

supports both mode and ACL attributes needs to take care to

synchronize the MODE4_*USR, MODE4_*GRP, and MODE4_*OTH bits with the

ACEs that have respective who fields of "OWNER@", "GROUP@", and

"EVERYONE@". This requires:

When the mode is changed, in most cases, the ACL attributes will

need to be modified as described in Section 9.7.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

When the ACL is changed, the corresponding mode is determined and

used to set the nine low-oder bits of the mode attribute.

This is relatively straightforward in the case of forward-slope

modes, but the case of reverse-slope modes needs to be addressed

as well. It is RECOMMENDED that the procedure presented in

Section 9.3 be used or another one that provides the same

results.

The valid reasons to bypass this recommendation together with a

alternate procedures to be used are discussed in Section 9.4.

{Consensus Needed (Item #26a)]: How other ACEs are dealt with when

setting mode is described in Section 9.7. This includes ACEs with

other who values, all AUDIT and ALARM ACEs, and all ACES that affect

ACL inheritance.

[Previous Treatment (Item #27a)]: In this section, much depends on

the method in specified Section 9.3. Many requirements refer to this

section. It needs to be noted that the methods have behaviors

specified with "SHOULD" and that alternate approaches are discussed

in Section 9.4. This is intentional, to avoid invalidating existing

implementations that compute the mode according to the withdrawn

POSIX ACL draft (1003.1e draft 17), rather than by actual

permissions on owner, group, and other.

[Consensus (Item #27a)]: In performing the co-ordinarion discussed

in this section, the method used to compute the mode from the ACL

has an important role. While the approach specified in Section 9.3

is RECOMMENDED, it needs to be noted that the alternate approaches

discussed in Section 9.4 are valid in some cases. As discussed in

that section, an important reason for allowing multiple ways of

doing this is to accommodate server implementations that compute the

mode according to the withdrawn POSIX ACL draft (1003.1e draft 17),

rather than by actual permissions on owner, group, and other. While,

this means that a client, having no way of determining the method

the server uses may face interoperability difficulties in moving

between servers which approach this matter differently, these

problems need to be accepted for the time being. A more complete

discussion of handling of the UNIX ACLs is to be found in Section

9.5.

[Consensus Needed, Including List (Items #27a, #28a)]: All valid

methods of computing the mode from an ACL use the following

procedure to derive a set of mode bits from a set of three ACL

masks, with the only difference being in how the set of ACL masks is

constructed. The calculated mask for for each set of bits in mode

*

¶

¶

¶

¶

¶

¶

are derived from the ACL mask for owner, group, other are derived as

follows:

Set the read bit (MODE4_RUSR, MODE4_RGRP, or MODE4_ROTH) if and

only if ACE4_READ_DATA is set in the corresponding mask.

Set the write bit (MODE4_WUSR, MODE4_WGRP, or MODE4_WOTH) if

and only if ACE4_WRITE_DATA and ACE4_APPEND_DATA are both set

in the corresponding mask.

Set the execute bit (MODE4_XUSR, MODE4_XGRP, or MODE4_XOTH), if

and only if ACE4_EXECUTE is set in the corresponding mask.

9.3. Computing a Mode Attribute from an ACL

[Previous Treatment (Item #27b)]: The following method can be used

to calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of a mode

attribute, based upon an ACL.

[Author Aside]: "can be used" says essentially "do whatever you

choose" and would make Section 9 essentially pointless. Would prefer

"is to be used" or "MUST", with "SHOULD" available if valid reasons

to do otherwise can be found.

[Consensus Needed (Items #27b, #28b)}: The following method (or

another one providing exactly the same results) SHOULD be used to

calculate the MODE4_R*, MODE4_W*, and MODE4_X* bits of a mode

attribute, based upon an ACL. In this case, one of the valid reasons

to bypass the recommendation includes implementor reliance on

previous specifications which ignored the cases of the owner having

less access than the owning group or the owning group having less

access than others. Further, in implementing or the maintaining an

implementation previously believed to be valid, the implementor

needs to be aware that this will result invalid values in some

uncommon cases. Other reasons to bypass the recommendation are

discussed in Section 9.4.

[Author Aside, Including List]: The algorithm specified below, now

considered the Previous Treatment associated with Item #24a, has an

important flaw in does not deal with the (admittedly uncommon) case

in which the owner_group has less access than the owner or others

have less access than the owner-group. In essence, this algorithm

ignores the following facts:

That GROUP@ includes the owning user while group bits in the mode

do not affect the owning user.

That EVERYONE includes the owning group while other bits in the

mode do not affect users within the owning group.

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

*

¶

*

¶

[Previous Treatment (Item #28b)]: First, for each of the special

identifiers OWNER@, GROUP@, and EVERYONE@, evaluate the ACL in

order, considering only ALLOW and DENY ACEs for the identifier

EVERYONE@ and for the identifier under consideration. The result of

the evaluation will be an NFSv4 ACL mask showing exactly which bits

are permitted to that identifier.

[Previous Treatment (Item #28b)]: Then translate the calculated mask

for OWNER@, GROUP@, and EVERYONE@ into mode bits for, respectively,

the user, group, and other, as follows:

[Consensus Needed, including List(Item #28b)]: First, for each of

the sets of mode bits (i.e., user, group other, evaluate the ACL in

order, with a specific evaluation procedure depending on the

specific set of mode bits being determined. For each set there will

be one or more special identifiers considered in a positive sense so

that ALLOW and DENY ACE's are considered in arriving at the mode

bit. In addition, for some sets of bits, there will be one or more

special identifiers to be considered only in a negative sense, so

that only DENY ACE's are considered in arriving at the mode it. The

users to be considered are as follows:

For the owner bits, "OWNER@" and "EVERYONE@" are to be

considered, both in a positive sense.

For the group bits, "GROUP@" and "EVERYONE@" are to be

considered, both in a positive sense, while "OWNER@" is to be

considered in a negative sense.

For the other bit, "EVERYONE@" is to be considered in a positive

sense, while "OWNER@" and "GROUP@" are to be considered in a

negative sense.

[Consensus Needed (Item #28b)]: Once these ACL masks are

constructed, the mode bits for, user, group, and other can be

obtained as described in Section 9.2 above.

9.4. Alternatives in Computing Mode Bits

[Author Aside]: All unannotated paragraphs within this section are

to be considered the Previous Treatment corresponding to Consensus

Item #27c.

Some server implementations also add bits permitted to named users

and groups to the group bits (MODE4_RGRP, MODE4_WGRP, and

MODE4_XGRP).

Implementations are discouraged from doing this, because it has been

found to cause confusion for users who see members of a file's group

denied access that the mode bits appear to allow. (The presence of

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

DENY ACEs may also lead to such behavior, but DENY ACEs are expected

to be more rarely used.)

[Author Aside]: The text does not seem to really discourage this

practice and makes no reference to the need to standardize behavior

so the clients know what to expect or any other reason for providing

standardization of server behavior.

The same user confusion seen when fetching the mode also results if

setting the mode does not effectively control permissions for the

owner, group, and other users; this motivates some of the

requirements that follow.

[Author Aside]: The part before the semicolon appears to be relevant

to Consensus Item #23 but does not point us to a clear conclusion.

The statement certainly suggests that the 512-ACL approach is more

desirable but the absence of a more direct statement to that effect

suggest that this is a server implementer choice.

[Author Aside]: The part after the semicolon is hard to interpret in

that it is not clear what "this" refers to or which which

requirements are referred to by "some of the requirements that

follow". The author would appreciate hearing from anyone who has

insight about what might have been intended here.

[Consensus Needed, Including List (Item #27c)]: In cases in which

the mode is not computed as described in Section 9.3, one of the

following analogous procedures or their equivalents, MUST be used.

First, for each of the special identifiers OWNER@ and EVERYONE@,

evaluate the ACL in order, considering only ALLOW and DENY ACEs

for the identifier EVERYONE@ and for the identifier under

consideration.

For the special identifier GROUP@, ALLOW and DENY ACEs for GROUP@

and EVERYONE@ are to be considered, together with ALLOW ACEs for

named users and groups.

This represents the approach previously recommended to compute

mode in previous specification, as modified to reflect the UNIX

ACL practice of reflecting permissions for named users and

groups. It does not deal properly with reverse-slope modes.

Compute a set of ACL mask according to the procedure in Section

9.3 and then, for the mask associated with GROUP@, or in the

masks for all ALLOW ACEs for named users and groups.

This represents the approach currently recommended to compute

mode in Section 9.3 as modified to reflect the UNIX ACL practice

of reflecting permissions for named users and groups.

¶

¶

¶

¶

¶

¶

*

¶

¶

¶

*

¶

¶

[Consensus Needed, Including List (Item #27c)]: In both cases, The

results of the evaluation will be a set of NFSv4 ACL masks which can

be converted to the set on nine low-order mode bits using the

procedure appearing in Section 9.2 above.

[Consensus Needed, Including List (Item #27c)]: When the

recommendation to use Section 9.3 is bypassed, it needs to be

understood, that the modes derived will differ from the expected

values and might cause interoperability issues. This is particularly

the case when clients have no way to determine that the server's

behavior is other than standard.

9.5. Handling of UNIX ACLs

[Author Aside]: All paragraphs in this section are consider part of

Consensus Item #56b.

Although the working group did not adopt the acls in the withdrawn

POSIX draft, their continued existence in UNIX contexts has created

protocol difficulties that need to be resolved. In many cases these

ACLS and their associated semantics are the basis for ACL support in

UNIX client APIs and in UNIX file systems supported by NFSv4

Although the semantic range of UNIX ACLs is a subset of that for

NFSv4 ACLs, expecting clients to perform that mapping on their own

has not worked well, leading to the following issues which will, at

some point, need to be addressed:

There is a considerable uncertainty about the proper mapping from

ACLs to modes.

The corresponding mapping from modes to ACLs is dealt with

different ways by different sections of the spec.

These individual uncertainties are compounded since it is

difficult, in this environment, to ensure that these

independently chosen mappings are inverses of one another, as

they are intended to be.

Some possible approaches to these issues are discussed in Section

16,

9.6. Setting Multiple ACL Attributes

In the case where a server supports the sacl or dacl attribute, in

addition to the acl attribute, the server MUST fail a request to set

the acl attribute simultaneously with a dacl or sacl attribute. The

error to be given is NFS4ERR_ATTRNOTSUPP.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

9.7. Setting Mode and not ACL (overall)

9.7.1. Setting Mode and not ACL (vestigial)

[Author Aside]: All unannotated paragraphs are to be considered the

Previous treatment of Consensus Item #30a.

[Previous Treatment (Item #?a)]: When any of the nine low-order mode

bits are subject to change, either because the mode attribute was

set or because the mode_set_masked attribute was set and the mask

included one or more bits from the nine low-order mode bits, and no

ACL attribute is explicitly set, the acl and dacl attributes must be

modified in accordance with the updated value of those bits. This

must happen even if the value of the low-order bits is the same

after the mode is set as before.

Note that any AUDIT or ALARM ACEs (hence any ACEs in the sacl

attribute) are unaffected by changes to the mode.

In cases in which the permissions bits are subject to change, the

acl and dacl attributes MUST be modified such that the mode computed

via the method in Section 9.3 yields the low-order nine bits

(MODE4_R*, MODE4_W*, MODE4_X*) of the mode attribute as modified by

the attribute change. The ACL attributes SHOULD also be modified

such that:

If MODE4_RGRP is not set, entities explicitly listed in the ACL

other than OWNER@ and EVERYONE@ SHOULD NOT be granted

ACE4_READ_DATA.

If MODE4_WGRP is not set, entities explicitly listed in the ACL

other than OWNER@ and EVERYONE@ SHOULD NOT be granted

ACE4_WRITE_DATA or ACE4_APPEND_DATA.

If MODE4_XGRP is not set, entities explicitly listed in the ACL

other than OWNER@ and EVERYONE@ SHOULD NOT be granted

ACE4_EXECUTE.

Access mask bits other than those listed above, appearing in ALLOW

ACEs, MAY also be disabled.

Note that ACEs with the flag ACE4_INHERIT_ONLY_ACE set do not affect

the permissions of the ACL itself, nor do ACEs of the type AUDIT and

ALARM. As such, it is desirable to leave these ACEs unmodified when

modifying the ACL attributes.

Also note that the requirement may be met by discarding the acl and

dacl, in favor of an ACL that represents the mode and only the mode.

This is permitted, but it is preferable for a server to preserve as

much of the ACL as possible without violating the above

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

requirements. Discarding the ACL makes it effectively impossible for

a file created with a mode attribute to inherit an ACL (see Section

9.11).

9.7.2. Setting Mode and not ACL (Discussion)

[Author Aside]: All unannotated paragraphs are to be considered

Author Asides relating to Consensus Item #30b.

Existing documents are unclear about the changes to be made to an

existing ACL when the nine low-order bits of the mode attribute are

subject to modification using SETATTR.

A new treatment needs to apply to all minor versions. It will be

necessary to specify that, for all minor versions, setting of the

mode attribute, subjects the low-order nine bits to modification.

One important source of this lack of clarity is the following

paragraph from Section 9.7.1, which we refer to later as the

trivial-implementation-remark".

Also note that the requirement may be met by discarding the acl

and dacl, in favor of an ACL that represents the mode and only

the mode. This is permitted, but it is preferable for a server to

preserve as much of the ACL as possible without violating the

above requirements. Discarding the ACL makes it effectively

impossible for a file created with a mode attribute to inherit an

ACL (see Section 9.11).

The only "requirement" which might be met by the procedure mentioned

above is the text quoted below.

In cases in which the permissions bits are subject to change, the

acl and dacl attributes MUST be modified such that the mode

computed via the method in Section 9.3 yields the low-order nine

bits (MODE4_R*, MODE4_W*, MODE4_X*) of the mode attribute as

modified by the attribute change.

While it is true that this requirement could be met by the specified

treatment, this fact does not, in itself, affect the numerous

recommendations that appear between the above requirement and the

trivial-implementation-remark.

It may well be that there are are implementations that have treated

the trivial-implementation-remark as essentially allowing them to

essentially ignore all of those recommendations, resulting in a

situation in which were treated as if it were a trivial-

implementation-ok indication. How that issue will be dealt with in a

replacement for Section 9.7.1 will be affected by the working

group's examination of compatibility issues.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The following specific issues need to be addressed:

Handling of inheritance.

Beyond the possible issues that arise from the trivial-

implementation-ok interpretation, the treatment in Section 9.7.1,

by pointing specifically to existing INHERIT_ONLY ACEs obscures

the corresponding need to convert ACE's that specify both

inheritance and access permissions to be converted to

INHERIT_ONLY ACEs.

Reverse-slope modes

Named users and groups.

The exact bounds of what within the ACL is covered by the low-

order bits of the mode.

It appears that for many of the issues, there are many possible

readings of the existing specs, leading to the possibility of

multiple inconsistent server behaviors. Furthermore, there are cases

in which none of the possible behaviors described in existing

specifications meets the needs.

As a result of these issues, the existing specifications do not

provide a reliable basis for client-side implementations of the ACL

feature which a Proposed Standard is normally expected to provide.

9.7.3. Setting Mode and not ACL (Proposed)

[Author Aside]: This proposed section is part of Consensus Item #30c

and all unannotated paragraphs within it are to be considered part

of that Item. Since the proposed text includes support for reverse-

slope modes, treats all minor versions together and assumes

decisions about handling of ACEs for named users and groups, the

relevance of consensus items #26, #28, and #29 needs to be noted.

[Author Aside]: As with all such Consensus Items, it is expected

that the eventual text in a published RFC might be substantially

different based on working group discussion of client and server

needs and possible compatibility issues. In this particular case,

that divergence can be expected to be larger, because the author was

forced to guess about compatibility issues and because earlier

material, on which it is based left such a wide range of matters to

the discretion of server implementers. It is the author's hope that,

as the working group discusses matters, sufficient attention is

placed on the need for client-side implementations to have reliable

information about expected server-side actions.

¶

* ¶

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

This section describes how ACLs are to be updated in response to

actual or potential changes in the mode attribute, when the

attributes needed by both of the file access authorization models

are supported. It supersedes the discussions of the subject in RFCs

7530 [6] and 8881 [8], each of which appeared in Section 6.4.1.1 of

the corresponding document.

It is necessary to approach the matter differently than in the past

because:

Organizational changes are necessary to address all minor

versions together.

Those previous discussions are often internally inconsistent

leaving it unclear what specification-mandated actions were being

specified..

In many cases, servers were granted an extraordinary degree of

freedom to choose the action to take, either explicitly or via an

apparently unmotivated use of "SHOULD", leaving it unclear what

might be considered "valid" reasons to ignore the recommendation.

There appears to have been no concern for the problems that

clients and applications might encounter dealing ACLs in such an

uncertain environment.

Cases involving reverse-slope modes were not adequately

addressed.

The security-related effects of SVTX were not addressed.

While that sort of approach might have been workable at one time, it

made it difficult to devise client-side ACL implementations, even if

there had been any interest in doing so. In order to enable this

situation to eventually be rectified, we will define the preferred

implementation here, but in order to provide temporary compatibility

with existing implementations based on reasonable interpretations of

RFCs 7530 [6] and 8881 [8]. To enable such compatibility the term

"SHOULD" will be used, with the understanding that valid reasons to

bypass the recommendation, are limited to implementers' previous

reliance on these earlier specifications and the difficulty of

changing them now.

When the recommendation is bypassed in this way, it is necessary to

understand, that, until the divergence is rectified, or the client

is given a way to determine the detail of the server's non-standard

behavior, client-side implementations may find it difficult to

implement a client-side implementation that correctly interoperates

with the existing server.

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

When mode bits involved in determining file access authorization are

subject to modification, the server MUST, when ACL-related

attributes have been set, modify the associated ACEs so as not to

conflict with the new value of the mode attribute.

The occasions to which this requirement applies, vary with the

attribute being set and the type of object being dealt with:

For all minor versions, any change to the mode attribute,

triggers this requirement

When the set_mode_masked attribute is being set on an object

which is not a directory, whether this requirement is triggered

depends on whether any of the nine low-order bits of the mode is

included in the mask.

When the set_mode_masked attribute is being set on a directory,

whether this requirement is triggered depends on whether any of

the nine low-order bits of the mode or the SVTX bit is included

in the mask of bit whose values are to be set.

When the requirement is triggered, ACEs need to be updated to be

consistent with the new mode attribute. In the case of AUDIT and

ALARM ACEs, which are outside of file access authorization, no

change is to be made.

For ALLOW and DENY ACEs, changes are necessary to avoid conflicts

with the mode in a number of areas:

The handling of ACEs that have consequences relating to ACL

inheritance.

The handling of ACEs with a who-value of OWNER@, GROUP@, or

EVERYONE@ need to be adapted to the new mode.

ACEs whose who-value is a named user or group, are to be retained

or not based on the mode being set as described below.

ACEs whose who-value is one of the other special values defined

in Section 5.9 are to be left unmodified.

In order to deal with inheritance issues, the following SHOULD be

done:

ACEs that specify inheritance-only need to be retained,

regardless of the value of who specified, since inheritance

issues are outside of the semantic range of the mode attribute.

ACEs that specify inheritance, in addition to allowing or denying

authorization for the current object need to be converted into

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

inheritance-only ACEs. This needs to occur irrespective of the

value of who appearing in the ACE.

For NFSv4 servers that support the dacl attribute, at least the

first of the above MUST be done.

Other ACEs are to be treated are classified based on the ACE's who-

value:

ACEs whose who-value is OWNER@, GROUP@, or EVERYONE@ are referred

to as mode-directed ACEs and are subject to extensive

modification.

ACEs whose who-value is a named user or group are either left

alone or subject to extensive modification, as described below.

ACEs whose who-value is one of the other special values defined

in Section 5.9 are left as they are.

Mode-directed ACEs need to be modified so that they reflect the mode

being set.

In effecting this modification, the server will need to distinguish

mask bits deriving from mode attributes from those that have no such

connection. The former can be categorized as follows:

For non-directory objects, the mask bits ACE4_READ_DATA (from the

read bit in the mode), ACE4_EXECUTE (from the execute bit in the

mode), and ACE4_WRITE_DATA together with ACE4_APPEND_DATA (from

the write bit in the mode) are all derived from the set of three

mode bits appropriate to the current who-value.

For directories, analogous mask bits are included:

ACE4_LIST_DIRECTORY (from the read in the mode), ACE4_EXECUTE

(from the execute bit in the mode), and ACE4_ADD_FILE together

with ACE4_ADD_SUBDIRECTORY and ACE4_DELETE_CHILD> (from the write

bit in the mode) are all included based on the set of three mode

bits appropriate to the current who-value.

When the SVTX bit is set, ACE4_DELETE_CHILD is set, regardless of

the values of the low-order nine bit of the mode.

When named attributes are supported for the object whose mode is

subject to change, ACE4_READ_NAMED_ATTRIBUTES is set based on the

read bit and ACE4_WRITE_NAMED_ATTRIBUTES is set based on the

write bit based on the set of three mode bits appropriate to the

current who-value.

In the case of OWNER@, ACE4_WRITE_ACL, ACE4_WRITE_ATTRIBUTES

ACE4_WRITE_ACL, ACE4_WRITE_OWNER are all set.

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

The union of these groups of mode bit are referred to as the mode-

relevant mask bits.

[Author Aside]: Except for the case of ACE4_SYNCHRONIZE, the

handling of mask bits which are not mode-relevant is yet to be

clarified. For tracking purposes, the handling of mask bits

ACE4_READ_ATTRIBUTES, ACE4_WRITE_RETENTION,

ACE4_WRITE_RETENTION_HOLD, ACE4_READ_ACL will be dealt with as

Consensus Item #31.

If the mode is of forward-slope, then each set of three bits is

translated into a corresponding set of mode bits. Then, for each

ALLOW ACE with one of these who values, all mask bits in this class

are deleted and the computed mode bits for that who-value

substituted. For DENY ACEs, all mask bits in this class are reset,

and, if none remain, the ACE MAY be deleted.

In the case of reverse-slope modes, the following SHOULD be done:

For mode-directed ACEs all mode-relevant mask bits are reset,

and, if none remain, the ACE MAY be deleted.

Then, proceeding from owner to others, ALLOW ACEs are generated

based on the computed mode-relevant mask bits.

At each stage, if the mode-relevant mask bits for the current

stage includes mask bits not set for the previous stage, then a

DENY ACE needs to be added before the new ALLOW ACE. That ACE

will have a who-value based on the previous stage and a mask

consisting of the bit included in the current stage that were not

included in the previous stage.

In cases in which the above recommendation is not followed, the

server MUST follow a procedure which arrives at an ACL which behaves

identically for all cases involving forward-slope mode values.

When dealing with ACEs whose who-value is a named user or group,

they SHOULD be processed as follows:

DENY ACEs are left as they are.

ALLOW ACES are subject to filtering to effect mode changes that

deny access to any principal other than the owner.

To determine the set of mode bits to which this filtering

applies, the mode bits for group are combined with those for

others, to get a set of three mode bits to determine which of the

mode privileges (read, write, execute) are denied to all

principals other than the owner, i.e. the set of bits not present

in either the bits for group or the bits for others.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

¶

Those three bits are converted to the corresponding set of mask

bits, according to the rules above.

All such mask bits are reset in the ACE, and, if none remain, the

ACE MAY be deleted.

In cases in which the above recommendation is not followed, the

server MUST follow a procedure which arrives at an ACL which behaves

identically for all cases involving forward-slope mode values. This

would be accomplished if the mask bits were reset based on the group

bits alone, as had been recommended in earlier specifications.

9.8. Setting ACL and Not Mode

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25d.

When setting the acl or dacl and not setting the mode or

mode_set_masked attributes, the permission bits of the mode need to

be derived from the ACL. In this case, the ACL attribute SHOULD be

set as given. The nine low-order bits of the mode attribute

(MODE4_R*, MODE4_W*, MODE4_X*) MUST be modified to match the result

of the method in Section 9.3. The three high-order bits of the mode

(MODE4_SUID, MODE4_SGID, MODE4_SVTX) SHOULD remain unchanged.

9.9. Setting Both ACL and Mode

When setting both the mode (includes use of either the mode

attribute or the mode_set_masked attribute) and the acl or dacl

attributes in the same operation, the attributes MUST be applied in

the following order order: mode (or mode_set_masked), then ACL. The

mode-related attribute is set as given, then the ACL attribute is

set as given, possibly changing the final mode, as described above

in Section 9.8.

9.10. Retrieving the Mode and/or ACL Attributes

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25e.

Some server implementations may provide for the existence of

"objects without ACLs", meaning that all permissions are granted and

denied according to the mode attribute and that no ACL attribute is

stored for that object. If an ACL attribute is requested of such a

server, the server SHOULD return an ACL that does not conflict with

the mode; that is to say, the ACL returned SHOULD represent the nine

low-order bits of the mode attribute (MODE4_R*, MODE4_W*, MODE4_X*)

as described in Section 9.3.

¶

¶

¶

¶

¶

¶

¶

¶

For other server implementations, the ACL attribute is always

present for every object. Such servers SHOULD store at least the

three high-order bits of the mode attribute (MODE4_SUID, MODE4_SGID,

MODE4_SVTX). The server SHOULD return a mode attribute if one is

requested, and the low-order nine bits of the mode (MODE4_R*,

MODE4_W*, MODE4_X*) MUST match the result of applying the method in

Section 9.3 to the ACL attribute.

9.11. Creating New Objects

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25f.

If a server supports any ACL attributes, it may use the ACL

attributes on the parent directory to compute an initial ACL

attribute for a newly created object. This will be referred to as

the inherited ACL within this section. The act of adding one or more

ACEs to the inherited ACL that are based upon ACEs in the parent

directory's ACL will be referred to as inheriting an ACE within this

section.

Implementors need to base the behavior of CREATE and OPEN depending

on the presence or absence of the mode and ACL attributes by

following the directions below:

If just the mode is given in the call:

In this case, inheritance SHOULD take place, but the mode MUST

be applied to the inherited ACL as described in Section 9.7,

thereby modifying the ACL.

If just the ACL is given in the call:

In this case, inheritance SHOULD NOT take place, and the ACL as

defined in the CREATE or OPEN will be set without modification,

and the mode modified as in Section 9.8.

If both mode and ACL are given in the call:

In this case, inheritance SHOULD NOT take place, and both

attributes will be set as described in Section 9.9.

If neither mode nor ACL is given in the call:

In the case where an object is being created without any

initial attributes at all, e.g., an OPEN operation with an

opentype4 of OPEN4_CREATE and a createmode4 of EXCLUSIVE4,

inheritance SHOULD NOT take place (note that EXCLUSIVE4_1 is a

better choice of createmode4, since it does permit initial

attributes). Instead, the server SHOULD set permissions to deny

¶

¶

¶

¶

1. ¶

¶

2. ¶

¶

3. ¶

¶

4. ¶

all access to the newly created object. It is expected that the

appropriate client will set the desired attributes in a

subsequent SETATTR operation, and the server SHOULD allow that

operation to succeed, regardless of what permissions the object

is created with. For example, an empty ACL denies all

permissions, but the server need to allow the owner's SETATTR

to succeed even though WRITE_ACL is implicitly denied.

In other cases, inheritance SHOULD take place, and no

modifications to the ACL will happen. The mode attribute, if

supported, MUST be as computed in Section 9.3, with the

MODE4_SUID, MODE4_SGID, and MODE4_SVTX bits clear. If no

inheritable ACEs exist on the parent directory, the rules for

creating acl, dacl, or sacl attributes are implementation

defined. If either the dacl or sacl attribute is supported,

then the ACL4_DEFAULTED flag SHOULD be set on the newly created

attributes.

9.12. Use of Inherited ACL When Creating Objects

[Author Aside]: The handling of SHOULD in this section is considered

as part of Consensus Item #25g.

If the object being created is not a directory, the inherited ACL

SHOULD NOT inherit ACEs from the parent directory ACL unless the

ACE4_FILE_INHERIT_ACE flag is set.

If the object being created is a directory, the inherited ACL is to

inherit all inheritable ACEs from the parent directory, that is,

those that have the ACE4_FILE_INHERIT_ACE or

ACE4_DIRECTORY_INHERIT_ACE flag set. If the inheritable ACE has

ACE4_FILE_INHERIT_ACE set but ACE4_DIRECTORY_INHERIT_ACE is clear,

the inherited ACE on the newly created directory MUST have the

ACE4_INHERIT_ONLY_ACE flag set to prevent the directory from being

affected by ACEs meant for non-directories.

When a new directory is created, the server MAY split any inherited

ACE that is both inheritable and effective (in other words, that has

neither ACE4_INHERIT_ONLY_ACE nor ACE4_NO_PROPAGATE_INHERIT_ACE

set), into two ACEs, one with no inheritance flags and one with

ACE4_INHERIT_ONLY_ACE set. (In the case of a dacl or sacl attribute,

both of those ACEs SHOULD also have the ACE4_INHERITED_ACE flag

set.) This makes it simpler to modify the effective permissions on

the directory without modifying the ACE that is to be inherited to

the new directory's children.

¶

¶

¶

¶

¶

¶

9.13. Combined Authorization Models for NFSv4.2

The NFSv4 server implementation requirements described in the

subsections above apply to NFSv4.2 as well and NFSv4.2 clients can

assume that the server follows them.

NFSv4.2 contains an OPTIONAL extension, defined in RFC8257 [15],

which is intended to reduce the interference of modes, restricted by

the umask mechanism, with the acl inheritance mechanism. The

extension allows the client to specify the umask separately from the

mask attribute.

10. Labelled NFS Authorization Model

The labelled NFS feature of NFSv4.2 is designed to support Mandatory

Access control.

The attribute sec_label enables an authorization model focused on

Mandatory Access Control and is described in Section 10.

Not much can be said about this feature because the specification,

in the interest of flexibility, has left important features

undefined in order to allow future extension. As a result, we have

something that is a framework to allow Mandatory Access Control

rather than one to provide it. In particular,

The sec_label attribute, which provides the objects label has no

existing specification.

There is no specification of the of the format of the subject

label or way to authenticate them.

As a result, all authorization takes place on the client, and the

server simply accepts the client's determination.

This arrangements shares important similarities with AUTH_SYS. As

such it makes sense:

To require/recommend that an encrypted connection be used.

To require/recommend that client and server peers mutually

authenticate as part of connection establishment.

That work be devoted to providing a replacement without the above

issues.

11. State Modification Authorization

Modification of locking and session state data are not be done by a

client other than the one that created the lock. For this form of

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

*

¶

authorization, the server needs to identify and authenticate client

peers rather than client users.

Such authentication is not directly provided by any RPC auth flavor.

However, RPC can, when suitably configured, provide this

authentication on a per-connection basis.

NFSv4.1 defines a number of ways to provide appropriate

authorization facilities. These will not be discussed in detail here

but the following points need to be noted:

NFSv4.1 defines the MACHCRED mechanism which uses the RPCSEC_GSS

infrastructure to provide authentication of the clients peer.

However, this is of no value when AUTH_SYS is being used.

NFSv4.1 also defines the SSV mechanism which uses the RPCSEC_GSS

infrastructure to enable it to be reliably determined whether two

different client connections are connected to the same client. It

is unclear whether the word "authentication" is appropriate in

this case. As with MACHCRED, this is of no value when AUTH_SYS is

being used.

Because of the lack of support for AUTH_SYS and for NFSv4.0, it

is quite desirable for clients to use and for servers to require

the use of client-peer authentication as part of connection

establishment.

When unauthenticated clients are allowed, their state is exposed to

unwanted modification as part of disruption or denial-of-service

attacks. As a result, the potential burdens of such attacks are felt

principally by clients who choose not to provide such

authentication.

12. Other Uses of Access Control Lists

Whether the acl or sacl attributes are used, AUDIT and ALARM ACEs

provide security-related facilities separate from the the file

access authorization provide by ALLOW and DENY ACEs

AUDIT ACEs provide a means to audit attempts to access a

specified file by specified sets of principals.

ALARM ACEs provide a means to draw special attention to attempts

to access specified files by specified sets of principals.

12.1. V4.1 Attribute 59: sacl

The sacl attribute is like the acl attribute, but sacl allows only

AUDIT and ALARM ACEs. The sacl attribute supports automatic

inheritance (see Section 5.10).

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

¶

13. Identification and Authentication

Various objects and subjects need to be identified for a protocol to

function. For it to be secure, many of these need to be

authenticated so that incorrect identification is not the basis for

attacks.

13.1. Identification vs. Authentication

It is necessary to be clear about this distinction which has been

obscured in the past, by the use of the term "RPC Authentication

Flavor" in connection with situation in which identification without

authentication occurred or in which there was neither identification

nor authentication involved. As a result, we will use the term "Auth

Flavors" instead

13.2. Items to be Identified

Some identifier are not security-relevant and can used be used

without authentication, given that, in the authorization decision,

the object acted upon needs only to be properly identified

File names are of this type.

Unlike the case for some other protocols, confusion of names that

result from internationalization issues, while an annoyance, are

not relevant to security. If the confusion between LATIN CAPITAL

LETTER O and CYRILLIC CAPITAL LETTER O, results in the wrong file

being accessed, the mechanisms described in Section 7 prevent in

appropriate access being granted.

Despite the above, it is desirable if file names together with

similar are not transferred in the clear as the information

exposed may give attackers useful information helpful in planning

and executing attacks.

The case of file handles is similar.

Identifiers that refer to state shared between client and server can

be the basis of disruption attacks since clients and server

necessarily assume that neither side will change the state corpus

without appropriate notice.

While these identifiers do not need to be authenticated, they are

associated with higher-level entities for which change of the state

represented by those entities is subject to peer authentication.

Unexpected closure of stateids or changes in state sequence

values can disrupt client access as no clients have provision to

deal with this source of interference.

¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

*

¶

While encryption may make it more difficult to execute such

attacks attackers can often guess stateid's since server

generally not randomize them.

Similarly, modification to NFSv4.1 session state information can

result in confusion if an attacker changes the slot sequence by

assuring spurious requests. Even if the request is rejected, the

slot sequence is changed and clients may a difficult time getting

back in sync with the server.

While encryption may make it more difficult to execute such

attacks attackers can often guess slot id's and obtain sessinid's

since server generally do not randomize them.

it is necessary that modification of the higher-levell entities be

restricted to the client that created them.

For NFSv4.0, the relevant entity is the clientid.

for NFSv4.1, the relevant entity is the sessionid.

Identifiers describing the issuer of the request, whether in numeric

or string form always require authentication.

13.3. Authentication Provided by specific RPC Auth Flavors

Different auth flavors differ quite considerably, as discussed

below;

When AUTH_NONE is used, the user making the request is neither

authenticated nor identified to the server.

Also, the server is not authenticated to the client and has no

way to determine whether the server it is communicating with is

an imposter.

When AUTH_SYS is used, the user making is the request identified

but there no authentication of that identification.

As in the previous case, the server is not authenticated to the

client and has no way to determine whether the server it is

communicating with is an imposter.

When RPCSEC_GSS is used, the user making the request is

authenticated as is the server peer responding.

¶

*

¶

¶

*¶

¶

* ¶

* ¶

¶

¶

*

¶

¶

*

¶

¶

*

¶

13.4. Authentication Provided by other RPC Security Services

Depending on the connection type used, RPC may provide additional

means of authentication. In contrast with the case of RPC auth

flavors, any authentication happens once, at connection

establishment, rather than on each RPC request. As a result, it is

the client and server peers, rather than individual users that are

authenticated.

For many types of connections such as those created TCP without

RPC-with-TLS and RPC-over-RDMA version 1, there is no provision

for peer authentication.

As a result use of AUTH_SYS using such connections is inherently

problematic.

Some connection types provide for the possibility of mutual peer

authentication. These currently include only those established by

RPC-with-TLS. However, given the value of peer authentication,

there is reason to believe further means of providing such

services will be defined.

14. Security of Data in Flight

14.1. Data Security Provided by Services Associated with Auth Flavors

The only auth flavor providing these facilities is RPCSEC_GSS. When

this auth flavor is used, data security can be negotiated between

client and server as described in Section 15. However, when data

security is provided for the connection level, as described in

Section 14.2, the negotiation of privacy and integrity support,

provided by the auth flavor, is unnecessary,

Other auth flavors, such as AUTH_SYS and AUTH_NONE have no such data

security facilities. When these auth flavors are used, the only data

security is provided on a per-connection basis.

14.2. Data Security Provided for a Connection by RPC

RPC, in many case, provide data security for all transactions

performed on a connection, eliminating the need for that security to

be provided or negotiated by the selection of particular auth

flavors, mechanisms, or auth-flavor-associated services.

15. Security Negotiation

[Author Aside]: All unannotated paragraphs in this section are

considered part of Consensus Item #32a.

¶

*

¶

¶

*

¶

¶

¶

¶

¶

Because of the availability of security-related services associated

with the transport layer, the security negotiation process needs to

be enhanced so that the server can indicate the services needed,

rather than, as previously, depending on the specification of

acceptable auth flavors and services provided by RPCSEC_GSS.

The situations listed below needed to be provided for. In each of

them, there is a possibility that a new connection will be needed

for new requests since the security issue might not be resolvable

only by using a new auth flavor on an existing connection. The

possible existence of multiple connections with different security

characteristics makes it necessary that clients direct requests to

the correct connection and that servers be aware of the security

characteristics of te connection on which requests were received.

This issue id discussed in Section 15.1.

When one or more of the auth flavors AUTH_NONE and and AUTH_SYS

is accepted by a server, there is often a server policy

requirement that it be used with encryption or peer

authentication provided as a transport layer service. In such

cases, the pseudo-flavors defined in [13] can be used to indicate

that the corresponding auth flavor may be validly used, but only

when the connection's characteristics meet the requirements of

the pseudo-flavor.

As a result, when NFS4ERR_WRONGSEC is received as a result of

using one of these auth flavors, the client will, if it wishes to

continue using one of these flavors, establish a new connection,

with the appropriate security characteristics.

When the server's policy requirement is that encryption by used

to access a region of the namespace, a secinfo entry will be

returned identifying RPCSEC_GSS as an appropriate auth flavor to

use while indicating that privacy/confidentiality is also needed.

In that case, the client MAY obtain the necessary confidentiality

either by sending requests requesting that confidentiality be

provided by RPCSEC_GSS, or by making the requests on a connection

for which confidentiality is provided at the transport layer.

When the server's policy requirement is that transport-level

encryption be used, and a subsequent entry indicates that

RPCSEC_GSS is an acceptable auth flavor, a section entry of type

FL_GSS_CRYPT (described in Section 18.2) indicates that this auth

flavor is only to be used on connections that provide this

facility.

Unlike the previous case, the client has no choice as to how

confidentiality is to be provided as server has indicated, by

¶

¶

*

¶

¶

*

¶

¶

*

¶

using FL_GSS_CRYPT that transport-provide encryption required.

Also, in this case, the information in the RPCSEC_GSS secinfo

entry regarding regarding services to be provided by the auth

flavor, is to be ignored.

When the server's policy requirement is that mutual peer

authentication be provided and the secinfo entry indicates that

RPCSEC_GSS is an acceptable auth flavor, a previous section entry

of type FL_GSS_MPA (described in Section 18.2) indicates that

this auth flavor is only to be used on connections that provide

this facility.

Unlike the previous case, the information in the RPCSEC_GSS

secinfo entry regarding regarding services to be provided by the

auth flavor, is to be consulted and might be relevant if the

transport provides mutual peer authentication without encryption.

15.1. Dealing with Multiple Connections

[Author Aside]: All unannotated paragraphs in this section are

considered part of Consensus Item #32b.

Because effective security will require both an appropriate auth

flavor (and possibly services provide by the auth flavor) together

with appropriate connection characteristics, it is often necessary

that clients and server be aware of connection characteristics:

When multiple connections with different security-related

characteristics, are used to access a server, the clients needs

to ensure that each request is issued on a an appropriate

connection.

Similarly, in such situations, the server needs to be aware of

the security-related characteristics for the connection pn which

each request is received, in order to enforce its security

policy.

Depending on how the client and server implementations are

structured, implementations may have to be changed to accomplish the

above.

In the case of NFSv4.1 and above, the protocol requires that

requests associated with a given session only be issued on

connections bound to that session and accepted by the server only

when that binding is present. This makes it likely that clients or

servers will be able to correctly associate requests with the

appropriate connections although additional work might be necessary

to enable them to determine, for any given connection, its security

characteristics.

¶

*

¶

¶

¶

¶

*

¶

*

¶

¶

¶

In the case of NFSv4.0, no such binding is present in the protocol

so that, depending on existing implementations' layering, channel

binding functionality might have to be added.

This subject is discussed, in the context of pseudo-flavors

associated with the auth flavors AUTH_SYS and AUTH_NONE in Section 4

of [13]. That treatment is equally applicable to the pseudo-flavor

defined in this document.

16. Future Security Needs

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #35a.

[Author Aside]: This section is basically an outline for now, to be

filled out later based on Working Group input, particularly from

Chuck Lever who suggested this section and has ideas about many of

the items in it.

Security for data-at-rest, most probably based on facilities

defined within SAN.

Support for content signing.

Revision/extension of labelled NFS to provide true

interoperability and server-based authorization.

Work to provide more security for RDMA-based transports. This

would include the peer authentication infrastructure now being

developed as part of RPC-over-RDMA version 2. In addition, there

is a need for an RDMA-based transport that provides for

encryption, which might be provided in number of ways.

Work, via extensions, to provide attributes describing server

behavior to the client. This is likely to have an important role

in resolving security issues connected with ACLs where there is

both a new preferred approach together with legacy

implementations built when the specifications wither offered no

preferred approach or treated that preference as easily dispensed

with.

[Consensus Needed (Item #56c)]: Potential support for an optional

attribute to provide a UNIX ACL attribute as an NFSv4 extension.

17. Security Considerations

17.1. Changes in Security Considerations

Beyond the needed inclusion of a threat analysis as Section 17.4 and

the fact that all minor versions are dealt with together, the

¶

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

Security Considerations in this section differ substantially from

those in RFCs 7530 [6] and 8881 [8]. These differences derive from a

number of substantive changes in the approach to NFSv4 security

presented in RFCs 7530 [6] and 8881 [8] and that appearing in this

document.

These changes were made in order to improve the security of the

NFSv4 protocols because it had been concluded that the previous

treatment of these matters was in error, leading to a situation in

which NFSv4's security goals were not met. As a result, this

document supersedes the treatment of security in earlier documents,

now viewed as incorrect. However, it will, for the benefit of those

familiar with the previous treatment of these matters, draw

attention to the important changes listed here.

There is a vastly expanded range of threats being considered as

described in Section 17.1.1

New facilities provided by RPC on a per-connection basis can be

used to deal with security issues, as described in Section

17.1.2. These include the use encryption on a per-connection

basis, and the use of peer mutual authentication, to mitigate the

security problems that come with the use of AUTH_SYS.

The handling of identities with superuser privileges is no longer

part of NFSv4 semantics, even though many platforms on which

NFSv4 servers are implemented continue to depend, for local

operation, on the existence of such identities.

NFSv4 servers SHOULD NOT provide for such unrestricted access

since doing so would provide a means by which an escalation-of-

privilege on a client could be used to compromise a server to

which it was connected, affecting all clients of that server.

In connection with the use of "SHOULD NOT" above, and similar

uses elsewhere, it is to be understood that valid reasons to do

other than recommended are limited to the difficulty of promptly

changing existing server implementations and the need to

accommodate clients that have become dependent upon the existing

handling. Further, those maintaining or using such

implementations need to be aware of the security consequences of

such use as well as the fact that clients who become aware of

this characteristic may not be inclined to store their data on

such a system.

The appropriate handling of ACL-based authorization and necessary

interactions between ACLs and modes is now specified in this

standards-track document rather it being assumed that the

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

behavior of server implementations needs to be accepted and

deferred to.

17.1.1. Wider View of Threats

Although the absence of a threat analysis in previous treatments

makes comparison most difficult, the security-related features

described in previous specifications and the associated discussion

in their security considerations sections makes it clear that

earlier specifications took a quite narrow view of threats to be

protected against and placed the burden of providing for secure use

on those deploying such systems with very limited guidance as to how

such secure use could be provided.

One aspect of that narrow view that merits special attention is the

handling of AUTH_SYS, at that time in the clear, with no client peer

authentication.

With regard to specific threats, there is no mention in existing

security considerations sections of:

Denial-of-service attacks.

Client-impersonation attacks.

Server-impersonation attacks.

The handling of data security in-flight is even more troubling.

Although there was considerable work in the protocol to allow use

of encryption to be negotiated when using RPCSEC_GSS. The

existing security considerations do not mention the potential

need for encryption at all.

It is not clear why this was omitted but it is a pattern that

cannot repeated in this document.

The case of negotiation of integrity services is similar and uses

the same negotiation infrastructure.

In this case, use of integrity is recommended but not to prevent

the corruption of user data being read or written.

The use of integrity services is recommended in connection with

issuing SECINFO (and for NFSv4.1, SECINFO_NONAME). The presence

of this recommendation in the associated security considerations

sections has the unfortunate effect of suggesting that the

protection of user data is of relatively low importance.

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

*

¶

¶

*

¶

¶

¶

17.1.2. Connection-oriented Security Facilities

Such RPC facilities as RPC-with-TLS provide important ways of

providing better security for all the NFSv4 minor versions.

In particular:

The presence of encryption by default deals with security issues

regarding data-in-flight, whether RPCSEC_GSS or AUTH_SYS is used

for client principal identification.

Peer authentication provided by the server eliminates the

possibility of a server-impersonation attack, even when AUTH_SYS

or AUTH_NONE is used to issue requests

When mutual authentication is part of connection establishment,

there is a possibility, where an appropriate trust relationship

exists, of treating the uids and gids presented in AUTH_SYS

requests, as effectively authenticated, based on the

authentication of the client peer.

17.1.3. Necessary Security Changes

[Consensus Needed (Items #36a, #37a)]: For a variety of reasons,

there are many cases in which a change to the security approach has

been adopted but for which provisions have been made in order to

give implementers time to adapt to the new approach. In such cases

the words "SHOULD", "SHOULD NOT", and "RECOMMENDED" are used to

introduce the new approach while use of the previous approach is

allowed on a temporary basis, by limiting the valid reasons to

bypass the recommendation. Such instances fall into two classes:

[Consensus Needed (Item #36a)]: In adapting to the availability

of security services provided by RPC on a per-connection basis,

allowance has been made for implementations for which these new

facilities are not available and for which, based on previous

standards-track guidance, AUTH_SYS was used, in the clear,

without client-peer authentication.

[Consensus Needed (Item #37a)]: In dealing with server

implementations that support both ACLs and the mode attribute,

previous specifications have allowed a wide range of possible

server behavior in coordinating these attributes. While this

document now clearly defines the recommended behavior in dealing

with these issues, allowance has been made to provide time for

implementations to conform to the new recommendations.

[Consensus Needed (Items #36a, #37a)]: The threat analysis within

this Security Considerations section will not deal with older

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

servers for which allowance has been made but will explore the

consequences of the recommendations made in this document.

17.1.4. Compatibility and Maturity Issues

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #38a.

Given the need to drastically change the NFSv4 security approach

from that specified previously, it is necessary for us to be mindful

of:

The difficulty that might be faced in adapting to the newer

guidance because the delays involved in designing, developing,

and testing new connection-oriented security facilities such as

RPC-with-TLS.

The difficulty in discarding or substantially modifying previous

existing deployments and practices, developed on the basis of

previous normative guidance.

For these reasons, we will not use the term "MUST NOT" in some

situations in which the use of that term might have been justified

earlier. In such cases, previous guidance together with the passage

of time may have created a situation in which the considerations

mentioned above in this section may be valid reasons to defer, for a

limited time, correction of the current situation making the term

"SHOULD NOT" appropriate, since the difficulties cited would

constitute a valid reason to not allow what had been recommended

against.

17.1.5. Discussion of AUTH_SYS

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #39a.

An important change concerns the treatment of AUTH_SYS which is now

divided into two distinct cases given the possible availability of

connection-oriented support from RPC.

When such support is not available, AUTH_SYS SHOULD NOT be used,

since it makes the following attacks quite easy to execute:

The absence of authentication of the server to the client allow

server impersonation in which an imposter server can obtain data

to be written by the user and supply corrupted data to read

requests.

The absence of authentication of the client user to the server

allow client impersonation in which an imposter client can issue

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

requests and have them executed as a user designated by imposter

client, vitiating the server's authorization policy.

With no authentication of the client peer, common approaches,

such as using the source IP address can be easily defeated,

allowing unauthenticated execution of requests made by the

pseudo-clients

The absence of any support to protect data-in-flight when

AUTH_SYS is used result in further serious security weaknesses.

In connection with the use of the term "SHOULD NOT" above, it is

understood that the "valid reasons" to use this form of access

reflect the Compatibility and Maturity Issue discussed above in

Section 17.1.4 and that it is expected that, over time, these will

become less applicable.

17.2. Security Considerations Scope

17.2.1. Discussion of Potential Classification of Environments

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #40a.

This document will not consider different security policies for

different sorts of environments. This is because,

Doing so would add considerable complexity to this document.

The additional complexity would undercut our main goal here,

which is to discuss secure use on the internet, which remain an

important NFSv4 goal.

The ubiquity of internet access makes it hard to treat corporate

networks separately from the internet per se.

While small networks might be sufficiently isolated to make it

reasonable use NFSv4 without serious attention to security

issues, the complexity of characterizing the necessary isolation

makes it impractical to deal with such cases in this document.

17.2.2. Discussion of Environments

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #40b.

Although the security goal for Nfsv4 has been and remains "secure

use on the internet", much use of NFSv4 occurs on more restricted IP

corporate networks with NFS access from outside the owning

organization prevented by firewalls.

¶

¶

*

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

This security considerations section will not deal separately with

such environments since the threats that need to be discussed are

essentially the same, despite the assumption by many that the

restricted network access would eliminate the possibility of attacks

originating inside the network by attackers who have some legitimate

NFSv4 access within it.

In organizations of significant size, this sort of assumption of

trusted access is usually not valid and this document will not deal

with them explicitly. In any case, there is little point in doing

so, since, if everyone can be trusted, there can be no attackers,

rendering threat analysis superfluous.

In corporate networks, as opposed to the Internet, there is good

reason to be less concerned about denial-of-service attacks, since

there is no tangible benefit to attackers inside the organization,

and the anonymity that makes such attacks attractive to outside

attackers will not be present.

The above does not mean that NFSv4 use cannot, as a practical

matter, be made secure through means outside the scope of this

document including strict administrative controls on all software

running within it, frequent polygraph tests, and threats of

prosecution. However, this document is not prepared to discuss the

details of such policies, their implementation, or legal issues

associated with them and treats such matters as out-of-scope.

Nfsv4 can be used in very restrictive IP network environments where

outside access is quite restricted and there is sufficient trust to

allow, for example, every node to have the same root password. The

case of a simple network only accessible by a single user is

similar. In such networks, many thing that this document says

"SHOULD NOT" be done are unexceptionable but the responsibility for

making that determination is one for those creating such networks to

take on. This document will not deal further with NFSv4 use on such

networks.

17.2.3. Insecure Environments

As noted in Section 17.2.2, NFSv4 is often used in environments of

much smaller scope than the internet, with the assumption often

being made, that the prevention of NFSv4 access from outside the

organization makes the attention to security recommended by this

document unnecessary, the possibility of insider attacks being

explicitly or implicitly disregarded.

As a result, there will be implementations that do not conform to

these recommendations, many of which because the implementations

were based on RFCs 3530 [6], 7530 [6], 5661 [16], or 8881 [8]. In

¶

¶

¶

¶

¶

¶

addition to these cases in which the disregard of the

recommendations is considered valid because implementors relied on

existing normative guidance, there will be other cases in which

implementors choose to ignore these recommendations,

Despite the original focus of RFC2119 [1] on interoperability, many

such implementations will interoperate, albeit without effective

security, whether the reasons that the recommendations are not

adhered to are considered valid or not.

When such insecure use is mentioned in this Security Considerations

section it will only be in explaining the need for the

recommendations, by explaining the likely consequences of not

following them. The threat analysis, in Section 17.4 and included

subsections, will not consider such insecure use and will concern

itself with situation in which these recommendations are followed.

17.3. Major New Recommendations

17.3.1. Recommendations Regarding Security of Data in Flight

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #41b.

It is RECOMMENDED that requesters always issue requests with data

security (i.e. with protection from disclosure or modification in

flight) whether provided at the RPC request level or on a per-

connection basis, irrespective of the responder's requirements.

It is RECOMMENDED that implementers provide servers the ability to

configure policies in which requests without data security will be

rejected as having insufficient security.

It is RECOMMENDED that servers use such policies over either their

entire local namespace or for all file systems except those clearly

designed for the general dissemination of non-sensitive data.

When these recommendations are not followed, data, including data

for which disclosure is a severe [problem is exposed to unwanted

disclosure or modification in flight. Depending on the server to be

aware of the need for confidentiality or integrity, as expected by

previous specifications, has not proved workable, making encryption

by default as provided uniformly by RPC (e.g. through RPC-with-TLS)

necessary.

17.3.2. Recommendations Regarding Client Peer Authentication

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #41c.

¶

¶

¶

¶

¶

¶

¶

¶

¶

It is RECOMMENDED that clients provide authentication material

whenever a connection is established with a server capable of using

it to provide client peer authentication.

It is RECOMMENDED that implementers provide servers the ability to

configure policies in which attempts to establish connections

without client peer authentication will be rejected.

It is RECOMMENDED that servers adopt such policies whenever requests

not using RPCSEC_GSS (i.e. AUTH_NONE Or AUTH_SYS) are allowed to be

executed.

When these recommendations are not followed, it is possible for

connections to be established between servers and client peers that

have not been authenticated with the following consequences:

The server will be in the position of executing requests where

the identity used in the authorization of operations is not

authenticated, including cases in which the identification has

been fabricated by an attacker.

When no identification of a specific user is needed or present

(i.e AUTH_NO is used) there is no way of verifying that the

request was issued by the appropriate client peer.

When the recommendations are followed, use of AUTH_SYS can be valid

means of user authentication, so long as due attention is paid to

the discussion in Section 17.4.6.1. Despite this fact, the

description of AUTH_SYS as an "OPTIONAL means of authentication"is

no longer appropriate since choosing to use it requires heightened

attention to security as discussed later in this document.

17.3.3. Recommendations Regarding Superuser Semantics

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #52b.

It is RECOMMENDED that servers adhere to the ACL semantics defined

in this document and avoid granting to any remote user, however

authenticated, unrestricted access capable of authorizing access

where the file/directory ACL would deny it.

Servers are free to conform to this recommendation either by

implementing authorization semantics without provisions for

superusers or by mapping authenticated users that would have

superuser privileges to users with with more limited privileges

(e.g. "nobody").

It needs to b e understood that the second of these choices is

preferable when there are NFsv4-accessible files owned by a special

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

users (e.g. root) whose compromise might be taken advantage of by

attackers to enable permanent unauthorized access to a server.

17.3.4. Issues Regarding Valid Reasons to Bypass Recommendations

[Author Aside]: All unannotated paragraphs within this section are

considered part of Consensus Item #41d.

Clearly, the maturity and compatibility issues mentioned in Section

17.1.4 are valid reasons to bypass the proposed recommendations

requiring pervasive use of encryption, as long as these issues

continue to exist.

[Author Aside]: The question the working group needs to address is

whether other valid reasons exist.

[Author Aside]: In particular, some members of the group might feel

that the performance cost of conection-based encryption constitutes,

in itself, a valid reason to ignore the above recommendations.

[Author Aside]: I cannot agree and feel that accepting that as a

valid reason would undercut Nfsv4 security improvement, and probably

would not be acceptable to the security directorate. However, I do

want to work out an a generally acceptable compromise. I propose

something along the following lines:

In dealing with recommendations requiring pervasive use of

connection-based encryption, it needs to be understood that the

connection-based encryption facilities are designed to be compatible

with facilities to offload the work of encryption and decryption.

When such facilities are not available, at a reasonable cost, to

NFSv4 servers and clients anticipating heavy use of NFSv4, then the

lack of such facilities can be considered a valid reason to bypass

the above recommendations, as long as that situation continues.

17.4. Threat Analysis

17.4.1. Threat Analysis Scope

Because of the changes that have been made in NFSv4 security, it

needs to be made clear that the primary goal of this threat analysis

is to explore the threats that would be faced by implementations

that follow the recommendations in this document.

When the possibility is raised of implementations that do not

conform to these recommendations, the intention is to explain why

these recommendations were made rather that to expand the the scope

of the threat analysis to include implementations that bypass/ignore

the recommendations.

¶

¶

¶

¶

¶

¶

¶

¶

¶

The typical audience for threat analyses is client and server

implementers, to enable implementations to be developed that are

resistant to possible threats. While much of the material in Section

17.4 is of that form, it also contains material that relates to

threats whose success depends primarily on the ways in which the

implementation is deployed, such as the threats discussed in

Sections 17.4.2, 17.4.4 and 17.4.3. While it is not anticipated that

those deploying implementations will be aware of the detail of this

threat analysis, it is expected that implementors could use this

material to properly set expectations and provide guidance helpful

to making deployments secure.

17.4.2. Threats based on Credential Compromise

In the past, it had been assumed that a user-selected password could

serve as a credential, the knowledge of which was adequate to

authenticate users and provide a basis for authorization.

That assumption is no longer valid for a number of reasons:

The inability or unwillingness of users to remember multiple

passwords has meant that the single password they will remember

controls access to large set of resources, increasing the value

of this knowledge to attackers and the effort that will be

expended to obtain it.

In addition, the common use of a single password for applying to

all of a user's data has resulted in a situation in which the

client is aware of user passwords (since they are used for client

login) that apply to data on many servers. As will be seen later,

this has the effect of changing the considerations appropriate to

comparing the security of AUTH_SYS and RPCSEC_GSS.

CPU developments have made exhaustive search possible for larger

classes of passwords.

The success of "phishing" attacks taking advantage of user

gullibility provides an additional path to credential compromise

which need to be addressed in the near-term by those deploying

NFSv4, and will eventually need work in the security

infrastructure on which NFSv4 is built.

In the near term, there are a number of steps, listed below that

those deploying NFSv4 servers can take to mitigate these weaknesses.

These steps are outside the scope of the NFSv4 protocols and

implementors only role with regard to them is to make it clear that

these weaknesses exist and generally require mitigation.

Limitations on password choice to eliminate weak passwords.

¶

¶

¶

*

¶

¶

*

¶

*

¶

¶

* ¶

Requirements to change passwords periodically.

User education about "phishing" attacks including ways to report

them and effective ways of replacing a compromised password.

From a longer-term perspective, it appears that password-based

credentials need to be either replaced or supplemented by some form

of multi-factor authentication. Since NFSv4's approach to security

relies on RPC, that work would most probably be done within the RPC

layer, limiting the work that implementations and the NFSv4

protocols would have to do to adapt to these changes once they are

available. While the precise form of these changes is not

predictable, the following points need to be kept in mind.

[Verification Needed (Item #53a)]: For those using RPCSEC_GSS

authentication of principals, it appears that RPCSEC_GSS

interface is flexible enough that the addition of a second

credential element, in the form of a one-time code could be

added.

[Elaboration/Verification Needed (Item #53a)]: Enhancement of

Kerberos is one possibility to provide multi-factor

authentication. However, work on this is not far enough along to

enable deployment to be discussed now.

If this approach were taken, rogue servers would still have

access to user passwords but their value would be reduced since

the second credential element would have a very limited lifetime.

For those using AUTH_SYS to identify principals, the client

operating system's authentication of user at login would need to

be enhanced to use multi-factor authentication.

If this were done, the client would retain responsibility for

credential verification with the server needing to trust the

client, as discussed in Section 17.4.6.1.

Although there is need for protocol standardization to enable

this approach to be commonly used, it is not likely to be widely

used until some operating system adopts it for user login.

One important variant of AUTH_SYS use concerns clients used by a

single user, when, as recommended, client-peer authentication is

in effect For such clients, it is possible for the authentication

of that specific client peer to effectively become the second

factor, in a multi-factor authentication scheme.

Despite the fact that the the RPC-with-TLS specification [12])

does not allow TLS to used for user authentication, this

arrangement in which the user identity is inferred from the peer

* ¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

¶

*

¶

authentication, could be used to negate the effects of credential

compromise since an attacker would need both the user password,

and the physical client to gain access.

17.4.3. Threats Based on Rouge Clients

When client peers are not authenticated, it is possible to a node on

the network to pretend to be a client. In the past, in which servers

only checked the from-IP address for correctness, address spoofing

would allow unauthenticated request to be executed, allowing

confidential data to be read or modified.

Now that such use of AUTH_SYS is recommended against, this cannot

happen. The recommended practice is to always authenticate client

peers making this sort of imposture easily detectable by the server.

Despite this protection, it is possible that an attacker, through a

client vulnerability unrelated to NFSv4, or the installation of

malware, could effectively control the client peer and act as

imposter client would, effectively undercutting the authentication

of the client. This possibility makes it necessary, as discussed in

Section 17.4.6.1 that those deploying NFSv4 clients using AUTH_SYS

takes steps to limit the set of user identifications accepted by a

server and to limit the ability of rogue code running on the server

to present itself as a client entitled to use AUTH_SYS.

17.4.4. Threats Based on Rouge Servers

When server peers are not authenticated, it is possible for a node

on the network to act as if it were an NFSv4 server, with the

ability to save data sent to it and use it or pass it to other,

rather than saving it in the file system, as it needs to do..

When current recommendations are adhered to, this is be prevented as

follows:

When RPCSEC_GSS is used, the mutual authentication of the server

and client principal provides assurance the server is not an

imposter.

When AUTH_SYS or AUTH_NONE is used, the mutual authentication of

client and server peers provides assurance the server is not an

imposter.

Despite this protection, it is possible that an attacker, through a

operating system vulnerability unrelated to NFSv4, or the

installation of malware, could effectively control the server peer

and act as an imposter server would, effectively undercutting the

authentication of the server.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

The above possibility makes it necessary, that those deploying NFSv4

servers take the following steps, particularly in cases in cases in

which the server has access to user credentials, including, but not

limited to, cases in which AUTH_SYS is supported

When an NFSv4 is implemented as part of a general-purpose operating

system, as it often is, steps need to be taken to limit the ability

of attackers to take advantage of operating system vulnerabilities

that might allow the attacker to obtain privileged access and

subvert the servers operation, turning it, effectively, into a rogue

server.

Such steps include controls on the software installed on the machine

acting as the server, and limitation of the network access to

potentially dangerous sites.

17.4.5. Data Security Threats

When file data is transferred in the clear, it is exposed to

unwanted exposure. As a result, this document recommends that

encryption always be used to transfer NFSv4 requests and responses.

That encryption, whether done on encrypted connections, or on a per-

request basis, using RPCSEC_GSS security services, provides the

necessary confidentiality. In addition, it contributes to security

in other ways as well:

The ability of an attacker to plan and execute attacks is

enhanced by the monitoring of client-server traffic, even if none

of the data intercepted is actually confidentiality.

An attacker can deduce which users are allowed to read or write a

specific file by examining the results of OPEN and ACCESS

operations allowing later attacks to impersonate users with the

appropriate access.

All the methods on encryption used with NFS4 provide a checksum,

to enable the detection of unwanted modifications to data being

read or written.

17.4.6. Authentication-based threats

17.4.6.1. Attacks based on the use of AUTH_SYS

Servers, when they allow access using AUTH_SYS, to a specific client

machines using AUTH_SYS are responsible for ensuring that the

principal identifications presented to the server can be relied

upon.

¶

¶

¶

¶

¶

*

¶

¶

*

¶

¶

The existence of client-peer authentication as recommended in

Section 17.1.5 means that imposter servers can be detected and not

allowed to use AUTH_SYS. However there are an additional number of

issues that need to be addressed to adequately protect against use

of AUTH_SYS enabling attacks:

The server accepting requests using AUTH_SYS needs to determine

that the authenticated client-peer can be trusted to properly

authenticate the principals that it identifies in requests.

The specific standards for trustworthiness are up to the server

but they need to take account of the controls in place to prevent

malware from pretending to be a client and thus taking advantage

of the fact that the request is from the expected client machine.

This server MUST NOT accept AUTH_SYS requests from unknown

clients or from unauthenticated clients.

[Elaboration Needed (Item #54a)]: The client verification

procedure needs to take steps to prevent code on a compromised

client to presenting itself as the successor to a legitimate

client, taking advantage of the fact that the machine is the

same.

Given the inherent vulnerabilities of client operating systems,

it is desirable, to limit the set of users whose identification

will be accepted. The elimination of particular users such as

"root' is one long-standing approach to the issue but it probably

isn't sufficient in most environments. More helpful would be the

ability to exclude multiple sensitive users or group of users or

to limit the user identifications accepted to a user group or a

single user.

Another important that issue that arises when AUTH_SYS is used

concerns the storage of credentials on the clients. While it is

theoretically possible for these not to be of use elsewhere, the

reluctance/inability of users to remember multiple passwords means

that these credentials will be used by many clients and will need to

be updated as users are added or deleted or when passwords are

changed. The propagation of these credentials and their storage on

clients could be the basis for attacks if appropriate step are not

taken to secure this data.

While it is helpful to store a cryptographic hash of the password

rather than the password itself, this does not dispose of the issue,

since possession of the hash would greatly simplify an exhaustive

search for the password, since the attacker could limit login

attempts to guessed password whose hash value matched the value

obtained from the files on the client.

¶

*

¶

¶

¶

*

¶

*

¶

¶

¶

Although it is true that making clients responsible for

authentication of user identities undercuts much of the original

motivation for making RPCSEC_GSS MANDATORY to implement, it needs to

be understood that the situation today is different from that when

this decision was made.

It has been recommended that servers not allow unauthenticated

clients to issue requests using AUTH_SYS.

The identification of a request as issued by the user with uid

zero, no longer provides access without file access

authorization.

Given that users are unaware of where their files are located and

it is desirable that they are able to remain unaware of this, it

is natural that they use the same password to authenticate

themselves for local resource use as for use of files located on

NFSv4 servers.

Support for AUTH_SYS in NFSv4 was included for a number of reasons

which still hold true today, despite the fact that the original

mistake, to make no reference to the security consequences of doing

so, is now being corrected. Such provision is necessary for the

following reasons, that go beyond the need to temporarily

accommodate implementations following the older specifications, for

a number of reasons:

When considered, as NFS was to intended to be, as consistent with

local access as possible, AUTH_SYS was the natural way of

providing authentication, just as it had been done for local

files.

While use of AUTH_SYS exposes user passwords to the client

operating system, the fact that user are unable or unwilling to

use different passwords for different files in a multi-server

namespace means this issue will be present even when AUTH_SYS is

not used.

[Elaboration Needed (Item #55a)]: In many important environments

including cloud environments, important implementation

constraints has made use of Kerberos impractical.

[Verification Needed (Item #55a)]: In such environments, client

credentials are maintained by the cloud customer while the cloud

provider manages network access.

17.4.6.2. Attacks on Name/Userid Mapping Facilities

NFSv4 provides for the identification users and groups in two ways

(i.e. by means of strings of the form name@domain or strings

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

¶

containing numeric uid/gid values) while file systems used on NFSv4

servers typically use 32-bit uids and gids.

As a result, NFSv4 server implementations are required to have some

means of translating between the name@domain form and the numeric

form used internally. While the specifics of this translation are

not specified as part of the NFSv4 protocols, is required for server

implementations to work, and, if it not done securely and attackers

have the ability to interfere with this translation, it gives them

the ability to interfere with authorization as follows:

When authentication occurs using user names, as occurs when

RPCSEC_GSS, a mistranslation might allow the numeric value used

in authorization to allow access to a file the authenticated user

would not be allowed to access.

When any authentication occurs on the client and the uid is

presented to the server using AUTH_SYS a mistranslation to the

string form could result in confusion and uncertainty about the

users allowed to access the file.

17.4.7. Disruption and Denial-of-Service Attacks

17.4.7.1. Attacks Based on the Disruption of Client-Server Shared

State

When data is known to both the client and server, a rogue client can

interfere with the correct interaction between client and server, by

modifying that shared data, including locking state and session

information.

For this reason, it is recommended that client-peer authentication

be in effect, because, it it were not, a different client could

could easily modify data that the current client depend on,

disrupting ones interaction with the server.

It is still possible, if one's client is somehow compromised, as

described in Section 17.4.3, for various forms of mischief to occur:

Locks required for effective mutual exclusion can be released,

causing application failures.

Mandatory share locks can be obtained preventing those with valid

access from opening file that they are supposed to have access

to.

Session slot sequence numbers may be rendered invalid if requests

are issued on existing sessions. As a result, the client that

issued a request would receive unexpected sequence errors.

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

17.4.7.2. Attacks Based on Forcing the Misuse of Server Resources

It is is also possible for attacks to be mounted, in the absence of

the ability to obtain or modify confidential data, with the sole

goal of the attack being to make spurious requests, with no

expectation that the request will be authorized but with the goal of

causing resources that would otherwise be used to service valid

requests to be unavailable due to the burden of dealing with

numerous invalid requests.

The design of the NFSv4 protocols requires that clients establishing

new connections make initial requests which establishes a shared

context referred to by subsequent requests which might request

substantive actions (e.g. client and session ids). This structure

helps mitigate the effect of such denial-of-service attacks as

described below.

The server can limit the resources devoted to connections not yet

fully identified without unduly restricted connections which have

identified themselves.

The recommendation that client peers authenticate themselves,

allows unknown clients to be dispensed with at an early stage

negating their ability to make requests which could require file

system action to obtain information needed to make authorization

decisions (e.g. ACLs or other authorization-related) file

attributes.

18. IANA Considerations

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #32c.

Because of the shift from implementing security-related services

only in connection with RPCSEC_GSS to one in which connection-

oriented security has a prominent role, a number if new values need

to be assigned.

These include new authstat values to guide selection of a connection

types acceptable to both client and server, presented in Section

18.1 and new pseudo-flavors to be used in the process of security

negotiation, presented in Section 18.2.

18.1. New Authstat Values

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #32d.

The following new authstat values are necessary to enable a server

to indicate that the server's policy does not allows requests to be

¶

¶

*

¶

*

¶

¶

¶

¶

¶

made on the current connection because of security issues associated

with connection type used. In the event they are received, the

client needs to establish a new connection.

The value XP_CRYPT indicates that the server will not support

access using unencrypted connections while the current connection

is not encrypted.

The value XP_CPAUTH indicates that the server will not support

access using connections for which the client peer has not

authenticated itself as part of connection while the current

connection has not been set up in that way.

18.2. New Authentication Pseudo-Flavors

[Author Aside]: All unannotated paragraphs in this section are to be

considered part of Consensus Item #32e.

The new pseudo-flavors described in this section are to be made

available to allow their return as part of the response to the

SECINFO and SECINFO_NONAME operations. How these operations are to

used to negotiate the use of appropriate auth flavors and associated

security-relevant connection characteristics is discussed in Section

15.

The following pseodo-flavors are to be defined:

FL_GSS_CRYPT is returned to indicate that subsequent secinfo

entries indicating the auth flavor RPCSEC_GSS are to considered

limited to use on connections for which transort-level encryption

is provided.

When this pseudo-flavor is used, the client constraints are

different than they would be if the RPCSEC_GSS secinfo entry

indicated the need for privacy/confidentiality. That case would

allow the encryption to be provided by either the auth-flavor or

the by the transport layer. When FL_GSS_CRYPT os present, only

the latter is allowed.

FL_GSS_MPA is returned to indicate that subsequent secinfo

entries indicating the auth flavor RPCSEC_GSS are to be consdered

limited to use on connections on which mutual peer authentication

has been provided at connection setup.

These pseudo-flavors provide the same sort of facilities for

RPCSEC_GSS as provided by [13] for AUTH_SYS and AUTH_NONE. They

differ in being modifiers of existing auth flavor entries rather

than combining auth flavor and connection characteristics in a

single entry. This is necessary because existing XDR only allows an

¶

*

¶

*

¶

¶

¶

¶

*

¶

¶

*

¶

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

RPCSEC_GSS secinfo entry to present information in additional to the

flavor id.

19. References

19.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol

Specification", RFC 2203, DOI 10.17487/RFC2203, September

1997, <https://www.rfc-editor.org/info/rfc2203>.

Linn, J., "Generic Security Service Application Program

Interface Version 2, Update 1", RFC 2743, DOI 10.17487/

RFC2743, January 2000, <https://www.rfc-editor.org/info/

rfc2743>.

Thurlow, R., "RPC: Remote Procedure Call Protocol

Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,

May 2009, <https://www.rfc-editor.org/info/rfc5531>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Haynes, T., Ed. and D. Noveck, Ed., "Network File System

(NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/

RFC7530, March 2015, <https://www.rfc-editor.org/info/

rfc7530>.

Haynes, T., Ed. and D. Noveck, Ed., "Network File System

(NFS) Version 4 External Data Representation Standard

(XDR) Description", RFC 7531, DOI 10.17487/RFC7531, March

2015, <https://www.rfc-editor.org/info/rfc7531>.

Noveck, D., Ed. and C. Lever, "Network File System (NFS)

Version 4 Minor Version 1 Protocol", RFC 8881, DOI

10.17487/RFC8881, August 2020, <https://www.rfc-

editor.org/info/rfc8881>.

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

"Network File System (NFS) Version 4 Minor Version 1

External Data Representation Standard (XDR) Description",

RFC 5662, DOI 10.17487/RFC5662, January 2010, <https://

www.rfc-editor.org/info/rfc5662>.

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2203
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc5531
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7530
https://www.rfc-editor.org/info/rfc7531
https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc5662
https://www.rfc-editor.org/info/rfc5662

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,

November 2016, <https://www.rfc-editor.org/info/rfc7862>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 External Data Representation Standard (XDR)

Description", RFC 7863, DOI 10.17487/RFC7863, November

2016, <https://www.rfc-editor.org/info/rfc7863>.

Myklebust, T. and C. Lever, "Towards Remote Procedure

Call Encryption By Default", Work in Progress, Internet-

Draft, draft-ietf-nfsv4-rpc-tls-11, 23 November 2020,

<https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-

rpc-tls-11>.

Lever, C., "Pseudo-flavors for Remote Procedure Calls

with Transport Layer Security", Work in Progress,

Internet-Draft, draft-cel-nfsv4-rpc-tls-pseudoflavors-01,

15 December 2021, <https://datatracker.ietf.org/doc/html/

draft-cel-nfsv4-rpc-tls-pseudoflavors-01>.

NIST, "SP 800-209 Security Guidelines for Storage

Infrastructure".

19.2. Informative References

Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,

and G. Judd, "Data Center TCP (DCTCP): TCP Congestion

Control for Data Centers", RFC 8257, DOI 10.17487/

RFC8257, October 2017, <https://www.rfc-editor.org/info/

rfc8257>.

Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,

"Network File System (NFS) Version 4 Minor Version 1

Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,

<https://www.rfc-editor.org/info/rfc5661>.

Appendix A. Changes Made

This section summarizes the substantive changes between the

treatment of security in previous minor version specification

documents (i.e. RFCs 7530 and 8881) and the new treatment applying

to NFSv4 as a whole.

This is expected to be helpful to implementers familiar with

previous specifications but also has an important role in verifying

the working group consensus for these changes and in guiding the

search for potential compatibility issues.

¶

¶

https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc7863
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpc-tls-11
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpc-tls-11
https://datatracker.ietf.org/doc/html/draft-cel-nfsv4-rpc-tls-pseudoflavors-01
https://datatracker.ietf.org/doc/html/draft-cel-nfsv4-rpc-tls-pseudoflavors-01
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc5661

A.1. Motivating Changes

A number of changes reflect the basic motivation for a new treatment

of NFSv4 security. These include the ability to obtain privacy and

integrity services from RPC on a per-connection basis rather than as

a service ancillary to a specific authentication flavor.

This motivated a major reorganization of the treatment of security

together with a needed emphasis on the security of data in flight.

In addition, the security negotiation framework for NFSv4 has been

significantly enhanced to support the combined negotiation of

authentication-related services and connection characteristics.

Despite these major changes there are not expected to be

compatibility issues between peers supporting provision of security

services on a per-connection basis and those without such support.

Another such change was in the treatment of AUTH_SYS, previously

described, inaccurately, as an "OPTIONAL means of authentication"

with the unfortunate use of the RFC2119 keyword obscuring the

negative consequences of the typical use of AUTH_SYS (in the clear;

without client-peer authentication) for security by enabling the

execution of unauthenticated requests.

The new treatment avoids the inappropriate use of term

"authentication" for all activities triggered by the use of RPC

authentication flavors and clearly distinguishes those flavors

providing authentication from those providing identification only or

neither identification nor authentication.

A.2. Other Major Changes

The need to make the major changes discussed in Appendix A.1 has

meant that much text dealing with security has needed to be

significantly revised or rewritten. As a result of the process, may

issues involving unclear, inconsistent, or otherwise inappropriate

text were uncovered and needed to be dealt with.

While the author believes such changes are necessary, the fact that

we are changing a document adopted by consensus requires the working

group to be clear about the acceptability of the changes. This

applies to both the troublesome issues discussed in Section 3.4 and

to the other changes included below.

Because of concurrent re-organizations, the ordering of the list

follows the text of the current version which may differ

considerably from that in earlier versions of the I-D.

In order to deal better with the fact that ACLs have multiple

uses some significant structural changes have been made.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

Section 5, a new top-level section describes the the structure of

ACLs,

In Section 7.2, makes clear that owner and owner group are

essentially REQUIRED attributes.

Also in Section 7.2, there is added clarity in the discussion of

support for multiple authorization approaches by eliminating use

of the subjective term "reasonable semantics".

In connection with this clarification, we have switched from

describing the needed co-ordination between modes and acls as

"goals" to describing them as "requirements" to give clients some

basis for expecting interoperability in handling these issues.

As a result of this shift to a prescriptive framework applying to

all minor versions it becomes possible to treat all minor

versions together. In earlier versions of this document, it had

been assumed that NFSv4.0 was free to ignore the relevant

prescriptions first put forth in RFC 5661 and only needed to

address the "goals" for this co-ordination.

Appendix B. Issues for which Consensus Needs to be Ascertained

The section helps to keep track of specific changes which the author

has made or intends to make to deal with issues found in RFCs 7530

and 7881. The changes listed here exclude those which are clearly

editorial but includes some that the author believes are editorial

but for which the issues are sufficiently complicated that working

group consensus on the issue is probably necessary.

These changes are presented in the table below, organized into a set

of "Consensus Items" identified by the numeric code appearing in

annotations in the proposed document text. For each such item, a

type code is assigned with separate sets of code define for pending

items and for those which are no longer pending.

The following codes are defined for pending consensus items:

"NM" denotes a change which is new material that is not purely

editorial and thus requires Working Group consensus for eventual

publication.

"BE" denotes a change which the author believes is editorial but

for which the change is sufficiently complex that the judgment is

best confirmed by the Working Group.

¶

*

¶

*

¶

¶

¶

*¶

¶

¶

¶

*

¶

*

¶

"BC" denotes a change which is a substantive change that the

author believes is correct. This does not exclude the possibility

of compatibility issues becoming an issue but is used to indicate

that the author believes any such issues are unlikely to prevent

its eventual acceptance.

"CI" denotes a change for which the potential for compatibility

issues is major concern with the expected result that working

group discussion of change will focus on clarifying our knowledge

of how existing clients and server deal with the issue and how

they might be affected by the change or the change modified to

accommodate them.

"NS" denotes a change which represents the author's best effort

to resolve a difficulty but for which the author is not yet

confident that it will be adopted in its present form,

principally because of the possibility of troublesome

compatibility issues.

"NE" denotes change based on an existing issue in the spec but

for which the replacement text is incomplete and needs further

elaboration.

"WI" denotes a potential change based on an existing issue in the

spec but for which replacement text is not yet available because

further working group input is necessary before drafting. It is

expected that replacement text will be available in a later draft

once that discussion is done.

"LD" denotes a potential change based on an existing issue in the

spec but for which replacement text is not yet available due to

the press of time. It is expected that replacement text will be

available in a later draft.

"EV" denote a potential change which is tentative or incomplete

because further details need to be provide or because the author

is unsure that he has a correct explanation of the issue. It is

expected that replacement text will be available in a later

draft.

The following codes are defined for consensus items which are no

longer pending.

"RT" designates a former item which has been retired, because it

has been merged with another one or otherwise organized out of

existence.

Such items no longer are referred to the document source although

the item id is never reassigned. They are no longer counted among

the set of total items.

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

¶

"CA" designates a former item for which consensus has been

achieved in the judgment of the author, although not by any

official process.

Items reaching this state are effected in the document source

including the deletion of annotations and the elimination of

obsoleted previous treatments.

Items in this state are still counted among the total of item but

are no longer considered pending

"CV" designates a former item for which consensus has been

achieved and officially verified.

Because the author is a working group co-chair,it is probably

best if he is not involved in this process and intends to leave

it to the other co-chair and the Area Director.

Items in this state are not counted among the item totals. They

may be kept in the table but only to indicate that the item id is

still reserved.

"DR" designates a former item which has been dropped, because it

appears that working group acceptance of it, even with some

modification, is unlikely.

Such items no longer are referred to the document source although

the item id is never reassigned. They are no longer counted among

the set of total items.

When asterisk is appended to a state of "NM", "BE" or "BE" it that

there has been adequate working group discussion leading one to

reasonably expect it will be adopted, without major change, in a

subsequent document revision.

Such general acceptance is not equivalent to a formal working group

consensus and it not expected to result in major changes to the

draft document,

On the other hand, once there is a working group consensus with

regard to a particular issue, the document will be modified to

remove associated annotations, with the previously conditional text

appearing just as other document text does. The issue will remain in

this table as a non-pendin item. It will be mentioned in Appendices

A.2 or A.1 to summarize the changes that have been made.

It is is expected that these designations will change as discussion

proceeds and new document versions are published. It is hoped that

most such shifts will be upward in the above list or result in the

deletion of a pending item, by reaching a consensus to accept or

*

¶

¶

¶

*

¶

¶

¶

*

¶

¶

¶

¶

¶

reject it. This would enable, once all items are dealt with, an

eventual request for publication as an RFC, with this appendix

having been deleted.

Type ...References... Substance

1 NM* #1a in S 4

Outline of new approach to

authetication/identification, replacing

confusion about the matter in previous

specifications.

2 NM* #2a in S 4

Introduction to and outline of changes

needed in negotiation framework to

support provision of security by RPC on

a per-connection basis.

3 BE #3a in S 5.4

Conversion of mask bit descriptions from

being about "permissions" to being about

the action permitted, denied, or

specified as being audited or generating

alarms.

4 CI #4a in S 5.4
Elimination of uses of SHOULD believed

inappropriate in Section 5.4.

5 BE #5a in S 5.4

Explicit inclusion of ACCESS as an

operation affected in the mask bit

definitions.

6 CI

#6a in S 5.4

#6b in S 5.6

#6c in S 7.3.1

New/revised description of the role of

the "sticky bit" for directories, both

with respect to ACL handling and mode

handling.

7 BE #7a in S 5.4
Clarification of relationship between

READ_DATA and EXECUTE.

8 CI #8a in S 5.4
Revised discussion of relationship

between WRITE_DATA and APPEND_DATA.

9 BC #9a in S 5.4
Clarification of how ADD_DIRECTORY

relates to RENAME.

10 BC
#10a in S 5.4

#10b in S 5.5

Revisions in handling of the masks

WRITE_RETENTION and

WRITE_RETENTION_HOLD.

11 CI

#11a in S 5.4

#11b in S 5.5

#11c in S 5.11

Explicit recommendation and requirements

for mask granularity, replacing the

previous treatment which gave the server

license to ignore most of the previous

section, placing clients in an

unfortunate situation.

12 BC
#12a in S 5.6

#12b in S 5.6.1

Revised treatment of directory entry

deletion.

13 BC #13a in 5.7

Attempt to put some reasonable limits on

possible non-support (or variations in

the support provided) for the ACE flags.

This is to replace a situation in which

¶

¶

¶

¶

¶

¶

¶

¶
¶

¶

¶

¶

¶

¶
¶

¶
¶

¶
¶

¶
¶

¶

¶
¶

¶

¶

¶

¶

¶

¶ ¶

¶

Type ...References... Substance

the client has no real way to deal with

the freedom granted to server

implementations.

14 BC #14a in S 5.11
Explicit discussion of the case in which

aclsupport is not supported.

15 BC

#15a in S 5.11

#15b in S 7.1

#15c in S 7.2

Handling of the proper relationship

between support for ALLOW and DENY ACEs.

16 NM #16a in S 5.1
Discussion of coherence of acl, sacl,

and dacl attributes.

17 BC
#17a in S 7.1

#17b in S 7.2

Relationship of support for ALLOW and

DENY ACEs

18 BC
#18a in S 7.1

#18b in S 7.2
Need for support of owner, owner_group.

19 CI #19a in S 7.2
Revised discussion of coordination of

mode and the ACL-related attributes.

20 WI #20 in S 7.3.1
More closely align ACL_based and mode-

based semantics with regard to SVTX.

21 BC
#21a in S 4.1

#21b in S 7.3.1

Introduce the concept of reverse-slope

modes and deal properly with them. The

decision as to the proper handling is

addressed as Consensus Item #28.

22 BC #22a in S 8.1

Revise treatment of divergences between

AC/mode authorization and server

behavior, dividing the treatment between

cases in which something authorized is

still not allowed (OK), and those in

which something not authorized is

allowed (highly problematic from a

security point of view).

23 BC #23a in S 8.2
Revise discussion of client access to of

ACLs.

24 BE #24a in S 8.2 Delete bogus reference.

25 CI

#25a in S 3.3

#25b in S 9.1

#25d in S 9.8

#25e in S 9.10

#25f in S 9.11

#25g in S 9.12

Revised description of co-ordination of

acl and mode attributes to apply to

NFSv4 as a whole. While this includes

many aspects of the shift to be more

specific about the co-ordination

requirements including addressing

apparently unmotivated uses of the terms

"SHOULD" and "SHOULD NOT", it excludes

some arguably related matters dealt with

as Consensus Items #26 and #27.

26 CI
#26a in S 9.2

#26 in S 9.7.3

Decide how ACEs with who values other

than OWNER@, Group, or EVERYONE@ are be

dealt with when setting mode.

27 CI #27a in S 9.2

¶

¶
¶

¶

¶

¶
¶

¶
¶

¶

¶ ¶

¶

¶
¶

¶
¶

¶
¶

¶

¶

¶

¶

¶

¶
¶

¶ ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶
¶

¶

Type ...References... Substance

#27b in S 9.3

#27c in S 9.4

Concerns the possible existence of

multiple methods of computing a mode

from an acl that clients can depend on,

and the proper elationship among these

methods.

28 WI

#28a in S 9.2

#28b in S 9.3

#28 in S 9.7.3

Decide how to address flaws in mapping

to/from reverse- slope modes.

29 BC #29 in S 9.7.3

Address the coordination of mode and

ACL-based attributes in unified way for

all minor versions.

30 CI

#30a in S 9.7.1

#30b in S 9.7.2

#30c in S 9.7.3

New proposed treatment of setting mode

incorporating some consequences of

anticipated decisions regarding other

consensus items (#26, #28, #29)

31 WI #31a in S 9.7.3

Need to deal with mask bits

ACE4_READ_ATTRIBUTES,

ACE4_WRITE_RETENTION,

ACE4_WRITE_RETENTION_HOLD, ACE4_READ_ACL

to reflect the semantics of the mode

attribute.

32 BC

#32a in S 15

#32b in S 15.1

#32c in S 18

#32d in S 18.1

#32e in S 18.2

Expanded negotiation framework to

accommodate multiple transport types and

security services provided on a per-

connection basis, i.e. encryption and

peer authentication.

33 RJ

Material

formerly here

moved to #32.

Reorganization of description of SECINFO

op to apply to all minor versions.

(Dropped)

34 RJ

Superseded by

simpler

treatment.

Revision to NFSv4.0 SECINFO

implementation section (Dropped.

35 NE #35a in S 16
Now has preliminary work on future

security needs.

36 CI #36a in S 17.1.3

Threat analysis only dealing with

RECOMMENDED behavior regarding use of

per-connection security facilities and

handling of AUTH_SYS.

37 CI #37a in S 17.1.3

Threat analysis only dealing with

RECOMMENDED behavior with regard to acl

support including ACL/mode coordination.

38 CI #38a in S 17.1.4

Address the need to temporarily allow

unsafe behavior mistakenly allowed by

previous specifications

39 CI #39a in S 17.1.5 Define new approach to AUTH_SYS.

40 CI
#40a in S 17.2.1

#40a in S 17.2.2

¶

¶

¶

¶

¶

¶
¶

¶

¶

¶

¶

¶
¶

¶

¶

¶

¶

¶

¶

¶ ¶

¶

¶

¶
¶

¶

¶

¶

¶

¶

¶

¶ ¶

¶

¶

Type ...References... Substance

Discussion of scope for security

considerations and the corresponding

threat analysis.

41 CI

#41a in S 8.1

#41b in S 17.3.1

#41c in S 17.3.2

#41d in S 17.3.4

Discuss major new security

recommendations regarding protection of

data in flight and client peer

authentication. Also, covers the

circumstances under which such

recommendations can be bypassed.

42 RT #42a in S 17.4.5

Former placeholders for threat analysis

subsections have now been superseded by

new proposed subsections.

43 RT
#43a in S

17.4.6.1

44 RT
#44a in S

17.4.6.2

45 RT
#45a in S

17.4.7.1

46 RT
#46a in S

17.4.7.2

47 CI gone fir now.

Dubious paragraph regarding AUTH_NONe is

SECINFO response which should be deleted

if there are no compatibility issues

that make that impossible.

48 RJ

Superseded by

simpler

treatment.

Missing pieces of secinfo processing

algorithm that didn't get done in -02.

49 RJ

perseded by

simpler

treatment.

Secinfo processing algorithm that needs

to finished in -04.

50 BC #50a in S 5.9

Revise handling of "special" who values,

making it clear for which ones "special"

is a euphemism for "semantics-

challenged".

51 BC #51a in S 5.9
Clarify the handling of the group bit

for the special who values.

52 BC
#52a in S 8.1

#52b in S 17.3.3

Eliminate superuser semantics as it had

been, as valid by implication. Also,

deal with the security consequences of

its inclusion appropriately.

53 EV #53a in S 17.4.2

Discussion of possible adaptation of

RPCSEC_GSS/Kerberos to multi-factor

authentication.

54 EV
#54a in S

17.4.6.1

Discussion of prevention of code on a

compromised client from hijacking the

client machine's peer authentication.

55 EV
#55a in S

17.4.6.1

Discussion of issues with potential use

of Kerberos in cloud environments

56 WI #56a in S 4.1

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶
¶

¶
¶

¶

¶

¶
¶

¶

¶

¶

¶

¶

¶
¶

¶ ¶

¶

Type ...References... Substance

#56b in S 9.5

#56c in S 16

Discussion of issues related to the

handling of UNIX ACLs.

Table 3

The following table summarizes the issues in each particular pending

state, dividing them into those associated with the motivating

changes for this new document and those that derive from other

issues, that were uncovered later, once work on a new treatment of

NFSv4 security had begun.

Type Cnt Issues

NM*(M) 2 1, 2

BC(M) 2 32, 52

CI(M) 5 36, 38, 39, 40, 41

WI(M) 1 47

NE(M) 1 35

EV(M) 3 53, 54, 55

All(M) 14 As listed above.

NM(O) 1 16

BE(O) 4 3, 5, 7, 24

BC(O) 14 9, 10, 12, 13, 14, 15, 17, 18, 21, 22, 23, 29, 50, 51

CI(O) 10 4, 6, 8, 11, 19, 25, 26, 27, 30, 37

WI(O) 4 20, 28, 31, 56

All(O) 33 As described above

All 47 Grand total for above table.

Table 4

The following table summarizes the issues in each particular non-

pending state, dividing them into those associated with the

motivating changes for this new document and those that derive from

other issues, that were uncovered later, once work on a new

treatment of NFSv4 security had begun.

Type Cnt Issues

RT(M) 5 42, 43, 44, 45, 46

RJ(M) 4 33, 34, 48, 49

All(M) 9 As listed above.

All(O) 0 Nothing yet.

All 9 Grand total for above table.

Table 5

Acknowledgments

The author wishes to thank Tom Haynes for his helpful suggestion to

deal with security for all NFSv4 minor versions in the same

document.

¶

¶ ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The author wishes to draw people's attention to Nico Williams'

remark that NFSv4 security was not so bad, except that there was no

provision for authentication of the client peer. This perceptive

remark, which now seems like common sense, did not seem so when

made, but it has served as a beacon for those working on putting

NFSv4 security on a firmer footing. We appreciate this perceptive

guidance.

The author wishes to thank Bruce Fields for his helpful comments

regarding ACL support which had a major role in the evolution of

this document.

The author wishes to acknowledge the important role of the authors

of RPC-with-TLS, Chuck Lever and Trond Myklebust, in moving the NFS

security agenda forward and thank them for all their efforts to

improve NFS security.

The author wishes to thank Chuck Lever for his many helpful comments

about nfsv4 security issues, his explanation of many unclear points,

and and much important guidance he provided that is reflected in

this document.

The author wishes to thank Rick Macklem for his role in clarifying

possible server policies regarding RPC-with-TLS and in bringing the

to the Working Group's attention the possibility of deriving limited

principal identification from client peer authentication while still

staying within the boundaries of RPC-with-TLS.

Author's Address

David Noveck (editor)

NetApp

1601 Trapelo Road, Suite 16

Waltham, MA 02451

United States of America

Phone: +1-781-572-8038

Email: davenoveck@gmail.com

¶

¶

¶

¶

¶

tel:+1-781-572-8038
mailto:davenoveck@gmail.com

	Security for the NFSv4 Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Overview
	1.1. Document Motivation
	1.2. Document Annotation

	2. Requirements Language
	2.1. Keyword Definitions
	2.2. Special Considerations

	3. Introduction to this Update
	3.1. Per-connection Security Features
	3.2. Handling of Multiple Minor Versions
	3.3. Handling of Minor-version-specific features
	3.4. Features Needing Extensive Clarification
	3.5. Process Going Forward

	4. Introduction to NFSv4 Security
	4.1. NFSv4 Security Terminology
	4.2. NFSv4 Security Scope Limitations

	5. Structure of NFSv4 Access Control Lists
	5.1. Access Control Entries
	5.2. ACE Type
	5.3. ACE Access Mask
	5.4. Uses of Mask Bits
	5.5. Requirements and Recommendations Regarding Mask Granularity
	5.6. Handling of Deletion
	5.6.1. Previous Handling of Deletion

	5.7. ACE flag bits
	5.8. Details Regarding ACE Flag Bits
	5.9. ACE Who
	5.10. Automatic Inheritance Features
	5.11. Attribute 13: aclsupport
	5.12. Attribute 12: acl

	6. Authorization in General
	7. User-based File Access Authorization
	7.1. Attributes for User-based File Access Authorization
	7.2. Handling of Multiple Parallel File Access Authorization Models
	7.3. Posix Authorization Model
	7.3.1. Attribute 33: mode
	7.3.2. NFSv4.1 Attribute 74: mode_set_masked

	7.4. ACL-based Authorization Model
	7.4.1. Processing Access Control Entries
	7.4.2. V4.1 Attribute 58: dacl

	8. Common Considerations for Both File access Models
	8.1. Server Considerations
	8.2. Client Considerations

	9. Combining Authorization Models
	9.1. Background for Combined Authorization Model
	9.2. Needed Attribute Coordination
	9.3. Computing a Mode Attribute from an ACL
	9.4. Alternatives in Computing Mode Bits
	9.5. Handling of UNIX ACLs
	9.6. Setting Multiple ACL Attributes
	9.7. Setting Mode and not ACL (overall)
	9.7.1. Setting Mode and not ACL (vestigial)
	9.7.2. Setting Mode and not ACL (Discussion)
	9.7.3. Setting Mode and not ACL (Proposed)

	9.8. Setting ACL and Not Mode
	9.9. Setting Both ACL and Mode
	9.10. Retrieving the Mode and/or ACL Attributes
	9.11. Creating New Objects
	9.12. Use of Inherited ACL When Creating Objects
	9.13. Combined Authorization Models for NFSv4.2

	10. Labelled NFS Authorization Model
	11. State Modification Authorization
	12. Other Uses of Access Control Lists
	12.1. V4.1 Attribute 59: sacl

	13. Identification and Authentication
	13.1. Identification vs. Authentication
	13.2. Items to be Identified
	13.3. Authentication Provided by specific RPC Auth Flavors
	13.4. Authentication Provided by other RPC Security Services

	14. Security of Data in Flight
	14.1. Data Security Provided by Services Associated with Auth Flavors
	14.2. Data Security Provided for a Connection by RPC

	15. Security Negotiation
	15.1. Dealing with Multiple Connections

	16. Future Security Needs
	17. Security Considerations
	17.1. Changes in Security Considerations
	17.1.1. Wider View of Threats
	17.1.2. Connection-oriented Security Facilities
	17.1.3. Necessary Security Changes
	17.1.4. Compatibility and Maturity Issues
	17.1.5. Discussion of AUTH_SYS

	17.2. Security Considerations Scope
	17.2.1. Discussion of Potential Classification of Environments
	17.2.2. Discussion of Environments
	17.2.3. Insecure Environments

	17.3. Major New Recommendations
	17.3.1. Recommendations Regarding Security of Data in Flight
	17.3.2. Recommendations Regarding Client Peer Authentication
	17.3.3. Recommendations Regarding Superuser Semantics
	17.3.4. Issues Regarding Valid Reasons to Bypass Recommendations

	17.4. Threat Analysis
	17.4.1. Threat Analysis Scope
	17.4.2. Threats based on Credential Compromise
	17.4.3. Threats Based on Rouge Clients
	17.4.4. Threats Based on Rouge Servers
	17.4.5. Data Security Threats
	17.4.6. Authentication-based threats
	17.4.6.1. Attacks based on the use of AUTH_SYS
	17.4.6.2. Attacks on Name/Userid Mapping Facilities

	17.4.7. Disruption and Denial-of-Service Attacks
	17.4.7.1. Attacks Based on the Disruption of Client-Server Shared State
	17.4.7.2. Attacks Based on Forcing the Misuse of Server Resources

	18. IANA Considerations
	18.1. New Authstat Values
	18.2. New Authentication Pseudo-Flavors

	19. References
	19.1. Normative References
	19.2. Informative References

	Appendix A. Changes Made
	A.1. Motivating Changes
	A.2. Other Major Changes

	Appendix B. Issues for which Consensus Needs to be Ascertained
	Acknowledgments
	Author's Address

