
Service Function Chaining D. Dolson
Internet-Draft M. Marchetti
Intended status: Informational K. Larose
Expires: September 22, 2016 Sandvine
 March 21, 2016

Efficient Patterns for Service Function Chaining within Network Function
 Virtualization Infrastructure

draft-dolson-sfc-nfv-patterns-00

Abstract

 The document presents some considerations for efficiently deploying
 Service Function Chaining (SFC) within a Network Function
 Virtualization Infrastructure (NFVI).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Dolson, et al. Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/draft-dolson-sfc-nfv-patterns-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

Table of Contents

1. Introduction . 2
1.1. Requirements Language 2

2. Objectives . 2
3. Assumptions . 3
4. Patterns . 3
4.1. Use MAC-NSH to address functions 3
4.2. Locate SFF with the SF 4
4.3. Prefer NSH MD Type 2 6

5. IANA Considerations . 7
6. Security Considerations 7
7. References . 7
7.1. Normative References 7
7.2. Informative References 7

 Authors' Addresses . 7

1. Introduction

 Service Function Chaining (SFC) is a technique for prescribing
 differentiated traffic forwarding policies. SFC is described in
 detail in the SFC architecture document [RFC7665], and is not
 repeated here.

 Network Function Virtualization (NFV) is technology for deploying
 network forwarding software functions on an infrastructure providing
 generic compute and network resources. Such an infrastructure is
 termed NFVI [ETSI_NFV].

 This document presents some efficient patterns for deploying SFC
 within an NFVI, in the hope of sharing good practices.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Objectives

 The patterns described in this document are designed to satisfy:

 o Minimize latency by minimizing both the number of physical hops
 and number of queues each packet traversing a service chain must
 undergo.

 o Minimize CPU processing by avoiding unnecessary software
 switching.

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Dolson, et al. Expires September 22, 2016 [Page 2]

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

 These objectives serve both to increase network performance that
 would be measured by end users and increase efficiency of NFVI by
 minimizing switching and CPU resources required to implement each
 chain.

3. Assumptions

 We wish to discuss solutions that are available with current
 technology. In particular:

 o the NFVI is to be built using only currently available commercial
 off-the-shelf (COTS) hardware;

 o the infrastructure is to be built using currently available NFVI
 technology and hosting, in particular the ability of the NFV
 infrastructure to provide virtual compute resources with
 interfaces to virtual Ethernet LAN segments.

4. Patterns

 The following sections describe design patterns for using SFC that we
 consider to be appropriate under the above NFV assumptions.

4.1. Use MAC-NSH to address functions

 A common infrastructure model (e.g., OpenStack/Neutron) allows
 provisioning of virtual machines with interfaces on specified
 Ethernet segments. Although the physical implementation of an
 Ethernet segment is opaque to the tenants, all machines on a segment
 can send packets to one another by addressing the destination MAC
 address.

 Single-Root I/O Virtualization (SR-IOV) is a technology that allows a
 single physical interface on a compute host to be split into multiple
 virtual interfaces such that each guest has a hardware interface to
 the network. When so configured, the physical interface hardware
 sorts incoming packets into queues for the distinct emulated
 interfaces according to destination MAC addresses. This technology
 removes any need for a software module to sort packets received from
 the physical interfaces into virtual interfaces of the guests. Thus,
 an extra queuing stage is avoided and no CPU switching resources are
 required.

 The NVFI operator may choose to deploy simple switching, with
 hardware backplane and top-of-rack Ethernet/VLAN switches providing
 minimum latency. The operator may also deploy Ethernet-over-IP
 (e.g., VXLAN) when functions are remote. In any case, the virtual
 host is agnostic to the implementation.

Dolson, et al. Expires September 22, 2016 [Page 3]

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

 Thus, by using SR-IOV and efficient zero-copy drivers, functions
 naturally address one another by MAC address on the layer-2 segment.
 In the optimal NFV scenario, software in one function queues packets
 to an outbound SR-IOV queue, hardware sends the packet on the
 physical interface, backplane or top-of-rack switches deliver the
 packet to the physical destination and SR-IOV destination queue.
 There need not be any software between functions, only Ethernet
 switches.

 Note that to capture the benefit of using SR-IOV to avoid software
 switching, any L2-over-L3 (e.g., VXLAN) should be arranged for in
 hardware. The functions themselves can then behave the same whether
 virtual or physical network segments are used.

 We conclude that carrying NSH packets directly within Ethernet frames
 is an efficient and natural way to implement Service Function
 Chaining. The Ethernet encapsulation of NSH is documented in
 [I-D.ietf-sfc-nsh].

4.2. Locate SFF with the SF

 Service function chains are often drawn like this two-SF example in
 which a packet goes from ingress to Classifier, to SFF1, to SF1, back
 to SFF1, to SFF2, to SF2, back to SF2 and finally to egress:

 ingress --> Classifier --> SFF1 --> SFF2 --> Egress
 ^ ^
 | |
 | |
 V V
 SF1 SF2

 Figure 1: A conceptual service function chain

 But in NFV infrastructure, if SFFs are considered distinct processing
 elements, the common reality is that each of the components are
 separated by Ethernet switching:

Dolson, et al. Expires September 22, 2016 [Page 4]

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

 ingress-->Classifier-->switch-->SFF1-->switch-->SFF2-->switch-->Egress
 ^ ^
 | |
 | |
 V V
 switch switch
 ^ ^
 | |
 | |
 V V
 SF1 SF2

 Figure 2: A service function chain showing switches

 In an NFV environment, the "switch" blocks in Figure 2 can be
 implemented by Ethernet backplane, top-of-rack switching or (for
 remotely separated virtual machines) VXLAN virtual layer-2 network.

 There is an optimization that can be made when all of the "switch"
 modules are the same Ethernet switching domain. In other words, when
 this is the logical topology of Figure 3:

 SFF1 SFF2
 | |
 | |
 ingress ---Classifier----- switch ---------- egress
 | |
 | |
 SF1 SF2

 Figure 3: Service chain components attached to a layer-2 network

 Notice that to implement the path of Figure 1 and Figure 2, a packet
 must pass through the switch seven times. It must also pass through
 each SFF twice, limiting the capacity of an SFF.

 We can reduce the number of transits through the switch by placing
 SFF forwarding tables in the SF software module itself, like this:

 ingress ---Classifier----- switch ---------- egress
 | |
 | |
 SFF1 SFF2
 SF1 SF2

 Figure 4: SFFs embedded in SF machines

Dolson, et al. Expires September 22, 2016 [Page 5]

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

 In this case, a packet taking the path of Figure 1 only transits the
 switch three times. For minimal latency, an implementation can avoid
 queuing between the SF and attached SFF.

 Although keeping the SFFs distinct from the SFs has an architectural
 purity, the purity has a big cost in switching throughput and
 corresponding cost in money and latency. Since each packet enters
 and exits each SFF twice, there could also be contention on the SFF
 interfaces.

 There is additional control-plane burden to achieve this data-plane
 efficiency gain:

 o SF software must implement SFF lookup functions. We feel this
 computation of next-hop and packet formatting can be done
 efficienty in software, but it does require support of the SFF
 feature in the software.

 o There will be as many SFFs as SFs, each of which much have correct
 forwarding entries populated by the control plane during the
 orchestration of bringing an SF on line.

 There are many ways to physically realize the logical switch entities
 in Figure 3 and Figure 4. The best case is a hardware Ethernet
 switch; considerations about how to optimally deploy functions are
 discussed elsewhere, e.g., in Network Function Virtualization
 Research Group (NFVRG). In any of these cases, reducing the number
 of passages though the switch will reduce latency and reduce
 operational cost.

4.3. Prefer NSH MD Type 2

 The NSH draft [I-D.ietf-sfc-nsh] defines two options for metadata,
 types 1 and 2. Type 2 is more efficient when there is no metadata,
 and is the only choice supporting more than 128 bits of metadata.

 Using the approaches described in Section 4.1 and Section 4.2, NSH
 packets are transported from one MAC endpoint to another via standard
 Ethernet switches, so there are no requirements on the NFV
 Infrastructure to support NSH.

 Given that parsing the variable-length header poses no concerns for
 software, we feel these considerations make MD Type 2 the preferred
 choice for service chaining with NFV.

Dolson, et al. Expires September 22, 2016 [Page 6]

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

5. IANA Considerations

 This memo includes no request to IANA.

6. Security Considerations

 We are not aware of any additional security concerns raised by
 employing the methods discussed in this memo.

 The MAC-NSH approach assumes security of (virtual) LAN segments.

 Employing SFF functionality within Service Function software puts
 trust in that software, but SF functions must in any case be trusted
 to return packets to the correct path.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

7.2. Informative References

 [ETSI_NFV]
 ETSI, "Network Functions Virtualization (NFV);
 Architectural Framework", October 2013,
 <http://www.etsi.org/deliver/etsi_gs/

NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf>.

 [I-D.ietf-sfc-nsh]
 Quinn, P. and U. Elzur, "Network Service Header", draft-

ietf-sfc-nsh-02 (work in progress), January 2016.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <http://www.rfc-editor.org/info/rfc7665>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-02
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-02
https://datatracker.ietf.org/doc/html/rfc7665
http://www.rfc-editor.org/info/rfc7665

Dolson, et al. Expires September 22, 2016 [Page 7]

Internet-Draft Efficient Patterns for SFC within NFVI March 2016

 David Dolson
 Sandvine
 408 Albert Street
 Waterloo, ON N2L 3V3
 Canada

 Phone: +1 519 880 2400
 Email: ddolson@sandvine.com

 Michael Marchetti
 Sandvine
 408 Albert Street
 Waterloo, ON N2L 3V3
 Canada

 Phone: +1 519 880 2400
 Email: mmarchetti@sandvine.com

 Kyle Larose
 Sandvine
 408 Albert Street
 Waterloo, ON N2L 3V3
 Canada

 Phone: +1 519 880 2400
 Email: klarose@sandvine.com

Dolson, et al. Expires September 22, 2016 [Page 8]

