
Internet-Draft Carlos Bueno
 May 2004

A Distributed Web Search Protocol -- Dowser/0.1
draft-dowser-spec-00.txt

Status of This Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This document Expires on November 04, 2004

Abstract

 Dowser is an application-level, peer-to-peer protocol for creating a
 searchable index and cache of documents. It is intended for both
 small-scale intranets and Worldwide Web-scale indexes. This document
 describes the messages that members, or "nodes", of the network pass
 to each other to distribute workload, request & respond to queries,
 and maintain the index.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Bueno [Page 1]

Internet-Draft Dowser/0.1 May 2004

Table of contents

1. Introduction ... 3
1.1 Purpose .. 3
1.2 Definitions .. 3
1.3 URL vs. URI vs. URN .. 4
1.4 Requirements ... 5
2. Some Examples .. 5
2.1 NODEFIND ... 5
2.1.1 Node-id & seed .. 6
2.1.2 Last-key .. 6
2.1.3 Ring-id ... 7
2.1.4 Port .. 7
2.1.5 Server Responses .. 7
2.2 SEARCH .. 8
2.2.1 Expires ... 9
2.2.2 Content-key ... 9
2.2.3 Search syntax ... 9
2.3. URL caching ... 10
2.4. Content caching ... 11
2.5. CRAWL ... 11

 2.6.INDEXADD ... 12
3. Announcing .. 13
4. Redundancy .. 14
5. Optional headers .. 14
6. Error conditions .. 14
7. Notes on implementation 15
7.1 Ranking .. 15
7.2 Proxying ... 15
7.3 TCP vs UDP ... 16
7.4 Ping/Pong .. 16
7.5 MHTML .. 16
7.6 Spam ... 16
7.7 Indexing ... 16
8. Acknowledgements .. 16
9. References .. 17
9.1 Informative .. 17
9.2 Normative .. 17
10. Security Considerations 17
10.1 Personal Information 18
10.2 Sensitive data .. 18
11. IPR & Copyright .. 18
12. Contact Information .. 19

Bueno [Page 2]

Internet-Draft Dowser/0.1 May 2004

1. Introduction

1.1 Purpose

 The express purpose of the Dowser protocol is to encourage open
 research into web-scale, decentralized indexing systems. The
 specification for the Hypertext Transfer Protocol [RFC1945]
 has this observation:

 Practical information systems require more functionality than
 simple retrieval, including search, front-end update, and
 annotation. HTTP allows an open-ended set of methods to be used to
 indicate the purpose of a request.

 HTTP is in widespread use by hundreds of millions of people every
 day, and they issue hundreds of millions of searches for information.
 Most of these searches are served by centralized "search engines"
 that cache copies of as many websites as possible to create their
 indexes. The problems of scale have so far been admirably met
 [GOOGLE], but the operating costs of web-scale engines are now out of
 the reach of most Universities and corporations. Conversely, larger
 and larger amounts of storage and processing power are available to
 personal computer users every year.

 Dowser is an extension to HTTP that can be used by itself or added to
 existing HTTP implementations. Each node on the network claims a
 small part of the keyspace of a distributed hash table [CHORD].
 Indexes of documents are keyed under the hash of the word; documents
 themselves are keyed by their Uniform Resource Identifier [URI].
 There is also a "cache of caches", to allow popular documents or
 indexes to be retrieved from any node that has a copy.

 The syntax and formatting rules are inherited from HTTP/1.1
 [RFC2616]. The required "Host" header in HTTP/1.1 does not really
 apply to Dowser, but including it shouldn't hurt anyone. Several
 other headers and return codes are adopted for use.

1.2 Definitions

 node

 In this protocol there is no difference between a "client" or a
 "server". They are all equal "nodes" on the network, capable of
 sending and serving requests. Each node is identified by a
 40-digit hexadecimal number called a "node-id". They participate
 in creating, storing and serving a distributed hash table. This
 hash table can contain document caches, indexes of those
 documents, and other data.

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2616

 For sanity's sake, the term "server" can be taken to mean
 "responding node" and "client" to mean "requesting node" in the
 context of the conversation being described.

Bueno [Page 3]

Internet-Draft Dowser/0.1 May 2004

 hash, key

 Hash functions are used to evenly distribute data around the
 network and to uniquely identify nodes and pieces of information.
 Dowser uses the Secure Hash Algorithim, version 2 [SHA]. The terms
 "hash" and "key" refer to the 40-digit hexadecimal number gotten
 from passing some piece of information through the SHA function,
 e.g.:

 SHA("foo") == 0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33

 distributed hash table

 A distributed hash table is a key-->value mapping that is
 contained on many computers, where they keys are hashed.

 range

 The "range" of a node is defined by the first and last key of the
 hash table it is expected to store data under.

 left-hand, right-hand

 The total keyspace is imagined as the perimeter of a circle, or a
 "ring". While standing in the center, points to the left generally
 decrease and points to the right generally increase, except at the
 point where "fff..." meets "000...".

 A useful analog is timezones, where West is left and East is
 right. The time is always earlier to the left except at the
 International Date Line.

1.3 URL vs. URI vs. URN

 The protocol descibed here has a focus different from most
 filesharing protocols. Searches for files are not broadcast but
 targeted; nodes are authoritative regarding the location and
 checksums of data in their ranges. Searches for a particular node are
 sent to arbitrary nodes but not broadcast per se; they are not
 forwarded but responded to directly.

 In most ad-hoc filesharing protocols the only unique identifier is
 the checksum. The filesystem names and metadata may be different for
 different copies but the checksum remains the same. In HTTP jargon
 this is a Universal Resource Name or URN , that which uniquely
 identifies the file without necessarily referencing its location or
 common name [RFC2396].

https://datatracker.ietf.org/doc/html/rfc2396

 The content of a cached web page may change with time. This means the
 checksum will change while its Univeral Resource Locator, the origin
 of the page, remains constant.

 Indexes built from these cached pages are also treated as files, one
 index file per word or phrase. An index's Universal Resource Name is

Bueno [Page 4]

Internet-Draft Dowser/0.1 May 2004

 that word. (More correctly it would be "dowser://foo", not "foo".)

 Searching in Dowser therefore starts with a lookup for the node(s)
 who handle the search term(s). The search terms (URN) are then sent
 to those nodes, resulting in either a) the content of index file or
 b) the latest checksum of the index file and a list of nodes that
 have previously downloaded a copy. Retrieving a cache of a web page
 is done the same way.

1.4 Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [34].

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST or REQUIRED level requirements for the protocols it
 implements. An implementation that satisfies all the MUST or REQUIRED
 level and all the SHOULD level requirements for its protocols is said
 to be "unconditionally compliant"; one that satisfies all the MUST
 level requirements but not all the SHOULD level requirements for its
 protocols is said to be "conditionally compliant."

 In reality, the complications of this protocol are mostly in the
 state information, not the ins and outs of the messages being passed.

2. Some Examples

 We will assume the reader is familiar with HTTP transactions. It is
 probably most instructive to give examples using the new methods and
 then a discussion of particulars. Elipses ("...") are used to
 truncate long hashes for readability.

2.1 NODEFIND

 NODEFINDs are the bread and butter of routing between nodes. The
 client wants to find the node(s) that have items under a certain hash
 key, in this example, "5c89379d0aa9840ac910fd8cacbde2dbf877214a".
 This can be a search term, url, or anything. The responding node may
 or may not have this key. If not, it tells the client about nodes it
 knows about that are closer to the target.

 NODEFIND 5c89379d0aa9840ac910fd8cacbde2dbf877214a Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 12222... a5754...

https://datatracker.ietf.org/doc/html/rfc2119

 Last-key: 13333...
 Port: 4666

 - Response -

Bueno [Page 5]

Internet-Draft Dowser/0.1 May 2004

 Dowser/0.1 310 Not in my range
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34....
 Last-key: 49999...

 192.0.2.10 8000 50000f... 599999...
 192.0.2.20 6876 43333a... 610000...

 - Or -

 Dowser/0.1 211 That's me
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 4000... de34....
 Last-key: 7aaaa...

 There is a lot to cover here. The first line of the request is like
 HTTP, identifying the protocol and version, the 'method' or action to
 be done, and the 'path' or key being requested. There are three
 additional headers which MUST be included in any message: Ring-id,
 Node-id, and Last-key. Additionally, the Port header MUST be included
 in every request.

2.1.1 Node-id & seed

 The node-id is comprised of two 40-digit hexadecimal numbers,
 separated by whitespace. The first number serves as the FIRST key in
 this node's range. This number MUST be generated by hashing some
 random data iteratively. To help ensure this has occurred, the second
 number (the "seed") MUST be the second-to-last result of the
 iterations.

 Node-id: b274f2e2a8d2881035af5866014e9ad5510ab15d
 cdd2ae2594a83ef90c05ee6014b78631db8538d8

 This example (linewrapped to fit) is well-formed because the first
 number is the SHA hash of the second number. Servers MUST check that
 the node-id and its "seed" are correct. If not, they MUST send a 412
 "Precondition failed" error.

2.1.2 Last-key

 Last-key is also an SHA hash, and is the LAST key in this node's
 range. The last-key may change over time, as nodes leave or join the

 network.

 Note: it has been brought up that a node might be able to route a
 large portion of traffic to itself by making its Last-key equal to
 the node-id minus 1. In Internet Protocol terms, this would be
 similar to setting your network address to 255.255.255.255. There is

Bueno [Page 6]

Internet-Draft Dowser/0.1 May 2004

 nothing in the protocol to prevent this, but implementations should
 come up with a way to deal with it reasonably. Our feeling that it is
 self-correcting. If someone tries it on a network with a lot of nodes
 one hopes he or she has good fire-supression equipment handy; but the
 concern is the possible damage to the network routing.

2.1.3 Ring-id

 Ring-id is yet another SHA hash to identify the group of nodes it
 wishes to communicate with. This allows many Dowser networks to be
 running on an internet at once. Alternate rings are useful for
 testing implementations of the protocol on a large scale, or for
 partitioning networks in general.

 The "official" public ring-id:

 Dowser/0.1 --> deadbeef00000000000000000000000000000000

 If the Ring-id header sent does not match the ring-id of the server,
 it MUST send a 412 "Precondition falied" message, and may provide
 information in the body of the response as to the reason. Note: there
 is a security risk in actually revealing the server's ring-id in the
 response, if the ring is intended for private data.

2.1.4 Port

 Simple enough: we need to advertise what TCP or UDP port we are
 listening on for future reference.

2.1.5 Server Responses

 If the hash is not in the listening node's range, it returns a 310
 code and a list of nodes that are closer to the target. The list of
 nodes takes this form:

 IP PORT NODE-ID LAST-KEY

 If it is in range, it sends a 211 "That's Me" code.

 When overlap occurs a node may choose which one to contact first in
 an implementation-dependent way, such as IP or network distance, or
 closeness of the desired key to the node-id.

 Note: IPv4 addresses are used in these examples, but implementations
 SHOULD be written to handle IPv6 addresses as well, e.g.:

 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
 1080:0:0:0:8:800:200C:4171
 3ffe:2a00:100:7031::1
 1080::8:800:200C:417A
 ::192.9.5.5

Bueno [Page 7]

Internet-Draft Dowser/0.1 May 2004

 ::FFFF:129.144.52.38
 2010:836B:4179::836B:4179

2.2 SEARCH

 We have the basis of all conversations, and have described how nodes
 identify themselves and each other. Now we can go to the next level:
 content routing.

 - Request -

 SEARCH foo+bar+baz Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 1d3470c... 55754...
 Last-key: 1e400cc...
 Port: 4666

 - Response -

 Dowser/0.1 200 OK
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...
 Expires: 864000
 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a

 URL TITLE AGE SNIPPET [SNIPPET [SNIPPET [...]]]
 URL TITLE AGE SNIPPET [SNIPPET [SNIPPET [...]]]
 ...

 - Or -

 Dowser/0.1 300 Multiple choices
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...
 Expires: 864000
 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a

 192.0.2.10 8000 50000f... 599999...
 192.0.2.20 6876 43333a... 610000...

 A SEARCH request is almost exactly like a nodefind except the "path"
 is a list of search terms. The server determines if any of the terms

 fall into its range. How to break up the terms may be
 implementation-specific, but the simplest is to break on whitespace.

 If any are in-range it returns a 300 code, the "content-key" of the
 data (a SHA checksum of the content) a list of the nodes that have

Bueno [Page 8]

Internet-Draft Dowser/0.1 May 2004

 requested that data.

 Or, it may return the index data itself. Requesting nodes SHOULD keep
 a copy of the data it receives for a reasonable amount of time, as
 hinted by the Expires: header. The data should be keyed under the
 content-key, for retrieval via a CACHE request. This helps distribute
 the workload. The index is in the form:

 URL TITLE AGE SNIPPET [SNIPPET [SNIPPET [...]]]

 And is tab-delimited. AGE is the number of seconds since the record
 was created. One or more "SNIPPET"s contain text that form an
 abstract of the document.

 As always, the server can alternately send the standard 310 Not in
 Range, or some error code.

2.2.1 Expires:

 Indexes and caches of web documents are not long-lived in the way a
 media file in traditional peer-to-peer networks are. The Expires
 header hints at how long a node should cache this data, expressed in
 seconds from the present time.

2.2.2 Content-key:

 This is a SHA hash of the data's content, used to positively identify
 it. This is different from the hash of the URL or search term. A page
 whose URL is

 "http://foo.example.com"

 ... and whose content is

 "<h1>Foo!</h1>"

 ... would have a URL hash of cfab46bb7dbd11e6187360d429586e2942f2d42e
 and a content-key of cf5ce65061218164e4148038cc3a56a9e988fe7a. The
 URL hash is a unique identifier of the document's origin, while the
 content-key is an identifier of a particular version of that
 document.

2.2.3 Search syntax

 There are a few schemes for search syntax out in the wild. The most

 common has operands for words that must or must not appear, and exact
 phrases. Implementations MUST honor these operands to the best of
 their ability.

 foo +bar

Bueno [Page 9]

Internet-Draft Dowser/0.1 May 2004

 Means that the documents MUST contain "bar" and MAY contain "foo"

 foo -bar

 Means that the documents MUST contain "foo" and MUST NOT contain
 "bar". When there is only one term without a "-" operand, the "+" is
 implied.

 "foo bar"
 'foo bar'

 Means that the documents MUST contain the exact phrase "foo bar", in
 that order.

 Note: in the SEARCH example in section 2.0, it may seem like the "+"
 signs in "foo+bar+baz" are search syntax. They are not; the terms are
 "url-encoded", meaning spaces are encoded as "+" and other non-word
 characters are encoded as %HEX where HEX is the hexadecimal ASCII
 code. Therefore "foo +bar" would appear as "foo+%2Bbar"

 Implementations may honor other operands as they see fit.

2.3. URL caching

 Like a SEARCH, a URLCACHE does not necessarily return the data -- it
 can return the content-hash of the data and a list of the last X
 nodes to request that data, where X is implementation-specific. If
 none of the listed nodes have the data, the requesting node may then
 request it from the original node.

 - Request -

 URLCACHE fb9642989a2222305832a5d9c29b34... Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 1d3470c... a5754......
 Last-key: 1e400...
 Url: http://foo.example.com/some/page.html
 Port: 4666

 - Response -

 Dowser/0.1 300 Multiple choices
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...
 Expires: 864000

 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a

 192.0.2.10 8000 50000f... 599999...
 192.0.2.20 6876 43333a... 610000...

 - Or -

Bueno [Page 10]

Internet-Draft Dowser/0.1 May 2004

 Dowser/0.1 200 OK
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...
 Expires: 864000
 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a

 ... (file data) ...

2.4. Content caching

 This can be page caches, indexes, or really anything. A client sends
 a request with the content-key as the path:

 - Request -

 CACHE 3fdb13677b10691debb3909dd917b00ee751115a Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 1d3470c... de34...
 Last-key: 1e400...
 Url: http://foo.example.com/some/page.html
 Port: 4666

 - Response -

 Dowser/0.1 200 OK
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...
 Expires: 864000
 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a

 ... (file data) ...

 - Or -

 Dowser/0.1 404 not found
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...

todo: content-length? simultaneous downloading? the Range: & Content-length:
headers?

2.5. CRAWL

 So we know how to find nodes and content. The last question is: where
 does the content come from? And the indexes?

Bueno [Page 11]

Internet-Draft Dowser/0.1 May 2004

 CRAWL http://foo.example.com/foo/bar/baz.html Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 12222... a5754......
 Last-key: 13333...
 Referer: http://foo.example.com/foo/index.html
 Port: 4666
 Expires: 864000
 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a

 - Response -

 Dowser/0.1 202 Accepted
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...

 - Or -

 Dowser/0.1 310 Not in my range
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34...
 Last-key: 49999...

 192.0.2.10 8000 50000f... 599999...
 192.0.2.20 6876 43333a... 610000...

 When a node crawls a page, it usually has links on it. If the hash of
 those second-level URLs are not in the node's range, it sends a CRAWL
 annoucement to the nodes that do handle that range, so they can
 continue the crawl.

 A node SHOULD first check (via URLCACHE) if a cached copy exists
 before downloading a page directly.

 Implementations SHOULD respect the "robots.txt" protocol for nice
 spiders.

 ##todo: so where do we START crawling? that is not part of the
 protocol because it could be a network of office machines sharing
 their spreadsheets, or whatever -- need to say that in a nice way.

2.6.INDEXADD

 An INDEXADD is an informational message to a node that a particular
 URL contains a keyword inside the server's range.

 INDEXADD 09dd917b00ee751115a3fdb13677b10691debb39 Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000

Bueno [Page 12]

Internet-Draft Dowser/0.1 May 2004

 Node-Id: 12222... a5754......
 Last-key: 13333...
 Term: foo bar baz
 Url: http://foo.example.com/foo/bar/baz.html
 Expires: 864000
 Content-key: 3fdb13677b10691debb3909dd917b00ee751115a
 Port: 4666

##todo: positions, counts, tdf*idf?

 - Response -

 Dowser/0.1 202 Accepted
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34..
 Last-key: 49999...

 - Or -

 Dowser/0.1 310 Not in my range
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 48888... de34..
 Last-key: 49999...

 192.0.2.10 8000 50000f... 599999...
 192.0.2.20 6876 43333a... 610000...

 The Term: header contains what words the server may be interested in,
 separated by tabs. An INDEXADD message implies that the requesting
 node has a copy of the document. Listening nodes should retrieve it
 from that node via a CONTENTCACHE message. This puts a cost on adding
 words to the index.

3. Announcing

 When a new node joins the network, it must first be provided with a
 list of "well-known" nodes and a ring-id. Knowing nothing else about
 the network topology, it generates a node-id and sends a NODEFIND
 request on that key to those well-known nodes for its own key:

 NODEFIND 12222...0 Dowser/0.1
 Ring-Id: deadbeef00000000000000000000000000000000
 Node-Id: 12222... a5754...
 Last-key: 12222...
 Port: 4666

 This eventually leads the new node to its "neighbors" on the ring.
 The new node's range SHOULD initially be of the same length as its
 left-hand neighbor, but MAY grow or shrink according to how much
 capacity it has at hand, but the Last-key MUST NOT be less than the
 node-id of its closest neighbor.

Bueno [Page 13]

Internet-Draft Dowser/0.1 May 2004

4. Redundancy

 All nodes may not be available at all times, and the "overlap" is not
 guaranteed, requiring some fiat redundancy. So:

 Each node assumes a range starting with its nodeid and That defines
 its "core" range. It SHALL also handle an "auxilary" range of equal
 length, calculated by adding 8 to the first digit. The addtion does
 not carry. For example:

 Node A "Core" range:

 9000000000000000000000000000000000000000 to
 c000000000000000000000000000000000000000

 Auxilary range:

 1000000000000000000000000000000000000000 to
 4000000000000000000000000000000000000000

5. Optional headers

 To save on bandwidth, nodes MAY compress their responses. A
 requesting node MAY indicate that it can accept compressed data with
 this optional header:

 Accept-Encoding: gzip, deflate

 If a server compresses a response, it MUST inidcate that with this
 header:

 Content-encoding: gzip

 The server MAY also send this optional header to SEARCH responses to
 help guide the user:

 Related-terms: meta, syntax, jargon

6. Error conditions

 Many error codes from HTTP/1.1 apply to Dowser.

 500 Internal Server error

 501 Not Implemented

 503 Server busy (Service unavailable)

Bueno [Page 14]

Internet-Draft Dowser/0.1 May 2004

 505 HTTP Version Not Supported

 400 Bad request

 404 Not Found

 412 Precondition failed

 When a node's id and seed don't check out, for instance. This is
 different from a mal-formed request which should be responded to
 with a 400. Also, nodes may keep a "blacklist" of node-ids and/or
 IPs that they do not wish to do business with (See SPAM). In the
 case of blacklists, the server MAY simply close the connection,
 but it's polite to give some error information.

 Implementations MAY elect to withold the Ring-id header in this
 case, for security.

7. Notes on implementation

 A reference implementation is currently in alpha testing and should be
 released by mid-summer 2004 [IMPL]

7.1 Ranking

 There is not a lot of ranking data returned by SEARCH requests. The
 idea is to return somewhat raw indexes to the client and let it sort
 things out through intersecting multiple responses and its own
 biases.

 One time-saving trick may be employed by implementations: recall in
 the SEARCH example, all of the search terms were sent, even though
 it's unlikely one node will handle all of them. The reason is to
 allow nodes to pick out terms that tend to accompany the terms they
 are responsible for. The node may then keep an extra index of those
 accompanying terms and use it to trim and/or rank the results sent
 back.

7.2 Proxying

 If a relatively new node receives a request for a key that is in its
 range but not its datastore, it may create a new request to its
 upstream neighbor for it, on the theory that it may still be in that
 node's datastore. It then keeps a copy while forwarding it to the

 original requesting node. This allows new nodes to build on the work
 of older ones.

 Implementations might want to work out semantics for long-lived
 connections on the lines of HTTP/1.1 Keep-alive headers.

Bueno [Page 15]

Internet-Draft Dowser/0.1 May 2004

7.3 TCP vs UDP

 Several methods (NODEFIND, CRAWL, INDEXADD) have two interesting
 properties: they will be used often, and involve a very small amount
 of data. It is tempting to implement those parts over UDP and the
 rest over TCP, or to come up with some tricks to do it all over UDP.

7.4 Ping/Pong

 Neighboring nodes should be in the habit of pinging their nearest
 neighbors, if they have not heard from them in a while. A "ping" can
 take the form of a NODEFIND using the neighbor's node-id.

7.5 MHTML

 HTML documents of today tend to be comprised of many files including
 graphics, stylesheets, etc. It may be useful for implementations to
 offer "MHTML" versions of cached documents that contain these
 supporting files in one MIME-encoded file. If a client supports
 MHTML, it should include it in the Accept: header. Common-sense
 restrictions apply, such as not including executable scripts or
 plugins and files that do not come from the same domain.

7.6 Spam

 The network described above may one day contain thousands of nodes.
 Thousands of nodes implies thousands of users looking for
 information, which nowadays means spam. An implementation may elect
 to deal with it in the way email clients do, with filters built from
 analysis of links classified by the user as "spam" or "useful". Even
 in the abscence of spurious traffic a good Bayesian filter may help
 tailor results.

 A sophisticated method of injecting targeted spam involves generating
 node-ids until one pair is "close enough" to the hash of a desired
 keyword, where "close enough" is matching the first 4 or 5 digits.
 Even thousands of nodes will be sparse in the keyspace, so an
 exhaustive search is not necessary.

7.7 Indexing

 A large sample of web documents suggests that there is a fairly
 constant number of terms, something on the close order of 14 million
 [GOOGLE].

 An unpublished survey of a large sample of search engine queries
 suggests that there is also a fairly constant number of unique terms
 searched, on the close order of 1 million. This is very interesting.

Bueno [Page 16]

Internet-Draft Dowser/0.1 May 2004

 Suppose we give more "weight" to words found in the query stream over
 those that are not. As we've seen in the adventures of Internet
 search engines over the last few years, documents often lie about
 their contents, but users rarely lie about their desires. They are
 vauge, perhaps, but not false.

 . . . that is, until the query stream becomes a thing of value. A
 clever person might include a popular word and a made-up one into his
 or her web page, then send thousands of queries with both of those
 words to artificially boost the correlation. I have a wonderful proof
 describing how this gambit might be defeated, but unfortunately there
 is not enough room to include it here.

8. Acknowledgements

 This specification builds on the years of work put into designing and
 implementing Dr. Berner-Lee's HTTP protocol by many thousands of
 people around the world. You know who you are.

 Ideas and algorithims were stolen liberally from Chord, Circle, and
 Freenet. Lots and lots of ideas from the original distributed search
 projects, Harvest and WebAnts.

 Special thanks to Richard Vasquez and Thomas Lackner for their
 devious minds and help with early implementations.

9. References

9.1 Informative

 [GOOGLE] Brin & Page, "The Anatomy of a Search Engine", Stanford
 University, 1997

 [CHORD] Stoica, et al. "A Scalable Peer-to-peer Lookup Service for
 Internet Applications", Sigcomm 2001

http://www.pdos.lcs.mit.edu/papers/chord:sigcomm01/

 [IMPL] Dowser P2P client, http://dowser.sourceforge.net

9.2 Normative

 [RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax and Semantics", RFC

2396, August 1998.

 [HTTP] Feilding, et al. "Hypertext Transfer Protocol -- HTTP/1.1",

http://www.pdos.lcs.mit.edu/papers/chord:sigcomm01/
http://dowser.sourceforge.net
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2396

RFC2616, June 1999

 [SHA] Eastlake & Jones, US Secure Hash Algorithm 1 (SHA1), RFC3174,
 September 2001

Bueno [Page 17]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3174

Internet-Draft Dowser/0.1 May 2004

10. Security Considerations

10.1 Personal Information

 Dowser deals directly with people's searching habits. While spreading
 this information around is kind of the point, implementations SHOULD
 take care not to "leak" any more than neccessary. For instance, it
 may be tempting to skip the NODEFIND sequence and just issue SEARCHes
 or URLCACHEs, since they also return node-finding information. This
 sends people's search terms and requested urls to nodes that don't
 strictly need it, and SHOULD be avoided.

 Implementations can be expected to work closely with traditional HTTP
 applications, with their own privacy & security considerations.

10.2 Sensitive data

 Dowser was originally intended to deal only with publically
 accessible information, but it can also be used for sharing
 sensitive data among trusted computers, say, all the word processor
 documents on an office LAN. For these situations, implementations
 should use some sort of IP whitelisting or subnetting and make the
 user aware of the risks.

11. IPR & Copyright

 The IETF invites any interested party to bring to its
 attention any copyrights, patents or patent applications, or
 other proprietary rights which may cover technology that may be
 required to practice this standard. Please address the
 information to the IETF Executive Director.

 Copyright (C) The Internet Society (2004). All Rights
 Reserved.

 This document and translations of it may be copied and
 furnished to others, and derivative works that comment on or
 otherwise explain it or assist in its implmentation may be
 prepared, copied, published and distributed, in whole or in
 part, without restriction of any kind, provided that the above
 copyright notice and this paragraph are included on all such
 copies and derivative works. However, this document itself may
 not be modified in any way, such as by removing the copyright
 notice or references to the Internet Society or other Internet
 organizations, except as needed for the purpose of developing
 Internet standards in which case the procedures for copyrights

 defined in the Internet Standards process must be followed, or
 as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will
 not be revoked by the Internet Society or its successors or
 assigns.

Bueno [Page 18]

Internet-Draft Dowser/0.1 May 2004

 This document and the information contained herein is provided
 on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE
 OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

12. Contact Information

 Carlos Bueno
 6231 SW 78th St., Ste. 20
 Miami, FL, USA 33143
 Email: carlos@bueno.org

This document expires on November 4, 2004

Bueno [Page 19]

