Network Working Group
Internet-Draft
Interned status Information

Intended status: Informational

Expires: April 11, 2014

K. Drage
Alcatel-Lucent
C. Holmberg
Ericsson
R. Jesske
Deutsche Telekom
October 08, 2013

Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP)

draft-drage-sipping-rfc3455bis-09

Abstract

This document describes a set of private Session Initiation Protocol (SIP) header fields (P-headers) used by the 3rd-Generation Partnership Project (3GPP), along with their applicability, which is limited to particular environments. The P-header fields are for a variety of purposes within the networks that the partners use, including charging and information about the networks a call traverses.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of \underline{BCP} 78 and \underline{BCP} 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 11, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to <u>BCP 78</u> and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Table of Contents

<u>1</u> .	Overall	Applicability	<u>3</u>
<u>2</u> .	Convent	ions	<u>4</u>
<u>3</u> .	Overview	٠	4
<u>4</u> .	SIP Priv	vate Header Fields	<u>4</u>
4	<u>.1</u> . The	P-Associated-URI header field	4
	4.1.1.	Applicability statement for the P-Associated-URI	
		header field	<u>5</u>
	4.1.2.		<u>5</u>
4	. 2. The	P-Called-Party-ID header field	7
	4.2.1.	Applicability statement for the P-Called-Party-ID	
		header field	11
	4 2 2	Usage of the P-Called-Party-ID header field	11
1		P-Visited-Network-ID header field	12
	4.3.1.	Applicability statement for the P-Visited-Network-ID	12
	7.5.1.	header field	13
	4 2 2	Usage of the P-Visited-Network-ID header field	13
4	4.3.2.	P-Access-Network-Info header field	
4			<u>17</u>
	4.4.1.	Applicability statement for the P-Access-Network-Info	4.0
		header field	<u>18</u>
	4.4.2	Usage of the P-Access-Network-Info header	<u>18</u>
<u>4</u>		P-Charging-Function-Addresses header field	<u>20</u>
	4.5.1.	Applicability statement for the P-Charging-Function-	
		Addresses header field	<u>20</u>
	4.5.2.	Usage of the P-Charging-Function-Addresses header	
		field	<u>21</u>
4	<u>.6</u> . The	P-Charging-Vector header	<u>23</u>
	4.6.1.	Applicability Statement for the P-Charging-Vector	

Drage, et al. Expires April 11, 2014 [Page 2]

header ⁻	field											25
<u>4.6.2</u> . Usage o	f the P-Ch	arging-	Vect	or	head	ler	fie	ld				25
<u>4.6.3</u> . Usage o	f the tran	sit-ioi										27
	f the rela											
<u>5</u> . Formal Syntax .												28
<u>5.1</u> . P-Associate												29
<u>5.2</u> . P-Called-Pa	rty-ID hea	der syr	tax									29
<u>5.3</u> . P-Visited-No												29
<u>5.4</u> . P-Access-Ne												29
<u>5.5</u> . P-Charging-												31
5.6. P-Charging-	Vector hea	der syr	tax									31
<u>5.7</u> . Table of new	w headers											
Security Consider	erations .											33
6.1. P-Associate	d-URI											33
6.2. P-Called-Pa	rty-ID											34
6.3. P-Visited-No	etwork-ID											34
6.4. P-Access-Ne	twork-Info											35
6.5. P-Charging-	Function-A	ddresse	s.									36
6.6. P-Charging-	Vector											36
7. IANA Considerat:	ions											36
8. Contributors and	d Acknowle	dgement	s.									37
9. Appendix: Change	es from <u>RF</u>	C 3455										38
10. Appendix: Summa	ry of chan	ges bet	weer	di	ffer	ent	ve	rsi	ior	ıs		40
10.1. Changes be	tween <u>RFC</u>	<u>3455</u> ar	nd -0	00 .								41
10.2. Changes be	tween -00	and -01										42
10.3. Changes be	tween -01	and -02										<u>43</u>
10.4. Changes be	tween -02	and -03										44
10.5. Changes be	tween -03	and -04										44
10.6. Changes be	tween -04	and -05										44
10.7. Changes be	tween -05	and -06	· .									44
10.8. Changes be	tween -06	and -07										44
10.9. Changes be	tween -07	and -08										44
10.10. Changes be	tween -08	and -09										44
<u>11</u> . References												45
<u>11.1</u> . Normative I	References											45
11.2. Informative	e Referenc	es										45
Authors' Addresses												16

1. Overall Applicability

The SIP extensions specified in this document make certain assumptions regarding network topology, linkage between SIP and lower layers, and the availability of transitive trust. These assumptions are generally NOT APPLICABLE in the Internet as a whole. The mechanisms specified here were designed to satisfy the requirements specified in the 3GPP Release 5 requirements on SIP [RFC4083] for which either no general-purpose solution was planned, where insufficient operational experience was available to understand if a

general solution is needed, or where a more general solution is not yet mature. For more details about the assumptions made about these extensions, consult the Applicability subsection for each extension.

Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

Overview

The Third Generation Partnership Project (3GPP) has selected SIP as the protocol used to establish and tear down multimedia sessions in the context of its IP Multimedia Subsystem (IMS). For more information on the IMS, a detailed description can be found in 3GPP TS 23.228 [TS23.228] and 3GPP TS 24.229 [TS24.229]. 3GPP notified the IETF SIP and SIPPING working groups that existing SIP documents provided almost all the functionality needed to satisfy the requirements of the IMS, but that they required some additional functionality in order to use SIP for this purpose. These requirements [RFC4083] are documented in an Internet Draft which was submitted to the SIPPING Working Group. Some of these requirements are satisfied by chartered extensions, while other requirements were applicable to SIP, but not sufficiently general for the SIP Working Group to adopt. This document describes private extensions to address those requirements. Each extension, or set of related extensions is described in its own section below.

4. SIP Private Header Fields

4.1. The P-Associated-URI header field

This extension allows a registrar to return a set of associated URIs for a registered address-of-record. We define the P-Associated-URI header field, used in the 200 (OK) response to a REGISTER request. The P-Associated-URI header field contains the set of Associated URIs that are associated with the registered address-of-record.

In addition to the address-of-record an associated URI is a URI that the service provider has allocated to a user. A registrar contains information that allows zero or more URIs to be associated with an address-of-record. Usually, all these URIs (the address-of-record and the associated URIs) are allocated for the usage of a particular user. This extension to SIP allows the UAC to know, upon a successful authenticated registration, which other URIs, if any, the service provider has associated to an address-of-record URI.

Drage, et al. Expires April 11, 2014 [Page 4]

Note that, generally speaking, the registrar does not register the associated URIs on behalf of the user. Only the address-of-record which is present in the To header field of the REGISTER is registered and bound to the contact address. The only information conveyed is that the registrar is aware of other URIs that can be used by the same user.

It may be possible, however, that an application server (or even the registrar itself) registers any of the associated URIs on behalf of the user by means of a third party registration. However, this third party registration is out of the scope of this document. A UAC MUST NOT assume that the associated URIs are registered.

If a UAC wants to check whether any of the associated URIs is registered, it can do so by mechanisms specified outside this document, e.g., the UA MAY send a REGISTER request with the To header field value set to any of the associated URIs and without a Contact header field. The 200 (OK) response will include a Contact header field with the list of address-of-record that have been registered with contact addresses. If the associated URI is not registered, the UA MAY register it prior to its utilization.

4.1.1. Applicability statement for the P-Associated-URI header field

The P-Associated-URI header field is applicable in SIP networks where the SIP provider a set of identities that a user can claim (in header fields like the From header field) in requests that the UA generates. It furthermore assumes that the provider knows the entire set of identities that a user can legitimately claim, and that the user is willing to restrict its claimed identities to that set. This is in contrast to normal SIP usage, where the From header field is explicitly an end-user specified field.

4.1.2. Usage of the P-Associated-URI header field

The registrar inserts the P-Associated-URI header field into the 200 (OK) response to a REGISTER request. The header field value is populated with a list of URIs that are associated to the address-ofrecord.

If the registrar supports the P-Associated-URI header field extension and there is at least one associated URI, then the registrar MUST insert the P-Associated-URI header field in all the 200 (OK) responses to a REGISTER request. The absence of a P-Associated-URI header field indicates that there is no associated URIs for the registered address-of-record.

4.1.2.1. Procedures at the UA

A UAC may receive a P-Associated-URI header field in the 200 (OK) response for a REGISTER request. The presence of an header field in the 200 (OK) response for a REGISTER request implies that the extension is supported at the registrar.

The header field value contains a list of one or more associated URIs to the address-of-record. The UAC MAY use any of the associated URIs to populate the From header field value, or any other SIP header field value that provides information of the identity of the calling party, in a subsequent request.

The UAC MAY check whether the associated URI is registered or not. This check can be done, e.g., by populating the To header field value in a REGISTER request sent to the registrar and without a Contact header field. The 200 (OK) response will include a Contact header field with the list of address-of-record that have been registered with contact addresses. As described in SIP [RFC3261], the 200 (OK) response may contain a Contact header field with zero or more values (zero meaning the address-of-record is not registered).

4.1.2.2. Procedures at the registrar

A registrar that receives and authorizes a REGISTER request, MAY associate zero or more URIs with the registered address-of-record.

In case the address-of-record under registration does not have any associated URIs, the P-Associated-URI header field shall not be included.

Otherwise, a registrar that supports this specification MUST include a P-Associated-URI header field in the 200 (OK) response to a REGISTER request which contains a contact header. The header field MUST be populated with a comma-separated list of URIs which are associated to the address-of-record under registration.

4.1.2.3. Procedures at the proxy

This memo does not define any procedure at the proxy. The proxy does not add, read, modify or delete the header field, and therefore any proxy will relay this header field unchanged.

4.2. The P-Called-Party-ID header field

A proxy server inserts a P-Called-Party-ID header field, typically in an INVITE request, en-route to its destination. The header is populated with the Request-URI received by the proxy in the request. The UAS identifies which address-of-record, out of several registered address-of-records, the invitation was sent to (for example, the user may be simultaneously using one personal SIP URI and one business SIP URI to receive invitation to sessions). The UAS MAY use the information to render different distinctive audiovisual alerting tones, depending on the URI used to receive the invitation to the session.

Users in the 3GPP IP Multimedia Subsystem (IMS) may get one or several SIP URIs (address-of-record) to identify the user. For example, a user may get one business SIP URI and one personal SIP URI. As an example of utilization, the user may make available the business SIP URI to co-workers and may make available the personal SIP URI to members of the family.

At a certain point in time, both the business SIP URI and the personal SIP URI are registered in the SIP registrar, so both URIs can receive invitations to new sessions. When the user receives an invitation to join a session, he/she should be aware of which of the registered SIP URIs this session was sent to.

This requirement is stated in the 3GPP Release 5 requirements on SIP [RFC4083].

The problem arises during the terminating side of a session establishment, when the SIP proxy that is serving a UA gets an INVITE request, and the SIP server retargets the SIP URI which is present in the Request-URI, and replaces it by the SIP URI published by the user in the Contact header field of the REGISTER request at registration time. When the UAS receives the INVITE request it cannot determine which address-of-record the request was sent to.

One can argue that the To header field conveys the semantics of the called user, and therefore, this extension to SIP is not needed. Although the To header field in SIP may convey the called party ID in most situations, there are two particular cases when the above assumption is not correct:

The session has been forwarded, redirected, etc., by previous SIP proxies, before arriving to the proxy which is serving the called user.

2. The UAC builds an INVITE request and the To header field is not the same as the Reguest-URI.

The problem of using the To header field is that this field is populated by the UAC and not modified by proxies in the path. If the UAC, for any reason, did not populate the To header field with the address-of-record of the destination user, then the destination user is not able to distinguish which address-of-record the session was destined.

Another possible solution to the problem is built upon the differentiation of the Contact header field value between different address-of-record at registration time. The UA can differentiate each address-of-record it registers by assigning a different Contact header field value. For example, when the UA registers the addressof-record sip:id1, the Contact header field value can be sip:id1@ua, while the registration of the address-of-record sip:id2 can be bound to the Contact header field value sip:id2@ua.

The solution described above assumes that the UA explicitly registers each of its address-of-records, and therefore, it has full control over the contact address values assigned to each registration. However, if the UA does not have full control of its registered address-of-records, because of, e.g., a third party registration, the solution does not work. This may be the case of the 3GPP registration, where the UA may have previously indicated to the network, by means outside of SIP, that some other address-of-records may be automatically registered when the UA registers a particular address-of-record. The requirement is covered in the 3GPP Release 5 requirements on SIP [RFC4083].

In the next paragraphs we show an example of the problem, in the case there has been some sort of call forwarding in the session, so that the UAC is not aware of the intended destination URI in the current INVITE request.

We assume that a User Agent (UA) is registering to its proxy (P1).

Scenario UA --- P1

F1 Register UA -> P1

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4:5060; branch=z9hG4bKnashds7

To: sip:user1-business@example.com

From: sip:user1-business@example.com;tag=456248

Call-ID: 843817637684230998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:user1@192.0.2.4>

The user also registers his personal URI to his/her registrar.

F2 Register UA -> P1

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4:5060; branch=z9hG4bKnashdt8

To: sip:user1-personal@example.com

From: sip:user1-personal@example.com; tag=346249

Call-ID: 203817637684230998sdasdh10

CSeq: 1827 REGISTER

Contact: <sip:user1@192.0.2.4>

Later, the proxy/registrar (P1) receives an INVITE request from another proxy (P2) destined to the user's business SIP address-of-record. We assume that this INVITE request has undergone some sort of forwarding in the past, and as such, the To header field is not populated with the SIP URI of the user. In this case we assume that the session was initially addressed to sip:other-user@othernetwork.com. The SIP server at othernetwork.com has forwarded this session to sip:user1-business@example.com

Scenario UA --- P1 --- P2

F3 Invite P2 -> P1

INVITE sip:user1-business@example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.20:5060; branch=z9hG4bK03djaoe1

To: sip:other-user@othernetwork.com

From: sip:another-user@anothernetwork.com;tag=938s0

Call-ID: 843817637684230998sdasdh09

CSeq: 101 INVITE

The proxy P1 retargets the user and replaces the Request-URI with the SIP URI published during registration time in the Contact header field value.

F4 Invite P1 -> UA

INVITE sip:user1@192.0.2.4 SIP/2.0

Via: SIP/2.0/UDP 192.0.2.10:5060; branch=z9hG4bKg48sh128 Via: SIP/2.0/UDP 192.0.2.20:5060; branch=z9hG4bK03djaoe1

To: sip:other-user@othernetwork.com

From: sip:another-user@anothernetwork.com;tag=938s0

Call-ID: 843817637684230998sdasdh09

CSeq: 101 INVITE

When the UAS receives the INVITE request, it cannot determine whether it got the session invitation due to his registration of the business or the personal address-of-record. Neither the UAS nor proxies or application servers can provide this user a service based on the destination address-of-record of the session.

We solve this problem by allowing the proxy that is responsible for the home domain (as defined in SIP) of the user to insert a P-Called-Party-ID header field that identifies the address-of-record to which this session is destined.

If this SIP extension is used, the proxy serving the called user will get the message flow F5, it will populate the P-Called-Party-ID header field in message flow F6 with the contents of the Request-URI in F4. This is show in flows F5 and F6 below:

F5 Invite P2 -> P1

INVITE sip:user1-business@example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.20:5060; branch=z9hG4bK03djaoe1

To: sip:other-user@othernetwork.com

From: sip:another-user@anothernetwork.com;tag=938s0

Call-ID: 843817637684230998sdasdh09

CSeq: 101 INVITE

F6 Invite P1 -> UA

INVITE sip:user1@192.0.2.4 SIP/2.0

Via: SIP/2.0/UDP 192.0.2.10:5060; branch=z9hG4bKg48sh128 Via: SIP/2.0/UDP 192.0.2.20:5060; branch=z9hG4bK03djaoe1

To: sip:other-user@othernetwork.com

From: sip:another-user@anothernetwork.com;tag=938s0

Call-ID: 843817637684230998sdasdh09

P-Called-Party-ID: sip:user1-business@example.com

CSeq: 101 INVITE

When the UA receives the INVITE request F6 it can determine the intended address-of-record of the session, and apply whatever service is needed for that address-of-record.

4.2.1. Applicability statement for the P-Called-Party-ID header field

The P-Called-Party-ID header field is applicable when the UAS needs to be aware of the intended address-of-record that was present in the Request-URI of the request, before the proxy retargets to the contact address. The UAS may be interested in applying different audiovisual alerting effects or other filtering services, depending on the intended destination of the request. It is specially valuable when the UAS has registered several address-of-records to his registrar, and therefore, the UAS is not aware of the address-of-record that was present in the INVITE request when it hit his proxy/registrar, unless this extension is used.

Requirements for a more general solution are proposed in [RFC4244]. 3GPP will continue to use the P-Called-Party-ID header field even though RFC 4244 has now been published.

4.2.2. Usage of the P-Called-Party-ID header field

The P-Called-Party-ID header field provides proxies and the UAS with the address-of-record that was present in the Request-URI of the request, before a proxy retargets the request. This information is intended to be used by subsequent proxies in the path or by the UAS.

Typically, a SIP proxy inserts the P-Called-Party-ID header field prior to retargetting the Request-URI in the SIP request. The header field value is populated with the contents of the Request-URI, prior to replacing it with the contact address.

4.2.2.1. Procedures at the UA

A UAC MUST NOT insert a P-Called-Party-ID header field in any SIP request or response.

A UAS may receive a SIP request that contains a P-Called-Party-ID header field. The header field will be populated with the addressof-record received by the proxy in the Request-URI of the request, prior to its forwarding to the UAS.

The UAS MAY use the value in the P-Called-Party-ID header field to provide services based on the called party URI, such as, e.g., filtering of calls depending on the date and time, distinctive presentation services, distinctive alerting tones, etc.

4.2.2.2. Procedures at the proxy

A proxy that has access to the contact information of the user, MAY insert a P-Called-Party-ID header field in any of the requests

indicated in the Table 1 (Section 5.7). When included, the proxy MUST populate the header field value with the contents of the Request-URI present in the SIP request that the proxy received.

It is necessary that the proxy which inserts the P-Called-Party-ID header field has information about the user, in order to prevent a wrong delivery of the called party ID. This information may, for example have been learned through a registration process.

A proxy or application server that receives a request containing a P -Called-Party-ID header field MAY use the contents of the header field to provide a service to the user based on the URI of that header field value.

A SIP proxy MUST NOT insert a P-Called-Party-ID header field in REGISTER requests.

4.3. The P-Visited-Network-ID header field

3GPP networks are composed of a collection of so called home networks, visited networks and subscribers. A particular home network may have roaming agreements with one or more visited networks. This has the effect that when a mobile terminal is roaming, it can use resources provided by the visited network in a transparent fashion.

One of the conditions for a home network to accept the registration of a UA roaming to a particular visited network, is the existence of a roaming agreement between the home and the visited network. is a need to indicate to the home network which one is the visited network that is providing services to the roaming UA.

3GPP user agents always register to the home network. The REGISTER request is proxied by one or more proxies located in the visited network towards the home network. For the sake of a simple approach, it seems sensible that the visited network includes an identification that is known to the home network. This identification should be globally unique, and takes the form of a quoted text string or a token. The home network may use this identification to verify the existence of a roaming agreement with the visited network, and to authorize the registration through that visited network.

4.3.1. Applicability statement for the P-Visited-Network-ID header field

The P-Visited-Network-ID header field is applicable whenever the following circumstances are met:

- 1. There is transitive trust in intermediate proxies between the UA and the home network proxy via established relationships between the home network and the visited network, and generally supported by the use of standard security mechanisms, e.g., IPsec, AKA, or TLS.
- 2. An endpoint is using resources provided by one or more visited networks (a network to which the user does not have a direct business relationship).
- 3. A proxy that is located in one of the visited networks wants to be identified at the user's home network.
- 4. There is no requirement that every visited network needs to be identified at the home network. Those networks that want to be identified make use of this extension. Those networks that do not want to be identified do nothing.
- 5. A commonly pre-agreed text string or token identifies the visited network at the home network.
- 6. The UAC sends a REGISTER request or dialog-initiating request (e.q., INVITE request) or a standalone request outside a dialog (e.g., OPTIONS request) to a proxy in a visited network.
- 7. The request traverses, en route to its destination, a first proxy located in the visited network, and a second proxy located in the home network or its destination is the registrar in the home network.
- 8. The registrar or home proxy verifies and authorizes the usage of resources (e.g., proxies) in the visited network.

4.3.2. Usage of the P-Visited-Network-ID header field

The P-Visited-Network-ID header field is used to convey to the registrar or home proxy in the home network the identifier of a visited network. The identifier is a text string or token that is known by both the registrar or the home proxy at the home network and the proxies in the visited network.

Typically, the home network authorizes the UA to roam to a particular visited network. This action requires an existing roaming agreement between the home and the visited network.

While it is possible for a home network to identify one or more visited networks by inspecting the domain name in the Via header fields, this approach has a heavy dependency on DNS. It is an option for a proxy to populate the Via header field with an IP address, for example, and in the absence of a reverse DNS entry, the IP address will not convey the desired information.

Any SIP proxy in the visited network that receives any of the requests indicated in Table 1 (Section 5.7) MAY insert a P-Visited-Network-ID header field when it forwards the request. In case a REGISTER request or other request is traversing different administrative domains (e.g., different visited networks), a SIP proxy MAY insert a new P-Visited-Network-ID header field if the request does not contain a P-Visited-Network-ID header field with the same network identifier as its own network identifier (e.g., if the request has traversed other different administrative domains).

Note also that, there is no requirement for this header field value to be readable in the proxies. Therefore, a first proxy MAY insert an encrypted header field that only the registrar can decrypt. If the request traverses a second proxy located in the same administrative domain as the first proxy, the second proxy may not be able to read the contents of the P-Visited-Network-ID header field. In this situation, the second proxy will consider that its visited network identifier is not already present in the value of the header field, and therefore, it will insert a new P-Visited-Network-ID header field value (hopefully with the same identifier that the first proxy inserted, although perhaps, not encrypted). When the request arrives at the registrar or proxy in the home network, it will notice that the header field value is repeated (both the first and the second proxy inserted it). The decrypted values should be the same, because both proxies where part of the same administrative domain. While this situation is not desirable, it does not create any harm at the registrar or proxy in the home network.

The P-Visited-Network-ID header field is normally used at registration. However, this extension does not preclude other usages. For example, a proxy located in a visited network that does not maintain registration state MAY insert a P-Visited-Network-ID header field into any standalone request outside a dialog or a request that creates a dialog. At the time of writing this document, the only requests that create dialogs are INVITE requests [RFC3261], SUBSCRIBE requests [RFC3265] and REFER requests [RFC3515].

In order to avoid conflicts with identifiers, especially when the number of roaming agreements between networks increase, care must be taken when selecting the value of the P-Visited-Network-ID header field. The identifier should be globally unique to avoid duplications. Although there are many mechanism to create globally unique identifiers across networks, one of such as mechanisms is already in operation, and that is DNS. The P-Visited-Network-ID header field does not have any connection to DNS, but the values in the header field can be chosen from the own DNS entry representing the domain name of the network. This quarantees the uniqueness of the value.

4.3.2.1. Procedures at the UA

A normal User Equipment has normally no knowledge of the P-Visited-Network-ID when sending the REGISTER. Therefore user agent clients do not insert a P-Visited-Network-ID header field in any SIP message.

4.3.2.2. Procedures at the registrar and proxy

A SIP proxy which is located in a visited network MAY insert a P -Visited-Network-ID header field in any of the requests indicated in the Table 1 (Section 5.7). The header field MUST be populated with the contents of a text string or a token that identifies the administrative domain of the network where the proxy is operating towards the user's home network.

A SIP proxy or registrar which is located in the home network MAY use the contents of the P-Visited-Network-ID header field as an identifier of one or more visited networks that the request traversed. The proxy or registrar in the home network may take local policy driven actions based on the existence or not of a roaming agreement between the home and the visited networks. T means, for instance, authorize the actions of the request based on the contents of the P-Visited-Network-ID header field.

A SIP proxy which is located in the home network MUST delete this header field when forwarding the message outside the home network administrative domain, in order to retain the user's privacy.

A SIP proxy which is located in the home network SHOULD delete this header field when the home proxy has used the contents of the header field or the request is routed based on the called partys identification, even when the request is not forwarded outside the home network administrative domain.

Note that a received P-Visited-Network-ID from a UA is a failure case and must be deleted.

4.3.2.3. Examples of Usage

We present example in the context of the scenario presented in the following network diagram:

Scenario UA --- P1 --- P2 --- REGISTRAR

This example shows the message sequence for a REGISTER transaction originating from UA eventually arriving the REGISTRAR. P1 is an outbound proxy in the visited network for UA. In this case P1 inserts the P-Visited-Network-ID header field. P1 then routes the REGISTER request to REGISTRAR via P2.

Message sequence for REGISTER using P-Visited-Network-ID header field:

F1 Register UA -> P1

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4:5060; branch=z9hG4bKnashds7

To: sip:user1-business@example.com

From: sip:user1-business@example.com;tag=456248

Call-ID: 843817637684230998sdasdh09

CSeq: 1826 REGISTER

Contact: <sip:user1@192.0.2.4>

In flow F2, proxy P1 adds its own identifier in a quoted string to the P-Visited-Network-ID header field.

F2 Register P1 -> P2

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP p1.visited.net;branch=z9hG4bK203igld
Via: SIP/2.0/UDP 192.0.2.4:5060;branch=z9hG4bKnashdt8

To: sip:user1-personal@example.com

From: sip:user1-personal@example.com;tag=346249

Call-ID: 203817637684230998sdasdh10

CSeq: 1826 REGISTER

Contact: <sip:user1@192.0.2.4>

P-Visited-Network-ID: "Visited network number 1"

Finally, in flow F3, proxy P2 decides to insert its own identifier, derived from its own domain name to the P-Visited-Network-ID header field.

F3 Register P2 -> REGISTRAR

REGISTER sip:example.com SIP/2.0

Via: SIP/2.0/UDP p2.other.net;branch=z9hG4bK2bndnvk Via: SIP/2.0/UDP p1.visited.net;branch=z9hG4bK203igld Via: SIP/2.0/UDP 192.0.2.4:5060; branch=z9hG4bKnashdt8

To: sip:user1-personal@example.com

From: sip:user1-personal@example.com;tag=346249

Call-ID: 2Q3817637684230998sdasdh10

CSeq: 1826 REGISTER

Contact: <sip:user1@192.0.2.4>

P-Visited-Network-ID: other.net, "Visited network number 1"

4.4. The P-Access-Network-Info header field

This section describes the P-Access-Network-Info header field. This header field is useful in SIP-based networks that also provide layer 2/layer 3 connectivity through different access technologies. User Agents may use this header field to relay information about the access technology to proxies that are providing services. The serving proxy may then use this information to optimize services for the UA. For example, a 3GPP UA may use this header field to pass information about the access network such as radio access technology and radio cell identity to its home service provider.

For the purpose of this extension, we define an access network as the network providing the layer 2/layer 3 IP connectivity which in turn provides a user with access to the SIP capabilities and services provided.

In some cases, the SIP server that provides the user with services may wish to know information about the type of access network that the UA is currently using. Some services are more suitable or less suitable depending on the access type, and some services are of more value to subscribers if the access network details are known by the SIP proxy which provides the user with services.

In other cases, the SIP server that provides the user with services may simply wish to know crude location information in order to provide certain services to the user. For example, many of the location based services available in wireless networks today require the home network to know the identity of the cell the user is being served by.

Some regulatory requirements exist mandating that for cellular radio systems, the identity of the cell where an emergency call is established is made available to the emergency authorities.

The SIP server that provides services to the user may desire to have knowledge about the access network. This is achieved by defining a

new private SIP extension header field, P-Access-Network-Info header field. This header field carries information relating to the access network between the UAC and its serving proxy in the home network.

4.4.1. Applicability statement for the P-Access-Network-Info header field

This mechanism is appropriate in environments where SIP services are dependent on SIP elements knowing details about the IP and lower layer technologies used by a UA to connect to the SIP network. Specifically, the extension requires that the UA know the access technology it is using, and that a proxy desires such information to provide services. Generally, SIP is built on the "Everything over IP and IP over everything" principle, where the access technology is not relevant for the operation of SIP. Since SIP systems generally should not care or even know about the access technology, this SIP extension is not for general SIP usage.

The information revealed in the P-Access-Network-Info header field is potentially very sensitive. Proper protection of this information depends on the existence of specific business and security relationships amongst the proxies that will see SIP messages containing this header field. It also depends on explicit knowledge of the UA of the existence of those relationships. Therefore, this mechanism is only suitable in environments where the appropriate relationships are in place, and the UA has explicit knowledge that they exist.

4.4.2. Usage of the P-Access-Network-Info header

When a UA generates a SIP request or response which it knows is going to be securely sent to its SIP proxy that is providing services, the UA inserts a P-Access-Network-Info header field into field the SIP message. This header contains information on the access network that the UA is using to get IP connectivity. The header is typically ignored by intermediate proxies between the UA and the SIP proxy that is providing services. The proxy providing services can inspect the header and make use of the information contained there to provide appropriate services, depending on the value of the header. Before proxying the request onwards to a non-trusted administrative network domain, this proxy strips the header from the message.

Additionally, the first outbound proxy, if in possession of appropriate information, can also add a P-Access-Network-Info header field with its own information.

4.4.2.1. UA behavior

A UA that supports this extension and is willing to disclose the related parameters MAY insert the P-Access-Network-Info header field in any SIP request or response.

The UA inserting this information MUST trust the proxy that is providing services to protect its privacy by deleting the header before forwarding the message outside of the proxy's domain. This proxy is typically located in the home network.

In order to avoid the deletion of the header, there must also be a transitive trust in intermediate proxies between the UA and the proxy that provides the services. This trust is established by business agreements between the home network and the access network, and generally supported by the use of standard security mechanisms, e.g., IPsec, AKA, and TLS.

4.4.2.2. Proxy behavior

A proxy MUST NOT modify the value of the P-Access-Network-Info header field.

A proxy in possession of appropriate information about the access technology MAY insert a P-Access-Network-Info header field with its own values. An proxy sending towards an untrusted entity MUST remove any P-Access-Network-Info header field containing a "networkprovided" value.

A proxy which is providing services to the UA, MAY act upon any information present in the P-Access-Network-Info header field value, if is present, to provide a different service depending on the network or the location through which the UA is accessing the server. For example, for cellular radio access networks the SIP proxy located in the home network MAY use the cell ID to provide basic localized services.

A proxy that provides services to the user is typically located in the home network, and therefore trusted. It MUST delete the header when the SIP signaling is forwarded to a SIP server located in a nontrusted administrative network domain. The SIP server providing services to the UA uses the access network information which is of no interest to other proxies located in different administrative domains.

4.5. The P-Charging-Function-Addresses header field

3GPP has defined a distributed architecture that results in multiple network entities becoming involved in providing access and services. There is a need to inform each SIP proxy involved in a transaction about the common charging functional entities to receive the generated charging records or charging events.

The solution provided by 3GPP is to define two types of charging functional entities: Charging Collection Function (CCF) and Event Charging Function (ECF). CCF is used for off-line charging (e.g., for postpaid account charging). ECF is used for on-line charging (e.g., for pre-paid account charging). There may be more than a single instance of CCF and ECF in a network, in order to provide redundancy in the network. In case there are more than a single instance of either the CCF or the ECF addresses, implementations SHOULD attempt sending the charging data to the ECF or CCF address, starting with the first address of the sequence (if any) in the P -Charging-Function-Addresses header field. If the first address of the sequence is not available then the next address (ccf-2 or ecf-2) MUST be used if available. The CCF and ECF addresses MAY be passed during the establishment of a dialog or in a standalone transaction. More detailed information about charging can be found in 3GPP TS 32.240 [TS32.240] and 3GPP TS 32.260 [TS32.260].

We define the SIP private header field P-Charging-Function-Addresses header field. A proxy MAY include this header field, if not already present, in either the initial request or response for a dialog, or in the request and response of a standalone transaction outside a dialog. When present, only one instance of the header MUST be present in a particular request or response.

The mechanisms by which a SIP proxy collects the values to populate the P-Charging-Function-Addresses header field values are outside the scope of this document. However, as an example, a SIP proxy may have preconfigured these addresses, or may obtain them from a subscriber database.

4.5.1. Applicability statement for the P-Charging-Function-Addresses header field

The P-Charging-Function-Addresses header field is applicable within a single private administrative domain where coordination of charging is required, for example, according to the architecture specified in 3GPP TS 32.240 [TS32.240].

The P-Charging-Function-Addresses header field is not included in a SIP message sent outside of the own administrative domain. The

header is not applicable if the administrative domain does not provide a charging function.

The P-Charging-Function-Addresses header field is applicable whenever the following circumstances are met:

- 1. A UA sends a REGISTER or dialog-initiating request (e.g., INVITE request) or a standalone transaction request outside a dialog to a proxy located in the administrative domain of a private network.
- 2. A registrar, proxy or UA that is located in the administrative domain of the private network wants to generate charging records.
- 3. A registrar, proxy or UA that is located in the private network has access to the addresses of the charging function entities for that network.
- 4. There are other proxies located in the same administrative domain of the private network, that generate charging records or charging events. The proxies want to send, by means outside SIP, the charging information to the same charging collecting entities than the first proxy.

4.5.2. Usage of the P-Charging-Function-Addresses header field

A SIP proxy that receives a SIP request MAY insert a P-Charging-Function-Addresses header field prior to forwarding the request, if the header was not already present in the SIP request. The header filed contains one or more parameters that contain the hostnames or IP addresses of the nodes that are willing to receive charging information.

A SIP proxy that receives a SIP request that includes a P-Charging-Function-Addresses header field MAY use the hostnames or IP addresses included in the value, as the destination of charging information or charging events. The means to send those charging information or events are outside the scope of this document, and usually, do not use SIP for that purpose.

4.5.2.1. Procedures at the UA

This document does not specify any procedure at the UA located outside the administrative domain of a private network, with regard to the P-Charging-Function-Addresses header field. Such UAs need not understand this header.

However, it might be possible that a UA is located within the administrative domain of a private network (e.g., a PSTN gateway, or conference mixer), and it may have access to the addresses of the charging entities. In this case, a UA MAY insert the P-Charging-Function-Addresses header field in a SIP request or response when the next hop for the message is a proxy or UA located in the same administrative domain. Similarly such a UA MAY use the contents of the P-Charging-Function-Addresses header field in communicating with the charging entities.

4.5.2.2. Procedures at the Proxy

A SIP proxy that supports this extension and receives a request or response without the P-Charging-Function-Addresses header field MAY insert a P-Charging-Function-Addresses header field prior to forwarding the message. The header is populated with a list of the addresses of one or more charging entities where the proxy should send charging related information.

If a proxy that supports this extension receives a request or response with the P-Charging-Function-Addresses header field, it MAY retrieve the information from the header field to use with application specific logic, i.e., charging. If the next hop for the message is within the administrative domain of the proxy, then the proxy SHOULD include the P-Charging-Function-Addresses header field in the outbound message. However, if the next hop for the message is outside the administrative domain of the proxy, then the proxy MUST remove the P-Charging-Function-Addresses header field.

4.5.2.3. Examples of Usage

We present example in the context of the scenario presented in the following network diagram:

UA1 --- P1 --- P2 --- UA2 Scenario

In the scenario we assume that P1 and P2 belong to the same administrative domain.

The example below shows the message sequence for an INVITE transaction originating from UA1 eventually arriving at UA2. P1 is an outbound proxy for UA1. In this case P1 inserts charging information. P1 then routes the request via P2 to UA2.

Message sequence for INVITE using P-Charging-Function-Addresses header field:

F1 Invite UA1 -> P1

INVITE sip:ua2@home1.net SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4:5060; branch=z9hG4bKnashds7

To: sip:ua2@home1.net

From: sip:ua1@home1.net;tag=456248 Call-ID: 843817637684230998sdasdh09

CSeq: 18 INVITE

Contact: sip:ua1@192.0.2.4

F2 Invite P1 -> P2

INVITE sip:ua2@home1.net SIP/2.0

Via: SIP/2.0/UDP p1.home1.net:5060;branch=z9hG4bK34ghi7ab04

Via: SIP/2.0/UDP 192.0.2.4:5060; branch=z9hG4bKnashds7

To: sip:ua2@home1.net

From: sip:ua1home1.net;tag=456248 Call-ID: 843817637684230998sdasdh09

CSeq: 18 INVITE

Contact: sip:ua1@192.0.2.4

P-Charging-Function-Addresses: ccf=192.1.1.1; ecf=192.1.1.3, ccf-2=192.1.1.2; ecf-2=192.1.1.4

Now both P1 and P2 are aware of the IP addresses of the entities that collect charging record or charging events. Both proxies can send the charging information to the same entities.

4.6. The P-Charging-Vector header

3GPP has defined a distributed architecture that results in multiple network entities becoming involved in providing access and services. Operators need the ability and flexibility to charge for the access and services as they see fit. This requires coordination among the network entities (e.g., SIP proxies), which includes correlating charging records generated from different entities that are related to the same session.

The correlation information includes, includes but is not limited to a globally unique charging identifier that makes easy the billing effort.

A charging vector is defined as a collection of charging information. The charging vector MAY be filled in during the establishment of a dialog or standalone transaction outside a dialog. The information inside the charging vector MAY be filled in by multiple network entities (including SIP proxies) and retrieved by multiple network entities. There are three types of correlation information to be transferred: the IMS Charging Identity (ICID) value, the address of

the SIP proxy that creates the ICID value, and the Inter Operator Identifiers (IOI).

ICID is a charging value that identifies a dialog or a transaction outside a dialog. It is used to correlate charging records. ICID MUST be a globally unique value. One way to achieve globally uniqueness is to generate the ICID using two components: a locally unique value and the host name or IP address of the SIP proxy that generated the locally unique value.

The IOI identifies both the originating and terminating networks involved in a SIP dialog or transaction outside a dialog. There MAY be an IOI generated from each side of the dialog to identify the network associated with each side.

Additionally in a multi network environment one or more transit IOI identifiers MAY be included along the path of the SIP dialog or transaction outside a dialog. Due to network policy a void value MAY be included instead of the transit network name. The void value is used to indicate that a transit network appeared but due to operator policy the network name is not shown.

Additionally in a multi service provider environment one or more transit IOI identifiers MAY be included along the path of the SIP dialog or transaction outside a dialog. Due to service provider policy a void value MAY be included instead of the transit service provider. The void value is used to indicate that a transit appeared but due to service provider policy the service provider name is not shown.

There is also expected to be access network charging information, which consists of network specific identifiers for the access level (e.g., UMTS radio access network or IEEE 802.11b). The details of the information for each type of network are not described in this memo.

We define the SIP private header P-Charging-Vector header field. A proxy MAY include this header, if not already present, in either the initial request or response for a dialog, or in the request and response of a standalone transaction outside a dialog. When presen only one instance of the header MUST be present in a particular request or response.

The mechanisms by which a SIP proxy collects the values to populate the P-Charging-Vector header field are outside the scope of this document.

4.6.1. Applicability Statement for the P-Charging-Vector header field

The P-Charging-Vector header field is applicable within a single private administrative domain or between different administrative domains where there is a trust relationship between the domains.

The P-Charging-Vector header field is not included in a SIP message sent to another network if there is no trust relationship. The header is not applicable if the administrative domain manages charging in a way that does not require correlation of records from multiple network entities (e.g., SIP proxies).

The P-Charging-Vector header field is applicable whenever the following circumstances are met:

- A UA sends a REGISTER or dialog-initiating request (e.g., INVITE) or mid-dialog request (e.g., UPDATE) or a standalone transaction request outside a dialog to a proxy located in the administrative domain of a private network.
- 2. A registrar, proxy or UA that is located in the administrative domain of the private network wants to generate charging records.
- 3. A proxy or UA that is located in the administrative domain of the private network has access to the charging correlation information for that network.
- 4. Optionally, a registrar, proxy or UA that is part of a second administrative domain in another private network, whose SIP requests and responses are traversed through, en-route to/from the first private network, wants to generate charging records and correlate those records with those of the first private network. This assumes that there is a trust relationship between both private networks.

4.6.2. Usage of the P-Charging-Vector header field

The P-Charging-Vector header field is used to convey charging related information, such as the globally unique IMS charging identifier (ICID) value.

Typically, a SIP proxy that receives a SIP request that does not contain a P-Charging-Vector header field MAY insert it, with those parameters that are available at the SIP proxy.

A SIP proxy that receives a SIP request that contains a P-Charging-Vector header field MAY use the values, such as the globally unique ICID, to produce charging records.

4.6.2.1. Procedures at the UA

This document does not specify any procedure at a UA located outside the administrative domain of a private network (e.g., PSTN gateway or conference mixer), with regard to the P-Charging-Vector header field. UAs need not understand this header.

However, it might be possible that a UA is located within the administrative domain of a private network (e.g., a PSTN gateway, or conference mixer), and it may interact with the charging entities. In this cases, a UA MAY insert the P-Charging-Vector header field in a SIP request or response when the next hop for the message is a proxy or UA located in the same administrative domain. Similar such a UA MAY use the contents of the P-Charging-Vector header field in communicating with the charging entities.

4.6.2.2. Procedures at the Proxy

A SIP proxy that supports this extension and receives a request or response without the P-Charging-Vector header field MAY insert a P -Charging-Vector header field prior to forwarding the message. The header is populated with one ore more parameters, as described in the syntax, including but not limited to, a globally unique charging identifier.

If a proxy that supports this extension receives a request or response with the P-Charging-Vector header field, it MAY retrieve the information from the header value to use with application specific logic, i.e., charging. If the next hop for the message is within the trusted domain, then the proxy SHOULD include the P-Charging-Vector header field in the outbound message. If the next hop for the message is outside the trusted domain, then the proxy MAY remove the P-Charging-Function-Addresses header field.

Per local application specific logic, the proxy MAY modify the contents of the P-Charging-Vector header field prior to sending the message.

4.6.2.3. Examples of Usage

We present example in the context of the scenario presented in the following network diagram:

UA1 --- P1 --- P2 --- UA2 Scenario

This example shows the message sequence for an INVITE transaction originating from UA1 eventually arriving at UA2. P1 is an outbound proxy for UA1. In this case P1 inserts charging information. P1 then routes the call via P2 to UA2.

Message sequence for INVITE using P-Charging-Vector header field:

F1 Invite UA1 -> P1

INVITE sip:joe@example.com SIP/2.0

Via: SIP/2.0/UDP 192.0.2.4:5060:branch=z9hG4bKnashds7

To: sip:joe@example.com

From: sip:ua1@home1.net;tag=456248 Call-ID: 843817637684230998sdasdh09

CSeq: 18 INVITE

Contact: sip:ua1@192.0.2.4

F2 Invite P1 -> P2

INVITE sip:joe@example.com SIP/2.0

Via: SIP/2.0/UDP P1.home1.net:5060;branch=z9hG4bK34ghi7a Via: SIP/2.0/UDP 192.0.2.4:5060;branch=z9hG4bKnashds7

To: sip:joe@example.com

From: sip:ua1@home1.net;tag=456248 Call-ID: 843817637684230998sdasdh09

CSeq: 18 INVITE

Contact: sip:ua1@192.0.2.4

P-Charging-Vector: icid-value=1234bc9876e;

icid-generated-at=192.0.6.8;

orig-ioi=home1.net#

4.6.3. Usage of the transit-ioi

The transit-ioi is added to the P-Charging-Vector header field when traversing transit networks. It is allowed to have multiple transitioi values within one SIP message or response. The values within the response are independent from the values set up within the request.

The element could be either added by a transit network itself or by the succeeding network at the entry point where the preceding network is known. Based on network policy a void value can be used.

Depending on the call scenario it is needed to add for each transit network either a transit network name or a void value. Nevertheless it can not be guaranteed that all values will appear within the P -Charging-Vector header field.

Some networks can screen the P-Charging-Vector header field and delete transit-ioi values, e.g. networks not supporting this value. There are scenarios where the appearance of the transit-ioi values of all networks is needed to have a correct end-to-end view.

The policies of adding, modifying and deletion of transit-ioi values are out of the scope of this document.

The transit-ioi contains an indexed value which needs to be incremented with each value added to the P-charging-Vector header field.

A void value has no index. By adding further entries the amount of entries needs to be taken into consideration when building the index.

4.6.3.1. Procedures at the Proxy

Procedures described within 4.6.2.2 apply. A transit-ioi MAY be added or modified by a proxy. A deletion of the element could appear depending on the network policy and trust rules. This is also valid by replacing the transit-ioi with a void value.

4.6.4. Usage of the related-icid

4.6.4.1. Procedures at the UA

The UAS acting as a B2BUA MAY add the related-icid into the P -Charging-Vector header field into SIP request or SIP responses. For example, the UAS can include the related-icid in a response to an INVITE request when the received INVITE request creates a new call leg towards the same remote end. The value of the related-icid is the icid value of the original dialog towards the remote end.

4.6.4.2. Procedures at the Proxy

Procedures described within 4.6.2.2 apply. A related-icid and "related-icid-generated-at" MAY be added or modified by a proxy. A deletion of the elements could appear depending on the network policy and trust rules.

5. Formal Syntax

All of the mechanisms specified in this document are described in both prose and an augmented Backus-Naur Form (BNF) defined in RFC 2234 [RFC2234]. Further, several BNF definitions are inherited from SIP and are not repeated here. Implementors need to be familiar with the notation and contents of SIP [RFC3261] and RFC 2234 [RFC2234] to understand this document.

5.1. P-Associated-URI header syntax

The syntax of the P-Associated-URI header field is described as follows:

P-Associated-URI = "P-Associated-URI" HCOLON

[p-aso-uri-spec]

*(COMMA p-aso-uri-spec)

p-aso-uri-spec = name-addr *(SEMI ai-param)

ai-param = generic-param

5.2. P-Called-Party-ID header syntax

The syntax of the P-Called-Party-ID header field is described as follows:

P-Called-Party-ID = "P-Called-Party-ID" HCOLON

called-pty-id-spec

called-pty-id-spec = name-addr *(SEMI cpid-param)

cpid-param = generic-param

5.3. P-Visited-Network-ID header syntax

The syntax of the P-Visited-Network-ID header field is described as follows:

P-Visited-Network-ID = "P-Visited-Network-ID" HCOLON

vnetwork-spec

*(COMMA vnetwork-spec)

vnetwork-spec = (token / quoted-string)

*(SEMI vnetwork-param)

vnetwork-param = generic-param

<u>5.4</u>. P-Access-Network-Info header syntax

The syntax of the P-Access-Network-Info header field is described as follows:

P-Access-Network-Info = "P-Access-Network-Info" HCOLON

access-net-spec *(COMMA access-net-spec)

access-net-spec = (access-type / access-class)

*(SEMI access-info)

access-type = "IEEE-802.11" / "IEEE-802.11a" /

```
"IEEE-802.11b" / "IEEE-802.11g" /
                                  "IEEE-802.11n" /
                                  "IEEE-802.3" / "IEEE-802.3a" /
                                  "IEEE-802.3ab" / "IEEE-802.3ae" /
                                  "IEEE-802.3ak" / "IEEE-802.3ah" /
                                  "IEEE-802.3aq" / "IEEE-802.3an" /
                                  "IEEE-802.3e" / "IEEE-802.3i" /
                                  "IEEE-802.3j" / "IEEE-802.3u" /
                                  "IEEE-802.3y" / "IEEE-802.3z" /
                                  "3GPP-GERAN" /
                                  "3GPP-UTRAN-FDD" / "3GPP-UTRAN-TDD" /
                                  "3GPP-E-UTRAN-FDD" / "3GPP-E-UTRAN-TDD" /
                                  "3GPP2-1X-Femto" / "3GPP2-UMB" /
                                  "3GPP2-1X-HRPD" / "3GPP2-1X" /
                                  "ADSL" / "ADSL2" / "ADSL2+" / "RADSL" /
                                  "SDSL" / "HDSL" / "HDSL2" / "G.SHDSL" /
                                  "VDSL" / "IDSL" /
                                  "DOCSIS" / "GSTN" / "GPON" / " XGPON1" /
                                  "DVB-RCS2" / token
                                = "3GPP-GERAN" / "3GPP-UTRAN" / "3GPP-E-
         access-class
UTRAN"/
                                  "3GPP-WLAN" / "3GPP-GAN" / "3GPP-HSPA" /
"3GPP2" /
                                   token
         access-info
                                = cgi-3gpp / utran-cell-id-3gpp /
                                  dsl-location / i-wlan-node-id /
                                  ci-3gpp2 / eth-location /
                                  ci-3gpp2-femto / fiber-location /
                                  np / gstn-location /local-time-zone / dvb-
rcs2-node-id /
                                  extension-access-info
                                = "network-provided"
         np
         extension-access-info = gen-value
         cgi-3gpp
                                = "cgi-3gpp" EQUAL
                                      (token / quoted-string)
         utran-cell-id-3gpp
                                = "utran-cell-id-3gpp" EQUAL
                                      (token / quoted-string)
                                = "i-wlan-node-id" EQUAL
         i-wlan-node-id
                                      (token / quoted-string)
         dsl-location
                                = "dsl-location" EQUAL
                                      (token / quoted-string)
         eth-location
                                = "eth-location" EQUAL
                                      (token / quoted-string)
         fiber-location
                                = "fiber-location" EQUAL
                                      (token / quoted-string)
                                = "ci-3gpp2" EQUAL
         ci-3gpp2
                                      (token / quoted-string)
         ci-3gpp2-femto
                                = "ci-3gpp2-femto" EQUAL
```

(token / quoted-string) gstn-location = "gstn-location" EQUAL (token / quoted-string)

Drage, et al. Expires April 11, 2014 [Page 30]

```
dvb-rcs2-node-id = "dvb-rcs2-node-id" EQUAL
                            quoted-string
local-time-zone = "local-time-zone" EQUAL
                           quoted-string
operator-specific-GI = "operator-specific-GI" EQUAL
                           (token / quoted-string)
utran-sai-3gpp = "utran-sai-3gpp" EQUAL
                           (token / quoted-string)
```

The access-info MAY contain additional information relating to the access network. The values for "cgi-3gpp", "utran-cell-id-3gpp", "i -wlan-node-id", "dsl-location" and "ci-3gpp2", "ci-3gpp2-femto" and "gstn-location" are defined in 3GPP TS 24.229 [TS24.229].

5.5. P-Charging-Function-Addresses header field syntax

The syntax for the P-Charging-Function-Addresses header field is described as follows:

```
P-Charging-Addresses = "P-Charging-Function-Addresses" HCOLON
                                                  charge-addr-params *(COMMA charge-
addr-params)
         charge-addr-params = charge-addr-param *(SEMI charge-addr-param)
charge-addr-param = ccf / ccf-2 / generic-param
                                 = "ccf" EQUAL gen-value
          ccf
                                 = "ecf" EQUAL gen-value
          ecf
         ccf-2
                                 = "ccf-2" EQUAL gen-value
          ecf-2
                                 = "ecf-2" EQUAL gen-value
```

The P-Charging-Function-Addresses header field contains one or two addresses of the ECF (ecf and ecf-2) or CCF (ccf and ccf-2). The first address of the sequence is ccf or ecf. If the first address of the sequence is not available then the next address (ccf-2 or ecf-2) MUST be used if available.

<u>5.6</u>. P-Charging-Vector header syntax

The syntax for the P-Charging-Vector header field is described as follows:

```
P-Charging-Vector
                     = "P-Charging-Vector" HCOLON icid-value
                        *(SEMI charge-params)
charge-params = icid-gen-addr / orig-ioi / term-ioi /
```

Drage, et al. Expires April 11, 2014 [Page 31]

related-icid / related-icid-gen-addr /

generic-param

= "icid-value" EQUAL gen-value icid-value = "icid-generated-at" EQUAL host icid-gen-addr orig-ioi = "orig-ioi" EQUAL gen-value term-ioi = "term-ioi" EQUAL gen-value

= "transit-ioi" EQUAL transit-ioi-list transit-ioi transit-ioi-list = DQUOTE transit-ioi-param *(COMMA transit-

ioi-param) DQUOTE

transit-ioi-param = transit-ioi-indexed-value / transit-ioi-

void-value

transit-ioi-indexed-value = transit-ioi-name DOT transit-ioi-index

transit-ioi-name = ALPHA * (ALPHA / DIGIT)

transit-ioi-index = 1*DIGIT transit-ioi-void-value = "void"

related-icid = "related-icid" EQUAL gen-value related-icid-gen-addr = "related-icid-generated-at" EQUAL host

The P-Charging-Vector header field contains icid-value as a mandatory parameter. The icid-value represents the IMS charging ID, and contains an identifier used for correlating charging records and events. The first proxy that receives the request generates this value.

The icid-gen-addr parameter contains the host name or IP address of the proxy that generated the icid-value.

The orig-ioi and term-ioi parameters contains originating and terminating interoperator identifiers. They are used to correlate charging records between different operators. The originating ioi represents the network responsible for the charging records in the originating part of the session or standalone request. Similarly, the terminating ioi represents the network responsible for the charging records in the terminating part of the session or standalone request.

The transit-ioi parameter contain values with each of them respectively represents a transit interoperator identifier. It is used to correlate charging records between different networks. The transit-ioi represents the network responsible for the records in the transit part of the session or standalone request.

The related-icid parameter contains the icid-value of a related charging record when more than one call leg is associated with one session. This optional parameter is used for correlation of charging information between two or more call legs related to the same remote

end dialog.

Drage, et al. Expires April 11, 2014 [Page 32]

The related-icid-gen-addr parameter contains the host name or IP address of the proxy that generated the related-icid.

Applications using the P-Charging-Vector header field within their own applicability are allowed to define generic-param extensions without further reference to the IETF specification process.

5.7. Table of new headers

Table 1 extends the headers defined in this document to Table 2 in SIP [RFC3261], Section 7.1 of the SIP-specific event notification [RFC3265], tables 1 and 2 in the SIP INFO method [RFC2976], tables 1 and 2 in Reliability of provisional responses in SIP [RFC3262], tables 1 and 2 in the SIP UPDATE method [RFC3311], tables 1 and 2 in the SIP extension for Instant Messaging [RFC3428], table 1 in the SIP REFER method [RFC3515], and table 3 in the SIP PUBLISH method [RFC3903]:

Header field	where	proxy	ACK	BYE	CAN	INV	0PT	REG	PUB
P-Associated-URI	2xx		-	-	-	-	-	0	-
P-Called-Party-ID	R	amr	-	-	-	0	0	-	0
P-Visited-Network-ID	R	ad	-	-	-	0	0	0	0
P-Access-Network-Info		adr	-	0	-	0	0	0	0
P-Charging-Vector		admr	0	0	-	0	0	0	0
P-Charging-Function-		adr	-	0	-	0	0	0	0
Addresses									
Header field			SUB	NOT	PRA	INF	UPD	MSG	REF
Header field P-Associated-URI			SUB -	NOT -	PRA -	INF	UPD -	MSG -	REF
			SUB - 0	NOT - -	PRA - -	INF - -	UPD - -	MSG - o	REF - o
P-Associated-URI			-	NOT - - -	PRA	INF - - -	UPD - - -	-	
P-Associated-URI P-Called-Party-ID			- 0	- -	PRA 0	- - - 0	-	- 0	- 0
P-Associated-URI P-Called-Party-ID P-Visited-Network-ID			- 0 0	- - -	- - -	- - -	- - -	- 0 0	- 0 0
P-Associated-URI P-Called-Party-ID P-Visited-Network-ID P-Access-Network-Info			- 0 0	- - - 0	- - - 0	- - - 0	- - - 0	- 0 0	- 0 0

Table 1: Header field support

Security Considerations

6.1. P-Associated-URI

The information returned in the P-Associated-URI header field is not viewed as particularly sensitive. Rather, it is simply informational

in nature, providing openness to the UAC with regard to the automatic association performed by the registrar. If end-to-end protection is not used at the SIP layer, it is possible for proxies between the registrar and the UA to modify the contents of the header value. This attack, while potentially annoying, should not have significant impacts.

The lack of encryption, either end-to-end or hop-by-hop, may lead to leak some privacy regarding the list of authorized identities. For instance, a user who registers an address-of-record of sip:user1@example.com may get another SIP URI associated as sip:first.last@example.com returned in the P-Associated-URI header field value. An eavesdropper could collect this information. If the user does not want to disclose the associated URIs, the eavesdropper could have gained access to private URIs. Therefore it is RECOMMENDED that this extension is used in a secured environment, where encryption of SIP messages is provided either end-to-end or hop-by-hop.

6.2. P-Called-Party-ID

Due to the nature of the P-Called-Party-ID header field, this header does not introduce any significant security concern. It is possible for an attacker to modify the contents of the header. However, this modification will not cause any harm to the session establishment.

An eavesdropper may collect the list of identities a user is registered. This may have privacy implications. To mitigate this problem, this extension SHOULD only be used in a secured environment, where encryption of SIP messages is provided either end-to-end or hop-by-hop.

6.3. P-Visited-Network-ID

The P-Visited-Network-ID header field assumes that there is trust relationship between a home network and one or more transited visited networks. It is possible for other proxies between the proxy in the visited network that inserts the header, and the registrar or the home proxy, to modify the value of P-Visited-Network-ID header field. Therefore intermediaries participating in this mechanism MUST apply a hop-by-hop integrity protection mechanism such as IPsec or other available mechanisms in order to prevent such attacks.

6.4. P-Access-Network-Info

A Trust Domain is formally defined in the Short term requirements for Network Asserted Identity document[RFC3324]. For the purpose of this document, we refer to the 3GPP trust domain as the collection of SIP proxies and application servers that are operated by a 3GPP network operator and are compliant with the requirements expressed in 3GPP TS 24.229 [TS24.229].

This extension assumes that the access network is trusted by the UA (because the UA's home network has a trust relationship with the access network), as described earlier in this document.

This extension assumes that the information added to the header by the UAC should be sent only to trusted entities and should not be used outside of the trusted administrative network domain.

The SIP proxy that provides services to the user, utilizes the information contained in this header to provide additional services and UAs are expected to provide correct information. However, there are no security problems resulting from a UA inserting incorrect information. Networks providing services based on the information carried in the P-Access-Network-Info header field will therefore need to trust the UA sending the information. A roque UA sending false access network information will do no more harm than to restrict the user from using certain services.

The mechanism provided in this document is designed primarily for private systems like 3GPP. Most security requirements are met by way of private standardized solutions.

For instance, 3GPP will use the P-Access-Network-Info header field to carry relatively sensitive information like the cell ID. Therefore the information MUST NOT be sent outside of the 3GPP domain.

The UA is aware - if it is a 3GPP UA - that it is operating within a trusted domain.

The 3GPP UA is aware of whether or not a secure association to the home network domain for transporting SIP signaling, is currently available, and as such the sensitive information carried in the P -Access-Network-Info header field SHOULD NOT be sent in any initial unauthenticated and unprotected requests (e.g., REGISTER).

Any UA that is using this extension and is not part of a private trusted domain should not consider the mechanism as secure and as such SHOULD NOT send sensitive information in the P-Access-Network-Info header field.

Any proxy that is operating in a private trust domain where the P -Access-Network-Info header field is supported is required to delete the header, if it is present, from any message prior to forwarding it outside of the trusted domain.

Therefore, a network that requires its UA to send information in the P-Access-Network-Info header field must ensure that either that information is not of a sensitive nature or that information is not sent outside of the trust domain.

A proxy receiving a message containing the P-Access-Network-Info header field from a non-trusted entity is not able to guarantee the validity of the contents.

6.5. P-Charging-Function-Addresses

It is expected as normal behavior that proxies within a closed network will modify the values of the P-Charging-Function-Addresses header field and insert it into a SIP request or response. However, these proxies that share this information MUST have a trust relationship.

If an untrusted entity were inserted between trusted entities, it could potentially substitute a different charging function address. Therefore, an integrity protection mechanism such as IPsec or other available mechanisms MUST be applied in order to prevent such attacks. Since each trusted proxy MAY need to view or modify the values in the P-Charging-Function-Addresses header field, the protection should be applied on a hop-by-hop basis.

6.6. P-Charging-Vector

It is expected as normal behavior that proxies within a closed network will modify the values of the P-Charging-Vector header field and insert it into a SIP request or response. However, these proxies that share this information MUST have a trust relationship.

If an untrusted entity were inserted between trusted entities, it could potentially interfere with the charging correlation mechanism. Therefore, an integrity protection mechanism such as IPsec or other available mechanisms MUST be applied in order to prevent such attacks. Since each trusted proxy MAY need to view or modify the values in the P-Charging-Vector header field, the protection should be applied on a hop-by-hop basis.

7. IANA Considerations

This document defines several private SIP extension header fields (beginning with the prefix "P-").

This document obsoletes [RFC3455] but uses the same SIP header field names. The IANA registry needs to update the references to [RFC3455] with [RFC XXXX], where XXXX is the RFC number for this document.

The following extensions are registered as private extension header fields:

RFC Number: RFC3455

Header Field Name: P-Associated-URI

Compact Form: none

RFC Number: RFC3455

Header Field Name: P-Called-Party-ID

Compact Form: none

RFC Number: RFC3455

Header Field Name: P-Visited-Network-ID

Compact Form: none

RFC Number: RFC3455

Header Field Name: P-Access-Network-Info

Compact Form: none

RFC Number: RFC3455

Header Field Name: P-Charging-Function-Addresses

Compact Form: none

RFC Number: RFC3455

Header Field Name: P-Charging-Vector

Compact Form: none

8. Contributors and Acknowledgements

The authors would like to thank James Yu ans Atle Monrad for their extensive review and Dean Willis for his expert review. The authors would like to acknowledge the constructive feedback and contributions provided by Peter Leis, Joergen Axell and Jan Holm

The extensions described in [RFC3455] were originally specified in several documents. Miguel Garcia-Martin authored the P-Associated-URI, P-Called-Party-ID, and P-Visited-Network-ID header fields. Duncan Mills authored the P-Access-Network-Info header. Eric Henrikson authored the P-Charging-Function-Addresses and P-Charging-Vector headers. Rohan Mahy assisted in the incorporation of these extensions into a single document.

The listed authors of [RFC3455]were Miguel Garcia-Martin, Eric Henrikson and Duncan Mills.

The [RFC3455] authors thanked Andrew Allen, Gabor Bajko, Gonzalo Camarillo, Keith Drage, Georg Mayer, Dean Willis, Rohan Mahy, Jonathan Rosenberg, Ya-Ching Tan and the 3GPP CN1 WG members for their comments on [RFC3455].

9. Appendix: Changes from RFC 3455

- 1. Procedures for the P-Associated-URI header field at a proxy. RFC3455 indicates that it defines no procedures for the P -Associated-URI header field at a proxy. What is implicitly meant here is that the proxy does not add, read, modify or delete the header, and therefore RFC3261 proxy procedures only apply to the header.
- P-Called-Party-ID header field and the History-Info header 2. field: At the time RFC3455 was drafted, the History-Info header field was a long way from specification; this header has now been specified and approved in RFC 4244. It is acknowledged that the History-Info header field will provide equivalent coverage to that of the P-Called-Party-ID header field. However the P-Called-Party-ID header field is used entirely within the 3GPP system and does not appear to SIP entities outside that of a single 3GPP operator. Additionally the P-Called-Party-ID header field has been defined within 3GPP systems since release 5, and therefore it is realistic to expect implementations to be already released to the field. It is therefore considered that replacement of the P-Called-Party-ID header field within 3GPP systems causes more issues that it solves, and therefore the update of RFC3455 to remove the P-Called-Party-ID header field will not be addressed. However it is recommended that any new usage of this type of functionality should use the History-Info header field rather than the P-Called-Party-ID header field.
- 3. Procedures at the UA for the P-Charging-Function Addresses header field: The text in section 4.5.2.1 of RFC3455 [3] does not adequately take into account procedures for UAs located inside the private network, e.g. as gateways and suchlike which

may play a full part in network charging procedures. <u>Section 4.5.2.1</u> is replaced with the following text: "This document does not specify any procedure at a UA located outside the administrative domain of a private network, with regard to the P-Charging-Function-Addresses header field. Such UAs need not understand this header. However, it might be possible that a UA is located within the administrative domain of a private network (e.g., a PSTN gateway, or conference mixer), and it may have access to the addresses of the charging entities. In this cases, a UA MAY insert the P-Charging-Function-Addresses header field in a SIP request or response when the next hop for the message is a proxy or UA located in the same administrative domain. Similar such a UA may use the contents of the P -Charging-Function-Addresses header field in communicating with the charging entities."

- The text in section 4.6.2.1 of RFC3455 [3] does not adequately 4. take into account procedures for UAs located inside the private network, e.g. as gateways and suchlike which may play a full part in network charging procedures. Section 4.6.2.1 is replaced with the following text: "This document does not specify any procedure at a UA located outside the admininstrative domain of a private network, with regard to the P-Charging-Vector header field. UAs need not understand this header. However, it might be possible that a UA is located within the administrative domain of a private network (e.g., a PSTN gateway, or conference mixer), and it may it may interact with the charging entities. In this cases, a UA MAY insert the P-Charging-Vector header field in a SIP request or response when the next hop for the message is a proxy or UA located in the same administrative domain. Similar such a UA may use the contents of the P-Charging-Vector header field in communicating with the charging entities."
- 5. Recognition of additional values of access technology in the P -Access-Network-Info header field: A number of new access technologies are contemplated in 3GPP, and the reuse of IMS to support Next Generation Networks (NGN) is also resulting in new access technologies. Values for access technologies are defined explicitly in RFC3455 [3] and no IANA procedures are defined to maintain a separate registry. In particular the new values: "IEEE 802.11", "IEEE-802.11g", "IEEE-802.11n", "ADSL" / "ADSL2", "ADSL2+", "RADSL", "SDSL", "HDSL", "HDSL2", "G.SHDSL", "VDSL", "IDSL", "IEEE-802.3", "IEEE-802.3a", "IEEE-802.3e", "IEEE-802.3i", "IEEE-802.3j", "IEEE-802.3u", "IEEE-802.3ab", "IEEE-802.3ae", "IEEE-802.3ak", IEEE-802.3aq", "IEEE-802.3an", "IEEE-802.3y", "IEEE-802.3z", and "IEEE-802.3y" are defined.

- Replacement of existing value of access technology in the P 6. -Access-Network-Info header field: The value of "3GPP-CDMA2000" was replaced long ago in 3GPP2 by three new values: "3GPP2-1X", "3GPP2-1X-HRPD", "3GPP2-UMB". It is not believed that there was any deployment of the "3GPP-CDMA2000" value.
- Network provided P-Access-Network-Info header field: The P 7. -Access-Network-Info header field may additionally be provided by proxies within the network. This does not impact the values provided by a UA, rather the header is repeated. Such values are identified by the string "network-provided". A special class of values are defined for use here, as the same granularity of values may not be possible as for those available from the UA: "3GPP-GERAN", "3GPP-UTRAN", "3GPP-WLAN", "3GPP-GAN" and "3GPP-HSPA". Outbound proxies remove and P-Access-Network-Info header fields containing the "network-provided" value.
- 8. Definition of additional parameters to the P-Charging-Vector header field: Section 5.6 of RFC3455 [3] defines the syntax of the P-Charging-Vector header field. Additional parameters were considered too application specific for specification in RFC3455 [3], but it was acknowledged that they would exist, and indeed additional specification of such parameters, relating to specific access technologies, has occurred in 3GPP. This update therefore defines that applications using the P-Charging-Vector header field within their own applicability are allowed to define generic-param extensions without further reference to the IETF specification process.
- 9. PUBLISH method added to table 1.
- 10. Referencing: RFC 3427 deleted from references as not used within the document. Various informative references to work in progress now replaced with appropriate RFC number. References to 3GPP TS 32.200 replaced by references to 3GPP TS 32.240 [TS32.240], which is the successor specification. References to 3GPP TS 32.225 replaced by references to 3GPP TS 32.260 [TS32.260], which is the successor specification. Referencing style changed to symbolic references. Dates have been removed from all 3GPP references (i.e. latest version applies).
- 11. Various editorial changes in alignment with style used in RFC 3261 such as placing response code text in parentheses, and using words "request" and "response" in association with method names.
- 10. Appendix: Summary of changes between different versions

NOTE TO RFC EDITOR: PLEASE REMOVE THIS SECTION BEFORE PUBLICATION.

10.1. Changes between RFC 3455 and -00

- 1. Procedures for the P-Associated-URI header field at a proxy. RFC3455 indicates that it defines no procedures for the P -Associated-URI header field at a proxy. What is implicitly meant here is that the proxy does not add, read, modify or delete the header, and therefore RFC3261 proxy procedures only apply to the header.
- 2. P-Called-Party-ID header field and the History-Info header field: At the time RFC3455 was drafted, the History-Info header field was a long way from specification; this header has now been specified and approved in RFC 4244. It is acknowledged that the History-Info header field will provide equivalent coverage to that of the P-Called-Party-ID header field. However the P -Called-Party-ID header field is used entirely within the 3GPP system and does not appear to SIP entities outside that of a single 3GPP operator. Additionally the P-Called-Party-ID header field has been defined within 3GPP systems since release 5, and therefore it is realistic to expect implementations to be already released to the field. It is therefore considered that replacement of the P-Called-Party-ID header field within 3GPP systems causes more issues that it solves, and therefore the update of RFC3455 to remove the P-Called-Party-ID header field will not be addressed. However it is recommended that any new usage of this type of functionality should use the History-Info header field rather than the P-Called-Party-ID header field.
- 3. Recognition of additional values of access technology in the P -Access-Network-Info header field: the new values: "IEEE 802.11e", "IEEE-802.11g" are defined.
- 4. Procedures at the UA for the P-Charging-Function Addresses header field: The text in section 4.5.2.1 of RFC3455 [3] does not adequately take into account procedures for UAs located inside the private network, e.g. as gateways and suchlike which may play a full part in network charging procedures. Section 4.5.2.1 is replaced with the following text: "This document does not specify any procedure at a UA located outside the administrative domain of a private network, with regard to the P-Charging-Function-Addresses header field. Such UAs need not understand this header. However, it might be possible that a UA is located within the administrative domain of a private network (e.g., a PSTN gateway, or conference mixer), and it may have access to the addresses of the charging entities. In this cases, a UA MAY insert the P-Charging-Function-Addresses header field in a SIP

request or response when the next hop for the message is a proxy or UA located in the same administrative domain. Similar such a UA may use the contents of the P-Charging-Function-Addresses header field in communicating with the charging entities."

- 5. The text in section 4.6.2.1 of RFC3455 [3] does not adequately take into account procedures for UAs located inside the private network, e.g. as gateways and suchlike which may play a full part in network charging procedures. Section 4.6.2.1 is replaced with the following text: "This document does not specify any procedure at a UA located outside the admininstrative domain of a private network, with regard to the P-Charging-Vector header field. UAs need not understand this header. However, it might be possible that a UA is located within the administrative domain of a private network (e.g., a PSTN gateway, or conference mixer), and it may it may interact with the charging entities. In this cases, a UA MAY insert the P-Charging-Vector header field in a SIP request or response when the next hop for the message is a proxy or UA located in the same administrative domain. such a UA may use the contents of the P-Charging-Vector header field in communicating with the charging entities."
- Definition of additional parameters to the P-Charging-Vector header field: Section 5.6 of RFC3455 [3] defines the syntax of the P-Charging-Vector header field. Additional parameters were considered too application specific for specification in RFC3455 [3], but it was acknowledged that they would exist, and indeed additional specification of such parameters, relating to specific access technologies, has occurred in 3GPP. This update therefore defines that applications using the P-Charging-Vector header field within their own applicability are allowed to define generic-param extensions without further reference to the IETF specification process.

10.2. Changes between -00 and -01

- Document changed to a complete RFC in its own right, specifying all the new headers originally specified in RFC 3455 in full, rather than a list of proposed modifications to RFC 3455. Change due to comments to this effect, and also due to the replacement of RFC 3325 is also following this approach. Issues from -00 version incorporated into full text.
- 2. Removal of additional values of access technology in the P -Access-Network-Info header field: values "IEEE 802.11e" is removed.

- Recognition of additional values of access technology in the P -Access-Network-Info header field: A number of new access technologies are contemplated in 3GPP, and the reuse of IMS to support Next Generation Networks (NGN) is also resulting in new access technologies. Values for access technologies are defined explicitly in RFC3455 [3] and no IANA procedures are defined to maintain a separate registry. In particular the new values: "IEEE 802.11", "IEEE-802.11n", "ADSL" / "ADSL2", "ADSL2+", "RADSL", "SDSL", "HDSL", "HDSL2", "G.SHDSL", "VDSL", "IDSL", "IEEE-802.3", "IEEE-802.3a", "IEEE-802.3e", "IEEE-802.3i", "IEEE-802.3j", "IEEE-802.3u", "IEEE-802.3ab", "IEEE-802.3ae", "IEEE-802.3ak", IEEE-802.3aq", "IEEE-802.3an", "IEEE-802.3y", "IEEE-802.3z", and "IEEE-802.3y" are defined.
- 4. Replacement of existing value of access technology in the P -Access-Network-Info header field: The value of "3GPP-CDMA2000" was replaced long ago in 3GPP2 by three new values: "3GPP2-1X", "3GPP2-1X-HRPD", "3GPP2-UMB". It is not believed that there was any deployment of the "3GPP-CDMA2000" value.
- 5. Network provided P-Access-Network-Info header field: The P -Access-Network-Info header field may additionally be provided by proxies within the network. This does not impact the values provided by a UA, rather the header field is repeated. Such values are identified by the string "network-provided". A special class of values are defined for use here, as the same granularity of values may not be possible as for those available from the UA: "3GPP-GERAN", "3GPP-UTRAN", "3GPP-WLAN", "3GPP-GAN" and "3GPP-HSPA".

10.3. Changes between -01 and -02

- 1. Addition of values ccf-2 and ecf-2. Note that the naming of ccf and ecf was changed within 3GPP equivalent to cdf (Charging Data Function) and ocf (Online Charging Function), but nevertheless this is a documentationissue within 24.229 [TS24.229]).
- 2. By text description in 4.1.2.1 and 4.1.2.2, P-Associated-URI may have zero URI. But refer to the syntax description part in 5.1, it seams the header field would have at least one URI. The new text reflects that is allowed to have at minimum one associated uri within the P-Associated-URI.
- 3. Section 4.1.2.2 generalisation of URI so that not only SIP/SIP URI's are only allowed. This alings the whole section 4.1.2 where only URI is mentioned.

10.4. Changes between -02 and -03

- 1. <u>Section 4.6</u> addition of transit-ioi procedure
- 2. New <u>Section 4.6.3</u> addition of transit-ioi procedure
- Section 5.6 Addition of syntax for transit-ioi and descriptive text
- 4. Section 5.4 new Value "IEEE-802.3ah" added

10.5. Changes between -03 and -04

- 1. <u>Section 5.6</u>, 4.6.4 and 4.6.4.1 related-icid added
- 2. Editorials in diffrent sections

10.6. Changes between -04 and -05

- 1. Correction of exampl in <u>Section 4.5.2.3</u>
- 2. textual addition in section 4.5 for ccf-2 and ecf-2
- 3. Correction of ABNF

10.7. Changes between -05 and -06

1. Correction ABNF addition and correction of access types and access info

10.8. Changes between -06 and -07

- 1. Made Use of P-Charging-Vector Heder optional
- 2. <u>Section 4.6.1</u> added explicit the mid-dialog request

10.9. Changes between -07 and -08

1. Comments included from review of James Yu sent via DISPATCH list. Mainly editorials, wording issues and clarifications on technical issues. No technical changes or addition of features.

10.10. Changes between -08 and -09

- 1. Correction of ABNF change UE-time-zone to local-time-zone
- 2. Comments from Expert review

3. Editorial wrap-up

11. References

11.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.
- [RFC2234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", <u>RFC 2234</u>, November 1997.
- [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", <u>RFC 3261</u>, June 2002.

11.2. Informative References

- [RFC2976] Donovan, S., "The SIP INFO Method", <u>RFC 2976</u>, October 2000.
- [RFC3262] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional Responses in Session Initiation Protocol (SIP)", RFC 3262, June 2002.
- [RFC3265] Roach, A., "Session Initiation Protocol (SIP)-Specific Event Notification", <u>RFC 3265</u>, June 2002.
- [RFC3311] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE Method", <u>RFC 3311</u>, October 2002.
- [RFC3324] Watson, M., "Short Term Requirements for Network Asserted Identity", <u>RFC 3324</u>, November 2002.
- [RFC3428] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C., and D. Gurle, "Session Initiation Protocol (SIP) Extension for Instant Messaging", <u>RFC 3428</u>, December 2002.
- [RFC3455] Garcia-Martin, M., Henrikson, E., and D. Mills, "Private Header (P-Header) Extensions to the Session Initiation Protocol (SIP) for the 3rd-Generation Partnership Project (3GPP)", RFC 3455, January 2003.
- [RFC3515] Sparks, R., "The Session Initiation Protocol (SIP) Refer Method", <u>RFC 3515</u>, April 2003.

- [RFC3903] Niemi, A., "Session Initiation Protocol (SIP) Extension for Event State Publication", RFC 3903, October 2004.
- [RFC4083] Garcia-Martin, M., "Input 3rd-Generation Partnership Project (3GPP) Release 5 Requirements on the Session Initiation Protocol (SIP)", RFC 4083, May 2005.
- [RFC4244] Barnes, M., "An Extension to the Session Initiation Protocol (SIP) for Request History Information", RFC 4244, November 2005.

[TS23.228]

3GPP, "P Multimedia Subsystem (IMS); Stage 2", 3GPP TS 23.228 10.4.0, March 2011.

[TS24.229]

3GPP, "IP multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3", 3GPP TS 24.229 10.3.0, April 2011.

[TS32.240]

3GPP, "Telecommunication management; Charging management; Charging architecture and principles", 3GPP TS 32.240 10.1.0, April 2011.

[TS32.260]

3GPP, "Telecommunication management; Charging management; IP Multimedia Subsystem (IMS) charging", 3GPP TS 32.260 10.3.0, April 2011.

Authors' Addresses

Keith Drage Alcatel-Lucent Quadrant, StoneHill Green, Westlea Swindon, Wilts UK

Email: drage@alcatel-lucent.com

Christer Holmberg Ericsson Hirsalantie 11 Jorvas 02420 Finland

Email: christer.holmberg@ericsson.com

Roland Jesske Deutsche Telekom Heinrich-Hertz-Strasse 3-7 Darmstadt 64307 Germany

Phone: +4961515812766

Email: r.jesske@telekom.de