
Workgroup: Network Working Group

Internet-Draft: draft-dss-star-02

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: A. Davidson

Brave Software

S. K. Sahib

Brave Software

P. Snyder

Brave Software

C. A. Wood

Cloudflare

STAR: Distributed Secret Sharing for Private Threshold Aggregation

Reporting

Abstract

Servers often need to collect data from clients that can be privacy-

sensitive if the server is able to associate the collected data with

a particular user. In this document we describe STAR, an efficient

and secure threshold aggregation protocol for collecting

measurements from clients by an untrusted aggregation server, while

maintaining K-anonymity guarantees.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Cryptographic Dependencies

3.1. Threshold Secret Sharing

3.1.1. Unverifiable Secret Sharing

3.1.2. Verifiable Secret Sharing

3.2. Verifiable Oblivious Pseudorandom Function

3.3. Key Derivation Function

3.4. Key-Committing Authenticated Encryption with Associated Data

4. System Overview

4.1. Randomness Phase

4.1.1. Configuration

4.1.2. Randomness Protocol

4.2. Reporting Phase

4.2.1. Reporting Configuration

4.2.2. Reporting Protocol

4.3. Aggregation Phase

4.4. Auxiliary data

5. Anonymizing Proxy Options

5.1. Application-Layer Proxy

5.2. Connection-Layer Proxy

6. Security Considerations

6.1. Randomness Sampling

6.2. Oblivious Submission

6.3. Malicious Clients

6.4. Malicious Aggregation Server

6.4.1. Dictionary Attacks

6.4.2. Sybil Attacks

6.5. Leakage and Failure Model

6.5.1. Size of Anonymity Set

6.5.2. Collusion between Aggregation and Randomness Servers

6.5.3. Collusion between Aggregation Server and Anonymizing

Proxy

7. Comparisons with other Systems

7.1. Private Heavy-Hitter Discovery

7.2. General Aggregation

7.3. Protocol Leakage

7.4. Support for auxiliary data

8. IANA Considerations

8.1. Protocol Message Media Types

8.1.1. "application/star-randomness-request" media type

8.1.2. "application/star-report" media type

8.1.3. "application/star-randomness-response" media type

¶

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

Collecting user data is often fraught with privacy issues because

without adequate protections it is trivial for the server to learn

sensitive information about the client contributing data. Even when

the client's identity is separated from the data (for example, if

the client is using the [Tor] network or [OHTTP] to upload data),

it's possible for the collected data to be unique enough that the

user's identity is leaked. A common solution to this problem of the

measurement being user-identifying is to make sure that the

measurement is only revealed to the server if there are at least K

clients that have contributed the same data, thus providing K-

anonymity to participating clients. Such privacy-preserving systems

are referred to as threshold aggregation systems.

In this document we describe one such system, namely Distributed

Secret Sharing for Private Threshold Aggregation Reporting (STAR)

[STAR].

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following notation is used throughout the document.

len(l): Outputs the length of input list l, e.g., len([1,2,3]) =

3).

range(a, b): Outputs a list of integers from a to b-1 in

ascending order, e.g., range(1, 4) = [1,2,3].

pow(a, b): Outputs the integer result of a to the power of b,

e.g., pow(2, 3) = 8.

|| denotes concatenation of byte strings, i.e., x || y denotes

the byte string x, immediately followed by the byte string y,

with no extra separator, yielding xy.

str(x): Outputs an ASCII string encoding of the integer input x,

e.g., str(1) = "1".

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

Aggregation Server:

Randomness Server:

Anonymizing Server:

Client:

Measurement:

Report:

Auxiliary Data:

REPORT_THRESHOLD:

nil denotes an empty byte string.

In addition, the following terms are used:

An entity that would like to learn aggregated

data from users.

An entity that runs an oblivious pseudorandom

function ([OPRF]) service that allows clients to receive

pseudorandom function evaluations on their measurement and the

server OPRF key, without the Randomness Server learning anything

about their measurement. The clients use the output as randomness

to produce the report that is then sent to the Aggregation

Server.

An entity that clients use to decouple their

identity (IP address) from their messages sent to the Aggregation

Server.

The entity that provides user data to the system.

The unencrypted, potentially-sensitive data that the

client is asked to report.

The encrypted measurement being sent by the client.

Arbitrary data that clients may send as part of

their report, but which is only revealed when at least K

encrypted measurements of the same value are received.

The minimum number of reports that an Aggregation

Server needs before revealing client data. This value is chosen

by the application.

3. Cryptographic Dependencies

STAR depends on the following cryptographic protocols and

primitives:

Threshold secret sharing (TSS); Section 3.1

Oblivious Pseudorandom Function (OPRF); Section 3.2

Key Derivation Function (KDF); Section 3.3

Key-Committing Authenticated Encryption with Associated Data

(KCAEAD); Section 3.4

This section describes the syntax for these protocols and primitives

in more detail.

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

¶

3.1. Threshold Secret Sharing

A threshold secret sharing scheme with the following important

properties:

Privacy: Secret shares reveal nothing unless k = REPORT_THRESHOLD

shares are combined to recover the secret.

Authenticity: Combining at least k = REPORT_THRESHOLD shares will

only succeed if all shares correspond to the same underlying

secret. Otherwise, it fails.

A threshold secret sharing scheme with these properties has the

following API syntax:

Share(k, secret, rand): Produce a k-threshold share using

randomness rand and secret, along with a commitment to the

secret, each of size Nshare and Ncommitment bytes long. The value

k is an integer, and secret and rand are byte strings.

Recover(k, share_set): Combine the secret shares in share_set,

each of which correspond to the same secret share commitment,

which is of size at least k, and recover the corresponding

message secret. If recovery fails, this function returns an

error.

Nshare: The size in bytes of a secret share value.

Ncommitment: The size in bytes of a secret share commitment

value.

A threshold secret sharing scheme is built on top of the scalar

field of a prime-order group G, where the order is a large prime p.

The group operation for G is addition + with identity element I. For

any elements A and B of the group G, A + B = B + A is also a member

of G. Also, for any A in G, there exists an element -A such that A +

(-A) = (-A) + A = I. Integers, taken modulo the group order p, are

called scalars; arithmetic operations on scalars are implicitly

performed modulo p. Since p is prime, scalars form a finite field.

Scalar multiplication is equivalent to the repeated application of

the group operation on an element A with itself r-1 times, denoted

as ScalarMult(A, r). We denote the sum, difference, and product of

two scalars using the +, -, and * operators, respectively. (Note

that this means + may refer to group element addition or scalar

addition, depending on types of the operands.) For any element A,

ScalarMult(A, p) = I. We denote B as a fixed generator of the group.

Scalar base multiplication is equivalent to the repeated application

of the group operation B with itself r-1 times, this is denoted as

ScalarBaseMult(r). The set of scalars corresponds to GF(p), which we

refer to as the scalar field. This document uses types Element and

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

*

¶

Scalar to denote elements of the group G and its set of scalars,

respectively. We denote Scalar(x) as the conversion of integer input

x to the corresponding Scalar value with the same numeric value. For

example, Scalar(1) yields a Scalar representing the value 1. We

denote equality comparison as == and assignment of values by =.

Finally, it is assumed that group element addition, negation, and

equality comparisons can be efficiently computed for arbitrary group

elements.

We now detail a number of member functions that can be invoked on G.

Identity(): Outputs the group identity element I.

RandomScalar(): Outputs a random Scalar element in GF(p), i.e., a

random scalar in [0, p - 1].

HashToScalar(x, dst): Deterministically map an array of bytes x

to a Scalar element. This function is optionally parameterized by

a domain separation tag dst.

SerializeElement(A): Maps an Element A to a canonical byte array

buf of fixed length Ne. This function can raise an error if A is

the identity element of the group.

DeserializeElement(buf): Attempts to map a byte array buf to an

Element A, and fails if the input is not the valid canonical byte

representation of an element of the group. This function can

raise an error if deserialization fails or A is the identity

element of the group.

ScalarBaseMult(k): Output the scalar multiplication between

Scalar k and the group generator B.

SerializeScalar(s): Maps a Scalar s to a canonical byte array buf

of fixed length Ns.

DeserializeScalar(buf): Attempts to map a byte array buf to a

Scalar s. This function can raise an error if deserialization

fails.

[[OPEN ISSUE: specify validation steps somewhere, likely cribbing

from other documents]]

3.1.1. Unverifiable Secret Sharing

This section specifies traditional (unverifiable) Shamir secret

sharing (SSS) [Shamir] for implementing the sharing scheme. This

functionality is implemented using ristretto255 [RISTRETTO]. Share

and Recover are implemented as follows, where Nshare = 2*Nscalar and

Ncommitment = 32.

¶

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

The dependencies for Share and Recover are as follows:

polynomial_evaluate(x, poly) from [FROST], Section 4.2.1 for

evaluating a given polynomial specified by poly on the input x.

polynomial_interpolation(points) from [FROST], Section 4.2.3 for

constructing a polynomial of degree N-1 from the set points of

size N and returning the coefficient list, where the 0-th

coefficient of the polynomial is the first element in the output

list.

3.1.2. Verifiable Secret Sharing

This section specifies Feldman's verifiable secret sharing (VSS)

[Feldman] for implementing the sharing scheme. This functionality is

implemented using ristretto255 [RISTRETTO]. Share and Recover are

def Share(k, secret, rand):

 # Construct the secret sharing polynomial

 poly = [G.HashToScalar(secret, str(0))]

 for i in range(1, k):

 poly.extend(G.HashToScalar(rand, str(i)))

 # Compute the secret commitment

 commitment = SHA256(secret)

 # Evaluate the polynomial at a random point

 x = G.RandomScalar()

 y = polynomial_evaluate(x, poly)

 # Construct the share

 x_enc = G.SerializeScalar(x)

 y_enc = G.SerializeScalar(y)

 share = x_enc || y_enc

 return share, commitment

def Recover(k, share_set):

 if share_set.length < k:

 raise RecoveryFailedError

 points = []

 for share in share_set:

 x = G.DeserializeScalar(share[0:Ns])

 y = G.DeserializeScalar(share[Ns:])

 points.append((x, y))

 poly = polynomial_interpolation(points)

 return poly[0]

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-11#section-4.2.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-11#section-4.2.3

implemented as follows, where Nshare = 2*Nscalar and Ncommitment =

k*Ne, where Ne is the size of a serialized group element.

The helper functions polynomial_evaluate and

polynomial_interpolation are as defined in the previous section. The

helper function Commit is implemented as follows:

Moreover, VSS extends the syntax of SSS to add another function,

Verify, that is used to check that a share is correct for a given

commitment. Verify is implemented as follows.

¶

def Share(k, secret, rand):

 # Construct the secret sharing polynomial

 poly = [G.HashToScalar(secret, str(0))]

 for i in range(1, k):

 poly.extend(G.HashToScalar(rand, str(i)))

 # Compute the secret (and polynomial) commitment

 commitment = Commit(secret)

 # Evaluate the polynomial at a random point

 x = G.RandomScalar()

 y = polynomial_evaluate(x, poly)

 # Construct the share

 x_enc = G.SerializeScalar(x)

 y_enc = G.SerializeScalar(y)

 share = x_enc || y_enc

 return share, commitment

def Recover(k, share_set):

 if share_set.length < k:

 raise RecoveryFailedError

 points = []

 for share in share_set:

 x = G.DeserializeScalar(share[0:Ns])

 y = G.DeserializeScalar(share[Ns:])

 points.append((x, y))

 poly = polynomial_interpolation(points)

 return poly[0]

¶

¶

def Commit(poly):

 commitment = nil

 for coefficient in poly:

 C_i = G.ScalarBaseMult(coefficient)

 commitment = commitment || G.SerializeElement(C_i)

 return commitment

¶

¶

3.2. Verifiable Oblivious Pseudorandom Function

A Verifiable Oblivious Pseudorandom Function (VOPRF) is a two-party

protocol between client and server for computing a PRF such that the

client learns the PRF output and neither party learns the input of

the other. This specification depends on the prime-order VOPRF

construction specified in [OPRF], draft version -10, using the VOPRF

mode (0x01) from [OPRF], Section 3.1.

The following VOPRF client functions are used:

Blind(element): Create and output (blind, blinded_element),

consisting of a blinded representation of input element, denoted

blinded_element, along with a value to revert the blinding

process, denoted blind.

Finalize(element, blind, evaluated_element, proof): Finalize the

OPRF evaluation using input element, random inverter blind,

evaluation output evaluated_element, and proof proof, yielding

output oprf_output or an error upon failure.

Moreover, the following OPRF server functions are used:

BlindEvaluate(k, blinded_element): Evaluate blinded input element

blinded_element using input key k, yielding output element

evaluated_element and proof proof. This is equivalent to the

Evaluate function described in [OPRF], Section 3.3.1, where k is

the private key parameter.

DeriveKeyPair(seed, info): Derive a private and public key pair

deterministically from a seed and info parameter, as described in

[OPRF], Section 3.2.

def Verify(share, commitment):

 x = G.DeserializeScalar(share[0:Ns])

 y = G.DeserializeScalar(share[Ns:])

 S' = G.ScalarBaseMult(y)

 if len(commitment) % Ne != 0:

 raise Exception("Invalid commitment length")

 num_coefficients = len(commitment) % Ne

 commitments = []

 for i in range(0, num_coefficients):

 c_i = G.DeserializeElement(commitment[i*Ne:(i+1)*Ne])

 commitments.extend(c_i)

 S = G.Identity()

 for j in range(0, num_coefficients):

 S = S + G.ScalarMult(commitments[j], pow(x, j))

 return S == S'

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-3.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-3.3.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-3.2

Finally, this specification makes use of the following shared

functions and parameters:

SerializeElement(element): Map input element to a fixed-length

byte array buf.

DeserializeElement(buf): Attempt to map input byte array buf to

an OPRF group element. This function can raise a DeserializeError

upon failure; see [OPRF], Section 2.1 for more details.

SerializeScalar(scalar): Map input scalar to a unique byte array

buf of fixed length Ns bytes.

DeserializeScalar(buf): Attempt to map input byte array buf to an

OPRF scalar element. This function raise a DeserializeError upon

failure; see [OPRF], Section 2.1 for more details.

Ns: The size of a serialized OPRF scalar element output from

SerializeScalar.

Noe: The size of a serialized OPRF group element output from

SerializeElement.

This specification uses the verifiable OPRF from [OPRF], Section 3

with the OPRF(ristretto255, SHA-512) as defined in [OPRF],

Section 4.1.1.

3.3. Key Derivation Function

A Key Derivation Function (KDF) is a function that takes some source

of initial keying material and uses it to derive one or more

cryptographically strong keys. This specification uses a KDF with

the following API and parameters:

Extract(salt, ikm): Extract a pseudorandom key of fixed length Nx

bytes from input keying material ikm and an optional byte string

salt.

Expand(prk, info, L): Expand a pseudorandom key prk using the

optional string info into L bytes of output keying material.

Nx: The output size of the Extract() function in bytes.

This specification uses HKDF-SHA256 [HKDF] as the KDF function,

where Nx = 32.

3.4. Key-Committing Authenticated Encryption with Associated Data

A Key-Committing Authenticated Encryption with Associated Data

(KCAEAD) scheme is an algorithm for encrypting and authenticating

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

* ¶

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-2.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-2.1
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-3
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14#section-4.1.1

plaintext with some additional data. It has the following API and

parameters:

Seal(key, nonce, aad, pt): Encrypt and authenticate plaintext

"pt" with associated data "aad" using symmetric key "key" and

nonce "nonce", yielding ciphertext "ct" and tag "tag".

Open(key, nonce, aad, ct): Decrypt "ct" and tag "tag" using

associated data "aad" with symmetric key "key" and nonce "nonce",

returning plaintext message "pt". This function can raise an

OpenError upon failure.

Nk: The length in bytes of a key for this algorithm.

Nn: The length in bytes of a nonce for this algorithm.

Nt: The length in bytes of the authentication tag for this

algorithm.

This specification uses a KCAEAD built on AES-128-GCM [GCM], HKDF-

SHA256 [HKDF], and HMAC-SHA256 [HMAC]. In particular, Nk = 16, Nn =

12, and Nt = 16. The Seal and Open functions are implemented as

follows.

4. System Overview

In STAR, clients generate encrypted measurements and send them to a

single untrusted Aggregation Server in a report. Each report is

effectively a random k-out-of-n share of the client data secret,

¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

def Seal(key, nonce, aad, pt):

 key_prk = Extract(nil, key)

 aead_key = Expand(key_prk, "aead", Nk)

 hmac_key = Expand(key_prk, "hmac", 32) // 32 bytes for SHA-256

 ct = AES-128-GCM-Seal(key=aead_key, nonce=nonce, aad=aad, pt=pt)

 tag = HMAC(key=hmac_key, message=ct)

 return ct || tag

def Open(key, nonce, aad, ct_and_tag):

 key_prk = Extract(nil, key)

 aead_key = Expand(key_prk, "aead", Nk)

 hmac_key = Expand(key_prk, "hmac", 32) // 32 bytes for SHA-256

 ct || tag = ct_and_tag

 expected_tag = HMAC(key=hmac_key, message=ct)

 if !constant_time_equal(expected_tag, tag):

 raise OpenError

 pt = AES-128-GCM-Open(key=aead_key, nonce=nonce, aad=aad, ct=ct) // This can raise an OpenError

 return pt

¶

along with some additional auxilary data. In a given amount of time,

if the Aggregation Server receives the same encrypted value from k =

REPORT_THRESHOLD clients, the server can recover the client data

associated with each report. This ensures that clients only have

their measurements revealed if they are part of a larger crowd,

thereby achieving k-anonymity privacy (where k = REPORT_THRESHOLD).

Each client report is as secret as the underlying client data. That

means low entropy client data values could be abused by an untrusted

Aggregation Server in a dictionary attack to recover client data

with fewer than REPORT_THRESHOLD honestly generated reports. To

mitigate this, clients boost the entropy of their data using output

from an Oblivious Pseudorandom Function (OPRF) provided by a

separate, non-colluding Randomness Server.

STAR also requires use of a client Anonymizing Proxy when

interacting with the Aggregation Server so that the Aggregation

Server cannot link a client report to a client which generated it.

This document does not require a specific type of proxy. In

practice, proxies built on [OHTTP] or [Tor] suffice; see Section 5

for more details.

The overall architecture is shown in Figure 1, where msg is the

measurement and aux is auxiliary data associated with a given

client. The output of the interaction is a data value msg shared

amongst REPORT_THRESHOLD honest clients and a list of additional

auxiliary data values associated with each of the REPORT_THRESHOLD

client reports, denoted <aux>.

¶

¶

¶

¶

Client Randomness Aggregation
(msg, aux) Server Server

\
Request(Blind(msg))

Randomness
Evaluate Phase

Response(...)

/
...

Generate Report
using randomness

Anonymizing
Proxy

Report \

Store Report
Acknowledgement Report Phase

... /
. .

...
\

Recover data Aggregation
from Reports Phase

/

(msg, <aux>)

Figure 1: System Architecture

In the following subsections, we describe each of the phases of STAR

in more detail.

4.1. Randomness Phase

The randomness sampled from a client data MUST be a deterministic

function of the measurement. Clients sample this randomness by

running an OPRF protocol with the Randomness Server. This section

describes how the Randomness Server is configured and then how

clients interact with it for computing the randomness.

¶

¶

¶

4.1.1. Configuration

STAR clients are configured with a Randomness Server URI and the

Randomness Server public key pkR. Clients use this URI to send HTTP

messages to the Randomness Server to complete the protocol. As an

example, the Randomness Server URI might be https://

randomness.example.

The Randomness Server only needs to configure an OPRF key pair per

epoch. This is done as follows:

4.1.2. Randomness Protocol

This procedure works as follows. Let msg be the client's measurement

to be used for deriving the randomness rand.

Clients first generate the a context for invoking the OPRF protocol

as follows:

Clients then blind their measurement using this context as follows:

Clients then compute randomness_request =

OPRF.SerializeElement(blinded_element) and send it to the Randomness

Server URI in a HTTP POST message using content type "application/

star-randomness-request". An example request is shown below.

Upon receipt, the Randomness Server evaluates and returns a

response. It does so by first creating a context for running the

ORPF protocol as follows:

¶

¶

seed = random(32)

(skR, pkR) = DeriveKeyPair(seed, "STAR")

¶

¶

¶

client_context = SetupVOPRFClient(0x0001, pkR) // OPRF(ristretto255, SHA-512) ciphersuite¶

¶

(blinded, blinded_element) = client_context.Blind(msg)¶

¶

:method = POST

:scheme = https

:authority = randomness.example

:path = /

accept = application/star-randomness-response

content-type = application/star-randomness-request

content-length = Noe

<Bytes containing a serialized blinded element>

¶

¶

server_context = SetupVOPRFServer(0x0001, skR, pkR) // OPRF(ristretto255, SHA-512) ciphersuite¶

Here, skR and pkR are private and public keys generated as described

in Section 4.1.1.

The Randomness Server then computes blinded_element =

OPRF.DeserializeElement(randomness_request). If this fails, the

Randomness Server returns an error in a 4xx response to the client.

Otherwise, the server computes:

The Randomness Server then serializes the evaluation output and

proof to produce a randomness response as follows:

This response is then sent to the client using the content type

"application/star-randomness-response". An example response is

below.

Upon receipt, the client computes parses randomness_response to

recover the evaluated element and proof as follows:

If any of these steps fail, the client aborts the protocol.

Otherwise, the client finalizes the OPRF protocol to compute the

output rand as follows:

4.2. Reporting Phase

In the reporting phase, the client uses its measurement msg with

auxiliary data aux and its derived randomness rand to produce a

report for the Aggregation Server.

4.2.1. Reporting Configuration

The reporting phase requires the Aggregation Server to be configured

with a URI for accepting reports. As an example, the Aggregation

¶

¶

evaluated_element, proof = server_context.BlindEvaluate(sk, blinded_element)¶

¶

evaluated_element_enc = OPRF.SerializeElement(evaluated_element)

proof_enc = OPRF.SerializeScalar(proof[0]) || OPRF.SerializeScalar(proof[1])

randomness_response = evaluated_element_enc || proof_enc

¶

¶

:status = 200

content-type = application/star-randomness-response

content-length = Noe

<Bytes containing randomness_response>

¶

¶

evaluated_element_enc || proof_enc = parse(randomness_response)

evaluated_element = OPRF.DeserializeElement(evaluated_element_enc)

proof = [OPRF.DeserializeScalar(proof_enc[0:Ns]), OPRF.DeserializeScalar(proof_enc[Ns:])]

¶

¶

rand = client_context.Finalize(msg, blind, evaluated_element, proof)¶

¶

Server URI might be https://aggregator.example. The Aggregation

Server is both an Oblivious HTTP Target and Oblivious Gateway

Resource.

Clients are also configured with an Anonymizing Proxy that clients

can use to send proxy reports to the Aggregation Server. The exact

type of proxy is not specified here. See Section 5 for more details.

4.2.2. Reporting Protocol

This reporting protocol works as follows. First, the client

stretches rand into three values key_seed and share_coins, and

additionally derives an KCAEAD key and nonce from key_seed.

The client then generates a secret share of key_seed using

share_coins as randomness as follows:

The client then encrypts msg and aux using the KCAEAD key and nonce

as follows:

The function len(x, n) encodes the length of input x as an n-byte

big-endian integer.

Finally, the client constructs a report consisting of

encrypted_report and random_share, as well as share_commitment, and

sends this to the Anonymizing Server in the subsequent epoch, i.e.,

after the Randomness Server has rotated its OPRF key.

¶

¶

¶

// Randomness derivation

rand_prk = Extract(nil, rand)

key_seed = Expand(rand_prk, "key_seed", 16)

share_coins = Expand(rand_prk, "share_coins", 16)

// Symmetric encryption key derivation

key_prk = Extract(nil, key_seed)

key = Expand(key_prk, "key", Nk)

nonce = Expand(key_prk, "nonce", Nn)

¶

¶

random_share, share_commitment = Share(REPORT_THRESHOLD, key_seed, share_coins)¶

¶

report_data = len(msg, 4) || msg || len(aux, 4) || aux

encrypted_report = Seal(key, nonce, nil, report_data)

¶

¶

¶

struct {

 opaque encrypted_report<1..2^16-1>;

 opaque random_share[Nshare];

 opaque share_commitment[Ncommitment];

} Report;

¶

Specifically, Clients send a Report to the Aggregation Server using

an HTTP POST message with content type "application/star-report". An

example message is below.

This message is sent to the Aggregation Server through the

Anonymizing Proxy. See Section 5 for different types of proxy

options.

4.3. Aggregation Phase

Aggregation is the final phase of STAR. It happens offline and does

not require any communication between different STAR entities. It

proceeds as follows. First, the Aggregation Server groups reports

together based on their share_commitment value. If applicable, the

Aggregation Server also verifies that each share commitment is

correct, i.e., by invoking the Verify function on each share and

share_commitment pair in candidate set of reports. Let report_set

denote a set of at least REPORT_THRESHOLD reports that have a

matching share_commitment value.

Given this set, the Aggregation Server begins by running the secret

share recovery algoritm as follows:

If this fails, the Aggregation Server chooses a new candidate report

share set and reruns the aggregation process. See Section 6.3 for

more details.

Otherwise, the Aggregation Server derives the same KCAEAD key and

nonce from key_seed to decrypt each of the report ciphertexts in

report_set.

Each report ciphertext is decrypted as follows:

¶

:method = POST

:scheme = https

:authority = aggregator.example

:path = /

content-type = application/star-report

content-length = <Length of body>

<Bytes containing a Report>

¶

¶

¶

¶

key_seed = Recover(report_set)¶

¶

¶

key_prk = Extract(nil, key_seed)

key = Expand(key_prk, "key", Nk)

nonce = Expand(key_prk, "nonce", Nn)

¶

¶

report_data = Open(key, nonce, nil, ct)¶

The message msg and auxiliary data aux are then parsed from

report_data.

If this fails for any report, the Aggregation Server chooses a new

candidate report share set and reruns the aggregation process.

Otherwise, the Aggregation Server then outputs the msg and aux

values for the corresponding reports.

4.4. Auxiliary data

In Figure 1, aux refers to auxiliary or additional data that may be

sent by clients, and is distinct from the measurement data protected

by the K-anonymity guarantee. Auxiliary data is only revealed when

the k-condition is met but, importantly, is not part of the k-

condition itself. This data might be unique to some or all of the

submissions, or omitted entirely. This can even be the actual

measured value itself. For example: if we're measuring tabs open on

a client, then the measurement being sent can be "city: Vancouver"

and the aux data can be "7" for a particular client. The idea being,

that we only reveal all the measurements once we know that there are

at least K clients with city: Vancouver.

5. Anonymizing Proxy Options

The Anonymizing Proxy can be instantiated using [OHTTP], [Tor], or

even a TCP-layer proxy. The choice of which proxy to use depends on

the application threat model. The fundamental requirement is that

the Anonymizing Proxy hide the client IP address and any other

unique client information from the Aggregation Server.

In general, there are two ways clients could implement the proxy: at

the application layer, e.g., via [OHTTP], or at the connection or

transport layer, e.g., via [Tor] or similar systems. We describe

each below.

5.1. Application-Layer Proxy

An application-layer proxy hides client identifying information from

the Aggregation Server via application-layer intermediation. [OHTTP]

is the RECOMMENDED option for an application-layer proxy. [OHTTP]

ensures that a network adversary between the client and Anonymizing

Proxy cannot link reports sent to the Aggregation Server (up to what

is possible by traffic analysis).

OHTTP consists of four entities: client, Oblivious Relay Resource,

Oblivious Gateway Resource, and Target Resource. In this context,

the Target Resource is the Aggregation Server. The Aggregation

Server can also act as the Oblvious Gateway Resource. Clients are

configured with the URI of the Oblivious Relay Resource, and use

this to forward requests to a Oblivious Gateway Resource. The

¶

¶

¶

¶

¶

¶

Oblivious Gateway Resource then forwards requests to the Target as

required.

5.2. Connection-Layer Proxy

A connection-layer proxy hides client identifying information from

the Aggregation Server via connection-layer intermediation. [Tor] is

perhaps the most commonly known example of such a proxy. Clients can

use Tor to connect to and send reports to the Aggregation Server.

Other examples of connection-layer proxies include CONNECT-based

HTTPS proxies, used in systems like Private Relay [PrivateRelay] and

TCP-layer proxies. TCP proxies only offer weak protection in

practice since an adversary capable of eavesdropping on ingress and

egress connections from the Anonymizing Proxy can trivially link

data together.

6. Security Considerations

This section contains security considerations for the draft.

6.1. Randomness Sampling

Deterministic randomness MUST be sampled by clients to construct

their STAR report, as discussed in Section 4.2. This randomness

CANNOT be derived locally, and MUST be sampled from the Randomness

Server (that runs an [OPRF] service).

For best-possible security, the Randomness Server SHOULD sample and

use a new OPRF key for each time epoch t, where the length of epochs

is determined by the application. The previous OPRF key that was

used in epoch t-1 can be safely deleted. As discussed in

Section 6.5, shorter epochs provide more protection from Aggregation

Server attacks, but also reduce the window in which data collection

occurs (and hence reduce the possibility that we will have enough

reports to decrypt) while increasing the reporting latency.

In this model, for further security, clients SHOULD sample their

randomness in epoch t and then send it to the Aggregation Server in

t+1 (after the Randomness Server has rotated their secret key). This

prevents the Aggregation Server from launching queries after

receiving the client reports (Section 6.5). It is also RECOMMENDED

that the Randomness Server runs in verifiable mode, which allows

clients to verify the randomness that they are being served [OPRF].

6.2. Oblivious Submission

The reports being submitted to an Aggregation Server in STAR MUST be

detached from client identity. This is to ensure that the

Aggregation Server does not learn exactly what each client submits,

in the event that their measurement is revealed. This is achieved

¶

¶

¶

¶

¶

¶

through the use of an Anonymizing Server, which is an OHTTP

Oblivious Relay Resource. This server MUST NOT collude with the

Aggregation Server. All the client responsibilities mentioned in

section 7.1 of [OHTTP] apply.

The OHTTP Relay Resource and Randomness Server MAY be combined into

a single entity, since client reports are protected by a TLS

connection between the client and the Aggregation Server. Therefore,

OHTTP support can be enabled without requiring any additional non-

colluding parties. In this mode, the Randomness Server SHOULD allow

two endpoints: (1) to evaluate the VOPRF functionality that provides

clients with randomness, and (2) to proxy client reports to the

Aggregation Server. However, this increases the privacy harm in case

of collusion; see Section 6.5.3.

If configured otherwise, clients can upload reports to the

Aggregation Server using an existing anonymizing proxy service such

as [Tor]. However, use of OHTTP is likely to be the most efficient

way to achieve oblivious submission.

6.3. Malicious Clients

Malicious clients can perform a denial-of-service attacks on the

system by sending bogus reports to the Aggregation Server. There are

several types of bogus reports:

Reports with invalid shares, or corrupt reports. These are

reports that will yield the incorrect secret when combined by the

Aggregation Server.

Reports with invalid ciphertext, or garbage reports. These are

reports that contain an encryption of the wrong measurement value

(msg).

Corrupt reports can be mitigated by using a verifiable secret

sharing scheme, such as the one described in Section 3.1.2, and

verifying that the share commitments are correct for each share.

This ensures that each share in a report set corresponds to the same

secret.

Garbage reports cannot easily be mitigated unless the Aggregation

Server has a way to confirm that the recovered secret is correct for

a given measurement value (msg). This might be done by allowing the

Aggregation Server to query the Randomness Server on values of its

choosing, but this opens the door to dictionary attacks.

In the absence of protocol-level mitigations, Aggregation Servers

can limit the impact of malicious clients by using higher-layer

defences such as identity-based certification [Sybil].

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

6.4. Malicious Aggregation Server

6.4.1. Dictionary Attacks

The Aggregation Server may attempt to launch a dictionary attack

against the client measurement, by repeatedly launching queries

against the Randomness Server for measurements of its choice. This

is mitigated by the fact that the Randomness Server regularly

rotates the VOPRF key that they use, which reduces the window in

which this attack can be launched (Section 6.1). Note that such

attacks can also be limited in scope by maintaining out-of-band

protections against entities that attempt to launch large numbers of

queries in short time periods.

6.4.2. Sybil Attacks

By their very nature, attacks where a malicious Aggregation Server

injects clients into the system that send reports to try and reveal

data from honest clients are an unavoidable consequence of building

any threshold aggregation system. This system cannot provide

comprehensive protection against such attacks. The time window in

which such attacks can occur is restricted by rotating the VOPRF key

(Section 6.1). Such attacks can also be limited in scope by using

higher-layer defences such as identity-based certification [Sybil].

6.5. Leakage and Failure Model

6.5.1. Size of Anonymity Set

Client reports immediately leak deterministic tags that are derived

from the VOPRF output that is evaluated over client measurement.

This has the immediate impact that the size of the anonymity set for

each received measurement (i.e. which clients share the same

measurement) is revealed, even if the measurement is not revealed.

As long as client reports are sent via an [OHTTP] Relay Resource,

then the leakage derived from the anonymity sets themselves is

significantly reduced. However, it may still be possible to use this

leakage to reduce a client's privacy, and so care should be taken to

not construct situations where counts of measurement subsets are

likely to lead to deanonymization of clients or their data.

6.5.2. Collusion between Aggregation and Randomness Servers

Finally, note that if the Aggregation and Randomness Servers collude

and jointly learn the VOPRF key, then the attack above essentially

becomes an offline dictionary attack. As such, client security is

not completely lost when collusion occurs, which represents a safer

mode of failure when compared with Prio and Poplar.

¶

¶

¶

¶

6.5.3. Collusion between Aggregation Server and Anonymizing Proxy

As mentioned in Section 6.2, systems that depend on a relaying

server to remove linkage between client reports and client identity

rely on the assumption of non-collusion between the relay and the

server processing the client reports. Given that STAR depends on

such a system for guaranteeing that the Aggregation Server does not

come to know which client submitted the STAR report (once

decrypted), the same collusion risk applies.

It's worth mentioning here for completeness sake that if the OHTTP

Relay Resource and Randomness Server are combined into a single

entity as mentioned in Section 6.2, then this worsens the potential

leakage in case of collusion: if the entities responsible for the

Aggregation Server and the Randomness Server collude as described in

Section 6.5.2, this results in the Aggregation Server in effect

colluding with the anonymizing proxy.

7. Comparisons with other Systems

[[EDITOR NOTE: for information/discussion: consider removing before

publication]]

7.1. Private Heavy-Hitter Discovery

STAR is similar in nature to private heavy-hitter discovery

protocols, such as Poplar [Poplar]. In such systems, the Aggregation

Server reveals the set of client measurements that are shared by at

least K clients. STAR allows a single untrusted server to perform

the aggregation process, as opposed to Poplar which requires two

non-colluding servers that communicate with each other.

As a consequence, the STAR protocol is orders of magnitude more

efficient than the Poplar approach, with respect to computational,

network-usage, and financial metrics. Therefore, STAR scales much

better for large numbers of client submissions. See the [STAR] paper

for more details on efficiency comparisons with the Poplar approach.

7.2. General Aggregation

In comparison to general aggregation protocols like Prio [Prio], the

STAR protocol provides a more constrained set of functionality.

However, STAR is significantly more efficient for the threshold

aggregation functionality, requires only a single Aggregation

Server, and is not limited to only processing numerical data types.

7.3. Protocol Leakage

As we discuss in Section 6.5, STAR leaks deterministic tags derived

from the client measurement that reveal which (and how many) clients

¶

¶

¶

¶

¶

¶

share the same measurements, even if the measurements themselves are

not revealed. This also enables an online dictionary attack to be

launched by the Aggregation Server by sending repeated VOPRF queries

to the Randomness Server as discussed in Section 6.4.1.

The leakage of Prio is defined as whatever is leaked by the function

that the aggregation computes. The leakage in Poplar allows the two

Aggregation Servers to learn all heavy-hitting prefixes of the

eventual heavy-hitting strings that are output. Note that in Poplar

it is also possible to launch dictionary attacks of a similar nature

to STAR by launching a Sybil attack [Sybil] that explicitly injects

multiple measurements that share the same prefix into the

aggregation. This attack would result in the aggregation process

learning more about client inputs that share those prefixes.

Finally, note that under collusion, the STAR security model requires

the adversary to launch an offline dictionary attack against client

measurements. In Prio and Poplar, security is immediately lost when

collusion occurs.

7.4. Support for auxiliary data

It should be noted that clients can send auxiliary data

(Section 4.4) that is revealed only when the aggregation including

their measurement succeeds (i.e. K-1 other clients send the same

value). Such data is supported by neither Prio, nor Poplar.

8. IANA Considerations

8.1. Protocol Message Media Types

This specification defines the following protocol messages, along

with their corresponding media types types:

Randomness request Section 4.1: "application/star-randomness-

request"

Randomness response Section 4.1: "application/star-randomness-

response"

Report Section 4.2: "application/star-report"

The definition for each media type is in the following subsections.

Protocol message format evolution is supported through the

definition of new formats that are identified by new media types.

IANA [shall update / has updated] the "Media Types" registry at

https://www.iana.org/assignments/media-types with the registration

information in this section for all media types listed above.

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

[OPEN ISSUE: Solicit review of these allocations from domain

experts.]

8.1.1. "application/star-randomness-request" media type

application

star-randomness-request

N/A

None

only "8bit" or "binary" is permitted

see Section 6

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

8.1.2. "application/star-report" media type

application

star-report

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

N/A

None

only "8bit" or "binary" is permitted

see Section 6

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

8.1.3. "application/star-randomness-response" media type

application

star-randomness-response

N/A

None

only "8bit" or "binary" is permitted

see Section 6

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

[FROST]

[GCM]

[HKDF]

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

9. References

9.1. Normative References

Connolly, D., Komlo, C., Goldberg, I., and C. A. Wood,

"Two-Round Threshold Schnorr Signatures with FROST", Work

in Progress, Internet-Draft, draft-irtf-cfrg-frost-11, 7

October 2022, <https://datatracker.ietf.org/doc/html/

draft-irtf-cfrg-frost-11>.

Dworkin, M., "Recommendation for block cipher modes of

operation :: GaloisCounter Mode (GCM) and GMAC", National

Institute of Standards and Technology report, DOI

10.6028/nist.sp.800-38d, 2007, <https://doi.org/10.6028/

nist.sp.800-38d>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

rfc/rfc5869>.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-11
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-11
https://doi.org/10.6028/nist.sp.800-38d
https://doi.org/10.6028/nist.sp.800-38d
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869

[HMAC]

[OPRF]

[RFC2119]

[RFC8174]

[RISTRETTO]

[ADSS]

[Brave]

[Feldman]

[OHTTP]

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/rfc/rfc2104>.

Davidson, A., Faz-Hernández, A., Sullivan, N., and C. A.

Wood, "Oblivious Pseudorandom Functions (OPRFs) using

Prime-Order Groups", Work in Progress, Internet-Draft,

draft-irtf-cfrg-voprf-14, 6 October 2022, <https://

datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

de Valence, H., Grigg, J., Hamburg, M., Lovecruft, I.,

Tankersley, G., and F. Valsorda, "The ristretto255 and

decaf448 Groups", Work in Progress, Internet-Draft,

draft-irtf-cfrg-ristretto255-decaf448-04, 14 October

2022, <https://datatracker.ietf.org/doc/html/draft-irtf-

cfrg-ristretto255-decaf448-04>.

9.2. Informative References

Bellare, M., Dai, W., and P. Rogaway, "Reimagining Secret

Sharing: Creating a Safer and More Versatile Primitive by

Adding Authenticity, Correcting Errors, and Reducing

Randomness Requirements", 27 June 2020, <https://

eprint.iacr.org/2020/800>.

"Brave Browser", n.d., <https://brave.com>.

Feldman, P., "A practical scheme for non-interactive

verifiable secret sharing", 28th Annual Symposium on

Foundations of Computer Science (sfcs 1987), DOI 10.1109/

sfcs.1987.4, October 1987, <https://doi.org/10.1109/sfcs.

1987.4>.

Thomson, M. and C. A. Wood, "Oblivious HTTP", Work in

Progress, Internet-Draft, draft-ietf-ohai-ohttp-05, 26

https://www.rfc-editor.org/rfc/rfc2104
https://www.rfc-editor.org/rfc/rfc2104
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf-14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-04
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-ristretto255-decaf448-04
https://eprint.iacr.org/2020/800
https://eprint.iacr.org/2020/800
https://brave.com
https://doi.org/10.1109/sfcs.1987.4
https://doi.org/10.1109/sfcs.1987.4

[Poplar]

[Prio]

[PrivateRelay]

[SGCM]

[Shamir]

[STAR]

[Sybil]

[Tor]

September 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-ohai-ohttp-05>.

Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N.,

and Y. Ishai, "Lightweight Techniques for Private Heavy

Hitters", 4 January 2022, <https://eprint.iacr.org/

2021/017>.

Geoghegan, T., Patton, C., Rescorla, E., and C. A. Wood,

"Privacy Preserving Measurement", Work in Progress,

Internet-Draft, draft-gpew-priv-ppm-01, 7 March 2022,

<https://datatracker.ietf.org/doc/html/draft-gpew-priv-

ppm-01>.

"iCloud Private Relay Overview", 2021, <https://

www.apple.com/icloud/docs/

iCloud_Private_Relay_Overview_Dec2021.pdf>.

Saarinen, M.-J. O., "SGCM: The Sophie Germain Counter

Mode", 4 November 2011, <https://eprint.iacr.org/

2011/326>.

Shamir, A., "How to share a secret", 1 November 1979,

<https://dl.acm.org/doi/10.1145/359168.359176>.

Davidson, A., Snyder, P., Quirk, E., Genereux, J.,

Haddadi, H., and B. Livshits, "STAR: Distributed Secret

Sharing for Private Threshold Aggregation Reporting", 10

April 2022, <https://arxiv.org/abs/2109.10074>.

Douceur, J., "The Sybil Attack", 10 October 2002,

<https://link.springer.com/chapter/

10.1007/3-540-45748-8_24>.

Dingledine, R., Mathewson, N., and P. Syverson, "Tor: The

Second-Generation Onion Router", 2004, <https://svn-

archive.torproject.org/svn/projects/design-paper/tor-

design.pdf>.

Acknowledgments

The authors would like to thank the authors of the original [STAR]

paper, which forms the basis for this document.

Authors' Addresses

Alex Davidson

Brave Software

Email: alex.davidson92@gmail.com

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-05
https://datatracker.ietf.org/doc/html/draft-ietf-ohai-ohttp-05
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://datatracker.ietf.org/doc/html/draft-gpew-priv-ppm-01
https://datatracker.ietf.org/doc/html/draft-gpew-priv-ppm-01
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
https://eprint.iacr.org/2011/326
https://eprint.iacr.org/2011/326
https://dl.acm.org/doi/10.1145/359168.359176
https://arxiv.org/abs/2109.10074
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
https://link.springer.com/chapter/10.1007/3-540-45748-8_24
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
mailto:alex.davidson92@gmail.com

Shivan Kaul Sahib

Brave Software

Email: shivankaulsahib@gmail.com

Peter Snyder

Brave Software

Email: pes@brave.com

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

mailto:shivankaulsahib@gmail.com
mailto:pes@brave.com
mailto:caw@heapingbits.net

	STAR: Distributed Secret Sharing for Private Threshold Aggregation Reporting
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Cryptographic Dependencies
	3.1. Threshold Secret Sharing
	3.1.1. Unverifiable Secret Sharing
	3.1.2. Verifiable Secret Sharing

	3.2. Verifiable Oblivious Pseudorandom Function
	3.3. Key Derivation Function
	3.4. Key-Committing Authenticated Encryption with Associated Data

	4. System Overview
	4.1. Randomness Phase
	4.1.1. Configuration
	4.1.2. Randomness Protocol

	4.2. Reporting Phase
	4.2.1. Reporting Configuration
	4.2.2. Reporting Protocol

	4.3. Aggregation Phase
	4.4. Auxiliary data

	5. Anonymizing Proxy Options
	5.1. Application-Layer Proxy
	5.2. Connection-Layer Proxy

	6. Security Considerations
	6.1. Randomness Sampling
	6.2. Oblivious Submission
	6.3. Malicious Clients
	6.4. Malicious Aggregation Server
	6.4.1. Dictionary Attacks
	6.4.2. Sybil Attacks

	6.5. Leakage and Failure Model
	6.5.1. Size of Anonymity Set
	6.5.2. Collusion between Aggregation and Randomness Servers
	6.5.3. Collusion between Aggregation Server and Anonymizing Proxy

	7. Comparisons with other Systems
	7.1. Private Heavy-Hitter Discovery
	7.2. General Aggregation
	7.3. Protocol Leakage
	7.4. Support for auxiliary data

	8. IANA Considerations
	8.1. Protocol Message Media Types
	8.1.1. "application/star-randomness-request" media type
	8.1.2. "application/star-report" media type
	8.1.3. "application/star-randomness-response" media type

	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Authors' Addresses

