
Internet Draft D. Dube
draft-dube-modbus-applproto-00.txt J. Camerini
Category: Informational Schneider Automation Inc.
 May 2002

MODBUS Application Protocol

Status of this Memo
===================

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on November 10, 2002.

Copyright Notice
================

Copyright (C) 2002 The Internet Society. All Rights Reserved.

Abstract
========

MODBUS is an application layer messaging protocol, positioned at level
7 of the OSI model. MODBUS provides client/server communication between
devices connected on different types of buses or networks. MODBUS is a
confirmed service protocol and offers many services specified by
function codes. MODBUS function codes are elements of MODBUS
Request/Reply PDUs. The objective of this document is to describe the
function codes used within the framework of MODBUS/TCP transactions.

https://datatracker.ietf.org/doc/html/draft-dube-modbus-applproto-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/shadow.html

Dube & Camerini Informational [Page 1]

RFC 3xxx MODBUS Application Protocol May 2002

Comments
========

Please send comments to Dennis Dube at dennis.dube@modicon.com

Table of Contents
=================

1. Overview .. 2
1.1 Abbreviations .. 2

2. MODBUS/TCP Protocol Specification 2
2.1 MODBUS PDU Structure 3
2.2 MODBUS Data Encoding 6
2.3 MODBUS Data Model 6
2.4 MODBUS/TCP Transactions 7

3. Function Code Categories 8
3.1 Assigned Public Function Codes 9

4. Function Code Definitions 10
4.1 Read Coil Status 01 (0x01) 10
4.2 Read Discrete Inputs 02 (0x02) 11
4.3 Read Holding Registers 03 (0x03) 12
4.4 Read Input Registers 04 (0x04) 13
4.5 Force Single Coil 05 (0x05) 14
4.6 Write Single Register 06 (0x06) 15
4.7 Force Multiple Coils 15 (0x0F) 16
4.8 Write Multiple Registers 16 (0x10) 17
4.9 Read File Record 20/6 (0x14/0x06) 18
4.10 Write File Record 21/6 (0x15/0x06) 19
4.11 Mask Write Register 22 (0x16) 21
4.12 Read/Write Holding Registers 23 (0x17) 22
4.13 Read Device Identification 43/14 (0x2B/0x0E) 23

5. Acknowledgements .. 27
6. Security Considerations 27
7. References ... 27
8. AuthorÆs Addresses .. 27
Appendix A : Full Copyright Statement 28

1. Overview

MODBUS is an application layer messaging protocol for client/server
communication. MODBUS exists on different communication stacks.
This RFC describes MODBUS/TCP.

 MB/TCP Protocol Stack

Dube & Camerini Informational [Page 2]

RFC 3xxx MODBUS Application Protocol May 2002

 LAYER PROTOCOL
 ------------ ------------------
 Application MODBUS
 Transport TCP
 Network IP
 Link Ethernet II & IEEE 802.3
 Physical 10BaseT & 100BaseT

1.1 Abbreviations

 ADU Application Data Unit
 HMI Human Machine Interface
 IETF Internet Engineering Task Force
 I/O Input/Output
 IP Internet Protocol
 MAC Medium Access Control
 MB MODBUS Protocol
 MBAP MODBUS Application Protocol
 PDU Protocol Data Unit
 PLC Programmable Logic Controller
 TCP Transport Control Protocol

2.0 MODBUS/TCP Protocol Specification

 This section presents the elements of the MODBUS/TCP Protocol which
 include :
 * MODBUS/TCP PDU Structure
 * MODBUS Data Encoding
 * MODBUS Data Model
 * MODBUS Transactions

The focus and scope of the entire section is the application layer.

2.1 MODBUS/TCP PDU Structure

The MODBUS protocol defines a simple protocol data unit (PDU)independent
of the underlying communication layers. The mapping of MODBUS protocol
on specific buses or networks can introduce some additional framing
fields. The application data unit (ADU) for MODBUS is defined as the
MODBUS PDU plus any framing fields. The ADU for MODBUS is defined as :

 |----------------------- ADU ----------------------------|

 | Header | Function Code | Data | Error Check |

 |----------- PDU ---------------|

Dube & Camerini Informational [Page 3]

RFC 3xxx MODBUS Application Protocol May 2002

 Figure 1 MODBUS ADU

The MODBUS/TCP ADU is defined as :

 |------------------ ADU ------------------------|

 | MBAP Header | Function Code | Data |

 |----------- PDU ------------|

 Figure 2 MODBUS/TCP ADU

A MODBUS/TCP ADU includes an MBAP header and a MODBUS PDU, and is defined as:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Inv_id | Proto_id |
 +-+
 | length |Unit Identifer | MODBUS PDU |
 +-+

The MBAP header is 7 bytes long, and includes the following fields :

 inv_id - [2 bytes] invocation identification used for
 transaction pairing

 proto_id - [2 bytes] is always 0 for MODBUS services. Other
 values are reserved for further extensions.

 length - [2 bytes] The length field is a byte count of the
 remaining fields and includes the dst_id and data fields.

 unit_id - [1 byte] The unit identifier is used to identify a
 remote server located on a non-TCP/IP network.

All MODBUS/TCP ADUs are sent via TCP on registered system port 502.

The service portion of the MODBUS Application Protocol is the MODBUS
PDU that contains 2 fields :

 func_code - [1 byte] MODBUS function code

 data - [n bytes] This field is function code dependent and
 usually contains information such as variable references,

Dube & Camerini Informational [Page 4]

RFC 3xxx MODBUS Application Protocol May 2002

 variable counts, data offsets, sub-function codes etc.

The size of the MODBUS/TCP ADU is limited by the size constraint
inherited from the first MODBUS implementations on Serial Line networks, eg the
max. MODBUS/RS485 ADU = 256 bytes. Therefore, the
MODBUS/TCP ADU is 256 and consequently the MODBUS/TCP PDU = 256 û 7 (length of
MBAP Header) = 249 bytes max.

The MODBUS protocol defines three PDUs. They are :
 * MODBUS Request PDU, mb_req_pdu
 * MODBUS Response PDU, mb_rsp_pdu
 * MODBUS Exception Response PDU, mb_excep_rsp_pdu

The mb_req_pdu is defined :

 mb_req_pdu = { function_code, request_data), where

 function_code - [1 byte] MODBUS function code

 request_data - [n bytes] This field is function code dependent
 and usually contains information such as variable
 references, variable counts, data offsets, sub-
 function codes etc.

The mb_rsp_pdu is defined :

 mb_rsp_pdu = { function_code, response_data), where

 function_code - [1 byte] MODBUS function code

 response_data - [n bytes] This field is function
code dependent and usually contains
information such as variable references, variable
counts, data offsets, sub-function codes, etc.

The mb_excep_rsp_pdu is defined :

 mb_excep_rsp_pdu = { function_code, request_data), where

 function_code - [1 byte] MODBUS function code + 0x80

 exception_code - [1 byte] MODBUS Exception Code Defined in table
 below.

Code Name Meaning
---- -------- ------------
01 ILLEGAL FUNCTION The function code received in the request

Dube & Camerini Informational [Page 5]

RFC 3xxx MODBUS Application Protocol May 2002

 is not an allowable action for the server.

02 ILLEGAL DATA The data address received in the request
 ADDRESS is not an allowable address for the server.

03 ILLEGAL DATA A value contained in the request data
 VALUE field is not an allowable value for server.

04 SERVER FAILURE An unrecoverable error occurred when the
 server attempted to perform the requested
 action.

05 ACKNOWLEDGE The server has accepted the request and is
 processing it. However a long duration of time
 will be required to finish. This response is
 returned to prevent a timeout error from
 occurring at the client. The client must use
 some polling technique to determine when the
 processing of the request is completed.

06 SERVER BUSY The server is engaged in processing a
 longûduration program command. The client
 should retransmit the message later when the
 server is free.

08 MEMORY PARITY Specialized use in conjunction with function
 ERROR codes 20 and 21 and reference type 6. Indicates
 that the extended file area failed to pass a
 consistency check. The server attempted to read
 extended memory, but detected a parity error in
 the memory. The client can retry the request,
 but service may be required on the server
 device.

0A GATEWAY PATH Specialized use in conjunction with gateways.
 UNAVAILABLE Indicates that the gateway was unable to
 allocate an internal communication path from the
 input port to the output port for processing the
 request. Usually means that the gateway is
 misconfigured or overloaded.

0B GATEWAY TARGET Specialized use in conjunction with gateways.
 DEVICE FAILED TO Indicates that no response was obtained from the
 RESPOND target device. Usually means that the device is
 not present on the network.

255 EXTENDED Indicates the mb_exception_rsp_pdu contains
 EXCEPTION extended exception information. A subsequent

Dube & Camerini Informational [Page 6]

RFC 3xxx MODBUS Application Protocol May 2002

 RESPONSE two-byte length field indicates the size in
 bytes of the function code specific exception
 information.

2.2 MODBUS Data Encoding

MODBUS uses a æbig-EndianÆ representation for addresses and data items.
This means that when a numerical quantity larger than a single byte is
transmitted, the most significant byte is sent first. So for example

 Register size Value
 16 - bits 0x1234 the first byte sent is 0x12
 then 0x34

Some function codes can use other encoding rules, However in this case
the encoding rule has to be described explicitly.

Please see RFC 791, Appendix B, for a detailed description of the
default data encoding and transmission order.

2.3 MODBUS Data Model

MODBUS bases its data model on a series of indexed register files that
have distinguishing characteristics. The four primary register file types are:

Register Type Data Type Access Comments

Discrete Input single bit read-only data from I/O system
Discrete Output(Coils) single bit read-write data from application
Input Registers 16-bit word read-only data from I/O system
Holding Registers 16-bit word read-write data from application

The distinctions between inputs and outputs, and between bit-
addressable and word-addressable data items, do not imply any
application behavior. It is perfectly acceptable, and very common, to
regard all four register files as overlaying one another, if this is
the most natural interpretation on the target machine in question.

For each of the primary register files, the protocol allows individual
selection of 65536 data items, and the operations of read or write of
those items are designed to span multiple consecutive data items up to
a data size limit which is dependent on the transaction function code.

Data handled via MODBUS (bits, registers, etc) is usually located in
device application memory, however physical addresses in memory should
not be confused with MODBUS data references. A device is only required

https://datatracker.ietf.org/doc/html/rfc791#appendix-B

Dube & Camerini Informational [Page 7]

RFC 3xxx MODBUS Application Protocol May 2002

to link MODBUS data references with physical addresses.

MODBUS logical reference numbers, which are used in MODBUS functions,
are unsigned integer indices starting at zero.

2.4 MODBUS/TCP Transactions

MODBUS is a confirmed service protocol and consequently MODBUS/TCP
transactions are request/response pairs of PDUs. Two scenarios are
possible, ie after sending a mb_req_pdu to the MODBUS server, the
MODBUS client will receive either a normal mb_rsp_pdu or a
mb_excep_rsp_pdu in return .

 Client Server
 -------- ---------
 mb_req_pdu ----->
 <----- mb_rsp_pdu

 or

 mb_req_pdu ----->
 <----- mb_excep_rsp_pdu

The following pseudo code describes the processing of a mb_req_pdu
received by a MODBUS server.

 wait wait until a mb_req_pdu is received

 parse Check mb_req_pdu
 if function code is invalid then go to excep_01
 if data address is invalid then go to excep_02
 if data values are invalid then go to excep_03

 run Execute function
 if function code does not execute OK then go to
 excep_run
 send mb_rsp_pdu
 go to wait

 excep_01 send mb_excep_rsp_pdu with exception code 1
 go to wait

 excep_02 send mb_excep_rsp_pdu with exception code 2
 go to wait

 excep_03 send mb_excep_rsp_pdu with exception code 3

Dube & Camerini Informational [Page 8]

RFC 3xxx MODBUS Application Protocol May 2002

 go to wait

 excep_run send mb_excep_rsp_pdu with an execution exception code
 go to wait

For an exception response, the server returns a function code that is
the original function code plus 0x80, ie with its most significant bit
set to 1.

Client transaction timeout handling and mb_req_pdu retry mechanisms are
not inherently part of the MODBUS protocol although many client
applications implement such mechanisms.

3. Function Code Categories

There are 3 categories of MODBUS Function Codes, ie
 1. Public Function Codes
 2. User-Defined Function Codes
 3. Reserved Function Codes

The set of Public Function Codes is actually a union of 2 sets of
function codes. They are :
 1. Assigned Function Codes, described in this RFC

2. Unassigned Function Codes, set aside for future assignment.

Public Function Codes

 * are well defined function codes ,
 * guaranteed to be unique,
 * validated by the modbus.org community,
 * publicly documented at modbus.org,
 * have available conformance tests,
 * are publicly documented by means of this IETF RFC for the MODBUS
 Application Protocol,
 * include both assigned function codes as well as unassigned
 function codes reserved for future use.

User-Defined Function Codes

 * There are two defined ranges of user-defined function codes, ie
 * 65 to 72 decimal (0x41 to 0x58), and
 * 100 to 110 decimal (0x64 to 0x6E).
 * The user can select and implement a function code without any
 approval from modbus.org.
 * There is no guarantee that the use of the selected function code
 will be unique.

https://datatracker.ietf.org/doc/html/rfc2
https://datatracker.ietf.org/doc/html/rfc2

Dube & Camerini Informational [Page 9]

RFC 3xxx MODBUS Application Protocol May 2002

Reserved Function Codes

 * are currently in use in various products,
 * are not considered part of the set of Public Function Codes,
 * are not assignable as Public Function Codes.

3.1 Assigned Public Function Codes

Data Access
 Bit Access
 Function Name Function Code
 -------------------- -------------
 Read Discrete Inputs 02 (0x02)
 Read Coil Status 01 (0x01)
 Force Single Coil 05 (0x05)
 Force Multiple Coils 15(0x0F)

 16-bit Word Access
 Function Name Function Code
 -------------------- -------------
 Read Input Registers 04 (0x04)
 Read Holding Registers 03(0x03)
 Write Single Register 06(0x06)
 Write Multiple Registers 16(0x11)
 Read/Write Holding Registers 23(0x17)
 Mask Write Holding Register 22(0x16)

File Record Access
 Function Name Function Code Sub-Function Code
 -------------------- ------------- -----------------
 Read File Record 20(0x14) 06(0x06)
 Write File Record 21(0x15) 06(0x06)

Encapsulated Interface
 Function Name Function Code MEI Type
 ----------------- ------------- ---------
 Read Device 43(0x2B) 14(0x0E)
 Identification

4. Public Function Code Definitions

4.1 Read Coil Status 01 (0x01)

Dube & Camerini Informational [Page 10]

RFC 3xxx MODBUS Application Protocol May 2002

This function code is used to read from 1 to 2000 contiguous status of
coils in a remote device. The Request PDU specifies the starting
address, ie the address of the first coil specified, and the number of
coils. Coils are addressed starting at zero. Therefore coils 1-16 are
addressed as 0-15.

The coils in the response message are packed as one coil per bit of the
data field. Status is indicated as 1= ON and 0= OFF. The LSB of the
first data byte contains the output addressed in the query. The other
coils follow toward the high order end of this byte, and from low order
to high order in subsequent bytes.

If the returned output quantity is not a multiple of eight, the
remaining bits in the final data byte will be padded with zeros (toward
the high order end of the byte). The Byte Count field specifies the
quantity of complete bytes of data.

Request PDU

 Function Code 1 byte 01 (0x01)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 No. of Coils 2 bytes 1 to 2000 (0x7D0)

Response PDU

 Function Code 1 byte 01(0x01)
 Byte Count 1 byte N*
 Coil Status n bytes n = N or N+1

 *N = Quantity of Outputs / 8, if the remainder is different than 0
 then N = N+1

Here is an example of a request to read coils 20û38:

 Request hex Response hex

 Function Code 01 Function Code 01
 Starting Address Hi 00 Byte Count 03
 Starting Address Lo 13 Coil Status 27-20 CD
 No. of Coils Hi 00 Coil Status 35-28 6B
 No. of Coils Lo 13 Coil Status 38-36 05

The status of outputs 27û20 is shown as the byte value CD hex, or
binary 1100 1101. Output 27 is the MSB of this byte, and output 20 is
the LSB.

Dube & Camerini Informational [Page 11]

RFC 3xxx MODBUS Application Protocol May 2002

By convention, bits within a byte are shown with the MSB to the left,
and the LSB to the right. Thus the outputs in the first byte are æ27
through 20Æ, from left to right. The next byte has outputs æ35 through
28Æ, left to right. As the bits are transmitted serially, they flow
from LSB to MSB: 20 . . . 27, 28 . . . 35, and so on.

In the last data byte, the status of outputs 38-36 is shown as the byte
value 05 hex, or binary 0000 0101. Output 38 is in the sixth bit
position from the left, and output 36 is the LSB of this byte. The five
remaining high order bits are zero filled.

4.2 Read Discrete Inputs 02 (0x02)

This function code is used to read from 1 to 2000 contiguous status of
discrete inputs in a remote device. The Request PDU specifies the
starting address, ie the address of the first input specified, and the
number of inputs. Inputs are addressed starting at zero. Therefore
inputs 1-16 are addressed as 0-15.

The status of discrete inputs in the response message are packed as one
input per bit of the data field. Status is indicated as 1= ON; 0= OFF.
The LSB of the first data byte contains the input addressed in the
query. The other inputs follow toward the high order end of this byte,
and from low order to high order in subsequent bytes.

If the returned input quantity is not a multiple of eight, the
remaining bits in the final data byte will be padded with zeros (toward
the high order end of the byte). The Byte Count field specifies the
quantity of complete bytes of data.

Request PDU

 Function Code 1 byte 02 (0x02)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 No. of Inputs 2 bytes 1 to 2000 (0x7D0)

Response PDU

 Function Code 1 byte 01(0x01)
 Byte Count 1 byte N*
 Input Status n bytes n = N or N+1

 *N = Quantity of Outputs / 8, if the remainder is greater than of 0
 then N = N+1

Here is an example of a request to read inputs 197 - 218:

Dube & Camerini Informational [Page 12]

RFC 3xxx MODBUS Application Protocol May 2002

 Request hex Response hex

 Function Code 02 Function Code 02
 Starting Address Hi 00 Byte Count 03
 Starting Address Lo C5 Input Status 204-197 AC
 No. of Inputs Hi 00 Input Status 212-205 DB
 No. of Inputs Lo 16 Input Status 218-213 35

The status of inputs 204û197 is shown as the byte value AC hex, or
binary 1010 1100. Input 204 is the MSB of this byte, and input 197 is
the LSB.

The status of inputs 218û213 is shown as the byte value 35 hex, or
binary 0011 0101. Input 218 is in the third bit position from the left,
and input 213 is the LSB. The two remaining high order bits are zeo
filled.

4.3 Read Holding Registers 03 (0x03)

This function code is used to read the contents of a contiguous block
of holding registers in a remote device. The Request PDU specifies the
starting register address and the number of registers. Registers are
addressed starting at zero. Therefore registers 1-16 are addressed as
0-15.

The register data in the response message are packed as two bytes per
register, with the binary contents right justified within each byte.
For each register, the first byte contains the high order bits and the
second contains the low order bits.

Request PDU

 Function Code 1 byte 03 (0x03)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 No. Holdings Registers 2 bytes 1 to approx 125 (0x7D)

Response PDU

 Function Code 1 byte 03(0x03)
 Byte Count 1 byte 2 x N*
 Register Values n bytes n = 2 x N

 *N = Number of Registers

Here is an example of a request to read registers 108-110:

 Request hex Response hex

Dube & Camerini Informational [Page 13]

RFC 3xxx MODBUS Application Protocol May 2002

 Function Code 03 Function Code 03
 Starting Address Hi 00 Byte Count 06
 Starting Address Lo 6B Register Value Hi (108) 02
 No. of Registers Hi 00 Register Value Lo (108) 2B
 No. of Registers Lo 03 Register Value Hi (109) 00
 Register Value Lo (109)
00 Register Value Hi (110) 00
 Register Value Lo (110) 64

The contents of register 108 are shown as the two byte values of 02 2B
hex, or 555 decimal. The contents of registers 109û110 are 00 00 and 00
64 hex, or 0 and 100 decimal, respectively.

4.4 Read Input Registers 04 (0x04)

This function code is used to read from 1 to approx. 125 contiguous
input registers in a remote device. The Request PDU specifies the
starting register address and the number of registers. Registers are
addressed starting at zero. Therefore input registers 1-16 are
addressed as 0-15.

The register data in the response message are packed as two bytes per
register, with the binary contents right justified within each byte.
For each register, the first byte contains the high order bits and the
second contains the low order bits.

Request PDU

 Function Code 1 byte 04 (0x04)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 No. Input Registers 2 bytes 1 to approx 125 (0x7D)

Response PDU

 Function Code 1 byte 04(0x04)
 Byte Count 1 byte 2 x N*
 Input Register Values n bytes n = 2 x N

 *N = Number of Registers

Here is an example of a request to read input register 9:

 Request hex Response hex

 Function Code 04 Function Code 04
 Starting Address Hi 00 Byte Count 02
 Starting Address Lo 08 Value Register 9 Hi 00

Dube & Camerini Informational [Page 14]

RFC 3xxx MODBUS Application Protocol May 2002

 No. Input Registers Hi 00 Value Register 9 Lo 0A
 No. Input Registers Lo 01

The contents of input register 9 are shown as the two byte values of 00
0A h ex, or 10 decimal.

4.5 Force Single Coil 05 (0x05)

This function code is used to force a single coil to either ON or OFF
in a remote device.

The requested ON/OFF state is specified by a constant in the request
data field. A value of FF 00 hex requests the output to be ON. A value
of 00 00 requests it to be OFF. All other values are illegal and will
not affect the output.

The Request PDU specifies the address of the coil to be forced. Coils
are addressed starting at zero. Therefore coil 1 is addressed as 0. The
requested ON/OFF state is specified by a constant in the Coil Value
field. A value of 0xFF00 requests the coil to be ON. A value of 0x0000
requests the coil to be off. All other values are illegal and will not
affect the coil.

The normal response is an echo of the request that is returned after
the coil state has been set.

Request PDU

 Function Code 1 byte 05 (0x05)
 Coil Address 2 bytes 0x0000 to 0xFFFF
 Coil Value 2 bytes 0x0000 or 0xFF00

Response PDU

 Function Code 1 byte 05 (0x05)
 Coil Address 2 bytes 0x0000 to 0xFFFF
 Coil Value 2 bytes 0x0000 or 0xFF00

Here is an example of a request to force coil 173 ON:

 Request hex Response hex

 Function Code 05 Function Code 05
 Coil Address Hi 00 Coil Address Hi 00
 Coil Address Lo AC Coil Address Lo AC
 Coil Value Hi FF Coil Value Hi FF
 Coil Value Lo 00 Coil Value Lo 00

Dube & Camerini Informational [Page 15]

RFC 3xxx MODBUS Application Protocol May 2002

4.6 Write Single Register 06 (0x06)

This function code is used to write a single holding register in a
remote device.

The Request PDU specifies the address of the register to be written.
Registers are addressed starting at zero. Therefore register 1 is
addressed as 0.

The normal response is an echo of the request, returned after the
register contents have been written.

Request PDU

 Function Code 1 byte 06 (0x06)
 Register Address 2 bytes 0x0000 to 0xFFFF
 Register Value 2 bytes 0x0000 to 0xFFFF

Response PDU

 Function Code 1 byte 06 (0x06)
 Register Address 2 bytes 0x0000 to 0xFFFF
 Register Value 2 bytes 0x0000 to 0xFFFF

Here is an example of a request to write register 2 to 0x0003.

 Request hex Response hex

 Function Code 06 Function Code 06
 Register Address Hi 00 Register Address Hi 00
 Register Address Lo 01 Register Address Lo 01
 Register Value Hi 00 Register Value Hi 00
 Register Value Lo 03 Register Value Lo 03

4.7 Force Multiple Coils 15 (0x0F)

This function code is used to force each coil in a sequence of coils to
either ON or OFF in a remote device. The Request PDU specifies the coil
references to be forced. Coils are addressed starting at zero.
Therefore coil 1 is addressed as 0.

The requested ON/OFF states are specified by contents of the request
data field. A logical '1' in a bit position of the field requests the
corresponding output to be ON. A logical '0' requests it to be OFF.

The normal response returns the function code, starting address, and

Dube & Camerini Informational [Page 16]

RFC 3xxx MODBUS Application Protocol May 2002

quantity of coils forced.

Request PDU

 Function Code 1 byte 15 (0x0F)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 Quantity of coils 2 bytes 0x0001 to 0x07B0
 Byte Count 1 byte n
 Output value n x 1 byte value

Response PDU

 Function Code 1 byte 15 (0x0F)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 Quantity of coilsq 2 bytes 0x0001 to 0x07B0

Here is an example of a request to force a series of 10 coils starting
at coil 20:

The request data contents are two bytes: CD 01 hex (1100 1101 0000 0001
binary). The binary bits correspond to the outputs are:

 Bit : 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1
 Coil: 27 26 25 24 23 22 21 20 û û û û û û 29 28

The first byte transmitted (CD hex) addresses outputs 27-20, with the
least significant bit addressing the lowest output (20) in this set.
The next byte transmitted (01 hex) addresses outputs 29-28, with the
least significant bit addressing the lowest output (28) in this set.
Unused bits in the last data byte should be zeroûfilled.

 Request hex Response hex

 Function Code 0F Function Code 0F
 Coil Address Hi 00 Coil Address Hi 00
 Coil Address Lo 13 Coil Address Lo 13
 Quantity of Coils Hi 00 Quantity of Coil Hi 00
 Quantity of Coils Lo 0A Quantity of Coil Lo 0A
 Byte Count 02
 Outputs Value Hi CD
 Outputs Value Lo 01

4.8 Write Multiple Registers 16 (0x10)

This function code is used to write a block of contiguous registers (1
to approx. 120 registers) in a remote device.

Dube & Camerini Informational [Page 17]

RFC 3xxx MODBUS Application Protocol May 2002

The requested written values are specified in the request data field.
Data is packed as two bytes per register.

The normal response returns the function code, starting address, and
quantity of registers written.

Request PDU

 Function Code 1 byte 16 (0x10)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 No. of registers 2 bytes 0x0001 to approx 0x0078
 Byte Count 1 byte 2 x n
 Registers value n x 2 bytes value

Response PDU

 Function Code 1 byte 15 (0x0F)
 Starting Address 2 bytes 0x0000 to 0xFFFF
 No. of registers 2 bytes 0x0001 to approx 0x0078

Here is an example of a request to write two registers starting at 2 to
00 0A and 01 02 hex:

 Request hex Response hex

 Function Code 10 Function Code 10
 Starting Address Hi 00 Starting Address Hi 00
 Starting Address Lo 01 Starting Address Lo 01
 No. of Registers Hi 00 No. of Registers Hi 00
 No. of Registers Lo 02 No. of Registers Lo 02
 Byte Count 04
 Register Value Hi 00
 Register Value Lo 0A
 Register Value Hi 01
 Register Value Lo 02

4.9 Read File Record 20 / 6 (0x14 / 0x06)

This function code is used to perform a file record read. All Request
Data Lengths are provided in terms of number of bytes and all Record
Lengths are provided in terms of the number of 16-bit words.

A file is an organization of records. Each file contains 10000 records,
addressed 0000 to 9999 decimal or 0x0000 to 0x270F. For example, record
12 is addressed as 12.

Dube & Camerini Informational [Page 18]

RFC 3xxx MODBUS Application Protocol May 2002

The function can read multiple groups of references. The groups can be
separated, ie non-contiguous, but the references within each group must
be sequential.

Each group is defined in a separate æsub-requestÆ field that contains 7
bytes:
 The Reference Type: 1 byte (must be specified as 6)
 The File Number: 2 bytes (1 to 10, 0x0001 to 0x000A)
 The Starting Record Number within the file: 2 bytes
 The Length of the Record to be read: 2 bytes.

The quantity of words to be read, combined with all other fields in the
expected response, must not exceed the allowable length of MODBUS
messages: 256 bytes.

The normal response is a series of æsub-responsesÆ, one for each æsub-
requestÆ. The byte count field is the total combined count of bytes in
all æsub-responsesÆ. In addition, each æsub-responseÆ contains a field
that shows its own byte count.

Request PDU

 Function Code 1 byte 20 (0x14)
 Request Data Length 1 byte 0x07 to 0xF5 bytes
 Reference Type, SubReq x 1 byte 6
 File Number, SubReq x 2 bytes 0x0000 to 0xFFFF
 Record Number, SubReq x 2 bytes 0x0000 to 0xFFFF
 Record Length, SubReq x 2 bytes 0x0000 to 0xFFFF words
 Reference Type, SubReq x+1 1 byte 6

Response PDU

 Function Code 1 byte 20(0x14)
 Response Data Length 1 byte 0x07 to 0xF5 bytes
 File Response Length, SubReq x 1 byte 0x07 to 0xF5 bytes
 Reference Type, SubReq x 1 byte 6
 Record Data, SubReq x Nx2 bytes
 File Response Length,SubReqx+1 1 byte
 Reference Type, SubReq x+1 1 byte 6

Here is an example of a request to read one file record from a remote
device:
 it consists of two words from file 4, starting at record 1
 (address 0001).

 Request hex Response hex

Dube & Camerini Informational [Page 19]

RFC 3xxx MODBUS Application Protocol May 2002

 Function Code 14 Function Code 10
 Request Data Length 07 Response Data Length 06
 Reference Type 06 File Response Length 05
 File Number Hi 00 Reference Type 06
 File Number Lo 04 Record Data Hi 0D
 Record Number Hi 00 Record Data Lo FE
 Record Number Lo 01 Record Data Hi 00
 Record Length Hi 00 Record Data Lo 20
 Record Length Lo 02

4.10 Write File Record 21 / 6 (0x15 / 0x06)

This function code is used to perform a file record write. All Request
Data Lengths are provided in terms of number of bytes and all Record
Lengths are provided in terms of the number of 16-bit words.

A file is an organization of records. Each file contains 10000 records,
addressed 0000 to 9999 decimal or 0x0000 to 0x270F. For example, record
12 is addressed as 12.

The function can write multiple groups of references. The groups can be
separate, ie nonûcontiguous, but the references within each group must
be sequential.

Each group is defined in a separate æsub-requestÆ field that contains 7
bytes plus the data:
 The Reference Type: 1 byte (must be specified as 6)
 The File Number: 2 bytes (1 to 10, hex 0001 to 000A)
 The Starting Record Number within the file: 2 bytes
 The Length of the Record to be written: 2 bytes
 The Data to be written: 2 bytes per register.

The quantity of words to be written, combined with all other fields in
the request, must not exceed the allowable length of MODBUS messages:
256 bytes.

The normal response is an echo of the request.

Request PDU

 Function Code 1 byte 21 (0x15)
 Request Data Length 1 byte 0x07 to 0xF5 bytes
 Reference Type, SubReq x 1 byte 6
 File Number, SubReq x 2 bytes 0x0000 to 0xFFFF
 Record Number, SubReq x 2 bytes 0x0000 to 0xFFFF
 Record Length, SubReq x 2 bytes 0x0000 to 0xFFFF words

Dube & Camerini Informational [Page 20]

RFC 3xxx MODBUS Application Protocol May 2002

 Record Data, SubReq x n x 2 bytes
 Reference Type, SubReq x+1 1 byte 6

Response PDU

 Function Code 1 byte 21 (0x15)
 Response Data Length 1 byte 0x07 to 0xF5 bytes
 Reference Type, SubReq x 1 byte 6
 File Number, SubReq x 2 bytes 0x0000 to 0xFFFF
 Record Number, SubReq x 2 bytes 0x0000 to 0xFFFF
 Record Length, SubReq x 2 bytes 0x0000 to 0xFFFF words
 Record Data, SubReq x n x 2 bytes
 Reference Type, SubReq x+1 1 byte 6

Here is an example of a request to write one file record to a remote
device:
 The group consists of three words in file 4, starting at record 7
 (address 0007).

 Request hex Response hex

 Function Code 15 Function Code 15
 Request Data Length 0D Response Data Length 0D
 Reference Type 06 Reference Type 06
 File Number Hi 00 File Number Hi 00
 File Number Lo 04 File Number Lo 04
 Record Number Hi 00 Record Number Hi 00
 Record Number Lo 07 Record Number Lo 07
 Record Length Hi 00 Record Length Hi 00
 Record Length Lo 03 Record Length Lo 03
 Record Data Hi 06 Record Data Hi 06
 Record Data Lo 01 Record Data Lo 01
 Record Data Hi 03 Record Data Hi 03
 Record Data Lo 02 Record Data Lo 02
 Record Data Hi 04 Record Data Hi 04
 Record Data Lo 01 Record Data Lo 01

4.11 Mask Write Register 22 (0x16)

This function code is used to modify the contents of a specified
holding register using a combination of an AND mask, an OR mask, and
the holding register's current contents. The function can be used to
set or clear individual bits in the register.

The request specifies the holding register to be written, the data to

Dube & Camerini Informational [Page 21]

RFC 3xxx MODBUS Application Protocol May 2002

be used as the AND mask, and the data to be used as the OR mask.
Registers are addressed starting at zero. Therefore registers 1-16 are
addressed as 0-15.

The functionÆs algorithm is:
 Result = (Current Contents AND And_Mask) OR (Or_Mask AND And_Mask)

For example:
 Hex Binary
 Current Contents = 12 0001 0010
 And_Mask = F2 1111 0010
 Or_Mask = 25 0010 0101
 And_Mask = 0D 0000 1101

 Result = 17 0001 0111

Note that if the Or_Mask value is zero, the result is simply the
logical ANDing of the current contents and And_Mask. If the And_Mask
value is zero, the result is equal to the Or_Mask value. The contents
of the register can be read with the Read Holding Register function
(function code 03).

The normal response is an echo of the request. The response is returned
after the register has been written.

Request PDU

 Function Code 1 byte 22 (0x16)
 Reference Address 2 bytes 0x0000 to 0xFFFF
 And_Mask 2 bytes 0x0000 to 0xFFFF
 Or_Mask 2 bytes 0x0000 to 0xFFFF

Response PDU

 Function Code 1 byte 22 (0x16)
 Reference Address 2 bytes 0x0000 to 0xFFFF
 And_Mask 2 bytes 0x0000 to 0xFFFF
 Or_Mask 2 bytes 0x0000 to 0xFFFF

Here is an example of a Mask Write to register 5 in a remote device,
using the above mask values.

 Request hex Response hex

 Function Code 16 Function Code 16
 Ref. Address Hi 00 Ref. Address Hi 00
 Ref. Address Lo 04 Ref. Address Lo 04
 And_Mask Hi 00 And_Mask Hi 00

Dube & Camerini Informational [Page 22]

RFC 3xxx MODBUS Application Protocol May 2002

 And_Mask Lo F2 And_Mask Lo F2
 Or_Mask Hi 00 Or_Mask Hi 00
 Or_Mask Lo 25 Or_Mask Lo 25

4.12 Read/Write Holding Registers 23 (0x17)

This function code performs a combination of one read operation and one
write operation in a single MODBUS transaction.

Holding registers are addressed starting at zero. Therefore holding
registers 1-16 are addressed as 0-15.

The request specifies the starting address and number of holding
registers to be read as well as the starting address, number of
holding registers, and the data to be written. The byte count specifies
the number of bytes to follow in the write data field.

The normal response contains the data from the group of registers that
were read. The byte count field specifies the quantity of bytes to
follow in the read data field.

Request PDU

 Function Code 1 byte 23 (0x17)
 Read Starting Address 2 bytes 0x0000 to 0xFFFF
 Quantity to read 2 bytes 0x0001 to approx 0x76
 Write Starting Address 2 bytes 0x0000 to 0xFFFF
 Quantity to write 2 bytes 0x0001 to approx 0x76
 Write byte count 1 byte 2 x N*
 Write registers value N* x 2 bytes

Response PDU

 Function Code 1 byte 03(0x03)
 Byte Count 1 byte 2 x N*
 Read Register Values N* x 2 bytes

 *N = Number of Registers

Here is an example of a request to read six registers starting at
register 4, and to write three registers starting at register 15:

 Request hex Response hex

 Function Code 17 Function Code 17

Dube & Camerini Informational [Page 23]

RFC 3xxx MODBUS Application Protocol May 2002

 Read Starting Addr Hi 00 Byte Count 0C
 Read Starting Addr Lo 04 Register 4 Data Hi 02
 Quantity to Read Hi 00 Register 4 Data Lo 2B
 Quantity to Read Lo 06 Register 5 Data Hi 00
 Write Starting Addr Hi 00 Register 5 Data Lo 00
 Write Starting Addr Lo 0F Register 6 Data Hi 00
 Quantity to Write Hi 00 Register 6 Data Lo 64
 Quantity to Write Lo 03 Register 7 Data Hi 00
 Write Byte count 06 Register 7 Data Lo 54
 Write Reg15 Data Hi 00 Register 8 Data Hi 01
 Write Reg 15 Data Lo FF Register 8 Data Lo 02
 Write Reg 16 Data Hi 00 Register 9 Data Hi 01
 Write Reg16 Data Lo FF Register 9 Data Lo 03
 Write Reg 17 Data Hi 00
 Write Reg 17 Data Lo FF

4.13 Read Device Identification 43/14 (0x2B / 0E)

This function code allows reading the identification and additional
information relative to the physical and functional description of a
remote device.

The Read Device Identification interface is modeled as an address space
composed of a set of addressable data elements. The data elements are
called objects and an object Id identifies them.

The interface consists of 3 categories of objects :

Basic Device Identification.
 All objects of this category are mandatory, ie
 VendorName, Product Code, and Revision Number.

Regular Device Identification.
 In addition to Basic Device Identification, the device provides
 additional and optional identification and description data objects.
 All of the objects of this category are defined in the standard but
 their implementation is optional.

Extended Device Identification.
 In addition to Regular Device Identification, the device provides
 additional and optional identification and description of private
 data. All of these data are device dependent.

Object Id Object Name Type M/O Category
...
0x00 VendorName ASCIIString Mandatory Basic
0x01 ProductCode ASCIIString Mandatory Basic

Dube & Camerini Informational [Page 24]

RFC 3xxx MODBUS Application Protocol May 2002

0x02 MajorMinorRevision ASCIIString Mandatory Basic
0x03 VendorUrl ASCIIString Optional Regular
0x03 ProductName ASCIIString Optional Regular
0x04 VendorUrl ASCIIString Optional Regular
0x05 UserApplicationName ASCIIString Optional Regular
0x07 .. 0x7F Reserved
0x80 .. 0xFF Product dependent Optional Extended

A Modbus Encapsulated Interface assigned number 14 identifies the Read
Identification request. Four access types are defined:

 01 : request to get the basic device identification (stream
 access)
 02 : request to get the regular device identification (stream
 access)
 03 : request to get the extended device identification (stream
 access)
 04 : request to get one specific identification object (individual
 access)

In the case where the identification data does not fit into a single
response, several request/response transactions may be required. The
Object Id byte gives the identification of the first object to obtain.
For the first transaction, the client must set the Object Id to 0 to
obtain the start of the device identification data. For the following
transactions, the client must set the Object Id to the value returned
by the server in its previous response.

If the Object Id does not match any known object, the server responds
as if object 0 were pointed out (restart at the beginning).

In case of an individual access: ReadDevId code 04, the Object Id in
the request gives the identification of the object to obtain.

If the Object Id does not match any known object, the server returns an
exception response with exception code = 02 (Illegal data address).

The normal response contains the following information :

 ReadDevId Code Same as request ReadDevId code : 01, 02, 03 or
 04
 Conformity Level Identification conformity level of the device
 and type of supported access
 01 : basic identification (stream access only)
 02 : regular identification (stream access only)
 03 : extended identification (stream access
 only)
 81 : basic identification (stream access and

Dube & Camerini Informational [Page 25]

RFC 3xxx MODBUS Application Protocol May 2002

 individual access)
 82 : regular identification (stream access and
 individual access)
 83 : extended identification (stream access and
 individual access)
 More Follows In case of ReadDevId codes 01, 02 or 03 (stream
 access), If the identification data doesn't fit
 into a single response, several request/response
 transactions may be required.
 00 : no more Object are available
 FF : other identification Object are available
 and further Modbus transactions are
 required.
 In case of ReadDevId code 04 (individual
 access), this field must be set to 00.
 Next Object Id If "MoreFollows = FF", identification of the
 next Object to be asked for. if "MoreFollows =
 00", must be set to 00 (useless)
 Number Of Objects Number of identification Object returned in the
 response (for an individual access, Number Of
 Objects = 1)
 Object0.Id Identification of the first Object returned in
 the PDU (stream access) or the requested Object
 (individual access)
 Object0.Length Length of the first Object in bytes
 Object0.Value Value of the first Object (Object0.Length bytes)
 ...
 ObjectN.Id Identification of the last Object (within the
 response)
 ObjectN.Length Length of the last Object in bytes
 ObjectN.Value Value of the last Object (ObjectN.Length bytes)

Request PDU

 Function Code 1 byte 43 (0x2B)
 MEI Type 1 byte 0x0E
 Read ID code 1 byte 01/02/03/04
 Object ID 1 byte 0x00 to 0xFF

Response PDU

 Function Code 1 byte 43 (0x2B)
 MEI Type 1 byte 0x0E
 Read ID code 1 byte 01/02/03/04
 Conformity level 1 byte
 More follows 1 byte 00 / FF
 Next Object Id 1 byte

Dube & Camerini Informational [Page 26]

RFC 3xxx MODBUS Application Protocol May 2002

 Number of objects 1 byte
 Object ID x 1 byte
 Object length x 1 byte
 Object value x 1 byte
 Object ID x+1 1 byte
 Object length x+1 1 byte
 Object value x+1 1 byte

Example of a Read Device Identification request for "Basic device
identification". In this example all information are sent in one
response PDU.

 Request hex Response hex

 Function Code 2B Function Code 2B
 MEI Type 0E MEI Type 0E
 Read Id Code 01 Register Id code 01
 Object Id 00 Conformity level 01
 More follows 00
 Next Object Id 00
 Number of object 03
 Object ID 00
 Object Length 16
 Object Value "company identification"
 Object ID 01
 Object Length 0C
 Object Value "product code"
 Object ID 02
 Object Length 07
 Object Value "version"

5. Acknowledgments

This document is the result of a collaboration of members of the MODBUS
Community located at www.modbus.org.

6. Security Considerations

This RFC does not discuss security issues and is not believed to raise
any security issues not already endemic to MODBUS communications. Since
MODBUS/TCP is based on TCP/IP, it is not inherently secure.

7. References

Dube & Camerini Informational [Page 27]

RFC 3xxx MODBUS Application Protocol May 2002

 [RFC 791] Internet Protocol, Sep81 DARpa

8. Authors' Addresses

 Dennis Dub
 Schneider Automation Inc.
 1 High St.
 N. Andover, MA 01845-2699
 USA

 Phone : 978-975-2891
 Email : dennis.dube@modicon.com

 Jacques Camerini
 Schneider Automation S.A.
 245, route des Lucioles B.P
 147 F-06903
 Sophia-Antipolis, France

 Phone : 33 4 92 38 2045
 Email : jacques.camerini@modicon.com

Dube & Camerini Informational [Page 28]

RFC 3xxx MODBUS Application Protocol May 2002

APPENDIX A - Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the
copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of developing
Internet standards in which case the procedures for copyrights defined
in the Internet Standards process must be followed, or as required to
translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

This Internet-Draft will expire on November 10, 2002.

Dube & Camerini Informational [Page 29]

