
MPTCP Working Group F. Duchene
Internet-Draft UCLouvain
Intended status: Experimental V. Olteanu
Expires: January 4, 2018 University Politehnica of Bucharest
 O. Bonaventure
 UCLouvain
 C. Raiciu
 University Politehnica of Bucharest
 A. Ford
 Pexip
 July 03, 2017

Multipath TCP Load Balancing
draft-duchene-mptcp-load-balancing-01

Abstract

 In this document we propose several solutions to allow Multipath TCP
 to better work behind load balancers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Duchene, et al. Expires January 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MPTCP LB July 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Proposed solutions . 3
2.1. Per-server addresses 3
2.2. Embedding Extra Information in Packets 5
2.2.1. Proposal 1 . 5
2.2.2. Proposal 2 . 6

2.3. Application Layer Authentication 9
3. Comparaison of the solutions 9
4. Recommandations . 10
5. IANA considerations . 10
6. Security considerations 10
7. Conclusion . 10
8. References . 10
8.1. Normative References 10
8.2. Informative References 11

 Authors' Addresses . 11

1. Introduction

 Multipath TCP is an extension to TCP [RFC0793] that was specified in
 [RFC6824]. Multipath TCP allows hosts to use multiple paths to send
 and receive the data belonging to one connection. For this, a
 Multipath TCP connection is composed of several TCP connections that
 are called subflows.

 Many large web sites are served by servers that are behind a load
 balancer. The load balancer receives the connection establishment
 attempts and forwards them to the actual servers that serve the
 requests. One issue for the end-to-end deployment of Multipath TCP
 is its ability to be used on load-balancers. Different types of load
 balancers are possible. We consider a simple but important load
 balancer that does not maintain any per-flow state. This load
 balancer is illustrated in Figure 1. A stateless load balancer can
 be implemented by hashing the five tuple (IP addresses and port
 numbers) of each incoming packet and forwarding them to one of the
 servers based on the hash value computed. With TCP, this load
 balancer ensures that all the packets that belong to one TCP
 connection are sent to the same server since each packet contains the
 five-tuple used by the hash function.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6824

Duchene, et al. Expires January 4, 2018 [Page 2]

Internet-Draft MPTCP LB July 2017

 +--+---- S1
 ---|LB|---- S2
 +--+---- S3

 Figure 1: Stateless load balancer

 With Multipath TCP, this approach cannot be used anymore when
 subflows are created by the clients. Such subflows can contain any
 five tuple and thus packets belonging to them will be load-balanced
 to any server, not necessarily the one that was selected by the
 hashing function for the initial subflow.

 In this document, we propose several solutions to allow Multipath TCP
 to work behind load balancers.

2. Proposed solutions

2.1. Per-server addresses

 A first solution is to use two types of public addresses. The load
 balancer uses a public address that is advertised in the DNS. This
 address is used to establish the initial subflow of all Multipath TCP
 connections. In addition to this address, a pool of addresses is
 used for the servers behind the load balancer. One address of this
 pool is assigned to each server behind the load balancer. This
 server address is not announced in the DNS and only advertised by the
 servers through the ADD_ADDR option.

 The additional per-server address is used by the clients when they
 wish to create additional subflows. Since each server has its own
 public address, this ensures that the additional subflows are
 directed to the corresponding server. For this solution, we need to
 ensure that the client never use the public address of the load
 balancer to initiate subflows. This can be achieved by a slight
 modification to the MP_CAPABLE option described below.

 To allow Multipath TCP to work for servers behind layer 4 load
 balancers, we propose to use the reserved "B" flag in the MP_CAPABLE
 option sent (shown in Figure 2 in the SYN+ACK. This flag informs the
 other host that this address MUST NOT be used to create additional
 subflows.

 A host receiving an MP_CAPABLE with the "B" set to 1 MUST NOT try to
 establish a subflow to the source address of the MP_CAPABLE. This
 bit can also be used in the MP_CAPABLE option sent in the SYN by a
 client that resides behind a NAT or firewall or does not accept
 server-initiated subflows.

Duchene, et al. Expires January 4, 2018 [Page 3]

Internet-Draft MPTCP LB July 2017

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Option Sender's Key (64 bits) |
 | (if option Length > 4) |
 | |
 +---+
 | Option Receiver's Key (64 bits) |
 | (if option Length > 12) |
 | |
 +-------------------------------+-------------------------------+
 | Data-Level Length (16 bits) | Checksum (16 bits, optional) |
 +-------------------------------+-------------------------------+

 Figure 2: Multipath Capable (MP_CAPABLE) Option

 This bit can be used by servers behind a stateless load balancer.
 The servers set the "B" flag in the MP_CAPABLE option that they
 return and advertise their own address by using the ADD_ADDR option.
 Upon reception of this option, the clients can create the additional
 subflows towards these addresses. Compared with current stateless
 load balancers, an advantage of this approach is that the packets
 belonging to the additional subflows do not need to pass through the
 load balancer.

 To demonstrate the principle of an off path load balancer let's
 consider a server behind a load balancer.

 +-- net1 --+ +-- Load Balancer --+--- ADDR 1 ---+
 | | | |
 client --+ +--+ +--- Server
 | | | |
 +-- net2 --+ +------------- ADDR 2 -------------+

 Figure 3: A server with 2 addresse.

 As shown in figure Figure 3, this server has 2 IP addresses: 1 behind
 the load balancer and 1 directly connected to the Internet. The
 client sends a SYN containing an MP_CAPABLE option, the server
 answers with a SYN+ACK containing an MP_CAPABLE with the "B" flag set
 to 1. Upon reception of the SYN+ACK, the client will know that it
 cannot establish any more subflow towards IP address. The server
 will then advertise it's secondary address with an ADD_ADDR. Once
 the client has established at least one connection to the secondary

Duchene, et al. Expires January 4, 2018 [Page 4]

Internet-Draft MPTCP LB July 2017

 IP address, the server could elect to close the primary subflow or to
 put it in backup mode.

2.2. Embedding Extra Information in Packets

 Under some circumstances, addressing the individial servers via their
 individial IPs is not desirable or feasible. To work around this
 issue, we propose two mutually-exclusive solutions. They rely to
 varying degrees on getting the client to embed connection or server-
 identifying information in the packets that it sends out. This extra
 information can be used statelessly by the loadbalancers.

 Both solutions require modifications only to the server stack and
 work well with existing MPTCP clients.

2.2.1. Proposal 1

 Our first proposal revolves around controlling the destination port
 that the client uses in all subflows aside from the initial one. It
 is possible for the server to advertise an additional port via the
 ADD_ADDR option [RFC6824]. This informs the client that it can send
 an MP_JOIN to this new port and initiate a new subflow.

 To take advantage of this, each server is be assigned a unique 16-bit
 ID, which must be different from the port on which the service is
 being hosted (e.g. 80). As soon as a connection is initiated, the
 server sends an ADD_ADDR to the client advertising a new port equal
 to said ID.

 Packets that arrive at the loadbalancer are treated as follows:

 o Packets destined to the port that the service is being hosted on
 will be forwarded to a server based on a hash of the 5-tuple.

 o Packets destined to any other port are forwarded to the server
 whose ID matches the destination port.

 This approach has two drawbacks:

 o The client will most likely also try to initiate subflows using
 the server's original port. Because these subflows are
 loadbalanced based on a hash of their 5-tuple, they will almost
 certainly reach a different server and break. (Using REMOVE_ADDR
 to prevent the creation of these subflows would entail the
 destruction of the original subflow.) This issue can be solved by
 the adoption of the protocol modifications outlined in

Section 2.1.

https://datatracker.ietf.org/doc/html/rfc6824

Duchene, et al. Expires January 4, 2018 [Page 5]

Internet-Draft MPTCP LB July 2017

 o If the client is behind a firewall that restricts access to
 certain destination ports, it might not succeed in establishing
 any new subflows.

2.2.2. Proposal 2

 Our second proposal is to loadbalance packets based on the server's
 token.

 The token's most significant 14 bits are treated as a hash value for
 the connection. They are embedded in all outgoing TCP timestamps,
 and subsequently echoed back by the client. Incoming packets that do
 not contain timestamps (such as FINs) are dealt with via redirection
 between the servers.

2.2.2.1. Connection Initiation

 The client initiates an MPTCP connection by sending a SYN with the
 MP_CAPABLE option. Under normal operation, the server then picks a
 random 64-bit key for the connection, and uses it to compute its
 token.

 To forward the packet appropriately, the load balancer must know the
 token before deciding what server to send it to. To accomplish this,
 we move the key generation to the load balancer. The connection's
 token can be computed based on the generated key.

 The load balancer places the generated key, along with the IP address
 of the server that would be responsible for the subflow under normal
 5-tuple hashing (which we call the alternate server IP) in an IP
 option and forwards the SYN to the server.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Type = 96 | Length = 16 | Unused |
 +---------------+---------------+---------------+---------------+
 | |
 + Server Key +
 | |
 +---------------+---------------+---------------+---------------+
 | Alternate Server IP |
 +---------------+---------------+---------------+---------------+

 Figure 4: IP Option Used for MP_CAPABLE packets

Duchene, et al. Expires January 4, 2018 [Page 6]

Internet-Draft MPTCP LB July 2017

 The figure above depicts the IP option that is inserted into the
 MP_CAPABLE packet before it is sent to the server. We have chosen an
 IP option despite the fact that the data contained therein pertains
 to the transport layer, because TCP option space is very limited. IP
 option type 96 is currently classified as reserved [RFC0791].

 Upon receipt of the packet, the server uses the key provided to
 compute the token for the connection. If no connection with the same
 token exists, the server uses the key provided. Otherwise, it takes
 a brute-force approach and randomly generates multiple keys and
 selects one that yields a token with the same 14 highest-order bits.

 The use of the alternate server IP will be discussed in a later
 section.

2.2.2.2. Handling MP_JOIN packets

 Additional subflows are initiated by the client by sending MP_JOIN
 packets. These packets contain the server's token.

 Similarly to how MP_CAPABLE packets are treated, the load balancer
 uses an IP option to inform the server about which other server would
 be responsible for the subflow under normal 5-tuple hashing.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | Type = 97 | Length = 8 | Unused |
 +---------------+---------------+---------------+---------------+
 | Alternate Server IP |
 +---------------+---------------+---------------+---------------+

 Figure 5: IP Option Used for MP_JOIN packets

 IP option type 97 is also classified as reserved [RFC0791].

2.2.2.3. Embedding the token in the timestamp

 The TCP timestamp option [RFC7323] is present in most packets and is
 comprised of two fields: the TSval, which is set by the packet's
 sender, and TSecr, which contains a timestamp recently received from
 the other end.

 Taking advantage of the fact that timestamps set by the server are
 echoed back by the client, the server shifts its timestamp clock left
 by 14 bits, and embeds the 14 highest-order bits of the token into
 the 14 lowest-order bits of the TSval. When a packet with the ACK

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc7323

Duchene, et al. Expires January 4, 2018 [Page 7]

Internet-Draft MPTCP LB July 2017

 flag set and with the TS option present arrives at the loadbalancer,
 it is forwarded based on the 14 least significant bits of the TSecr
 field.

2.2.2.3.1. Impact on PAWS

 Timestamps supplied by the server are used by the client for
 protection against wrapped sequence numbers (PAWS). Note that for
 Multipath TCP, the utilisation of the 64 bits DSN already protects
 against PAWS.

 We assume that the server uses a timestamp clock frequency of 1 tick
 per ms, which is the highest frequency recommended by [RFC7323]. The
 recycling time of the timestamp clock's sign bit is required to be
 greater than the Maximum Segment Lifetime of 255 seconds. Given that
 the clock ticks once every ms in increments of 2 ^ 14, its recycling
 time is roughly 262 s, which is within the bounds set by the
 standard.

 While the quickly-increasing timestamp is benign to active subflows,
 PAWS will still cause segments to be dropped if the subflow in
 question had been idle for a period longer than the clock's recycling
 time. To solve this, the server periodically sends keepalive
 messages during idle periods.

2.2.2.4. Redirecting packets without timestamps

 Some packets (most notably FINs) do not contain timestamps or any
 other connection-identifying information. As such, they are
 forwarded to a server based on a hash of the 5-tuple.

 As seen in Section 2.2.2.1 and Section 2.2.2.2, whenever a new
 subflow is setup, the server responsible for it (A) also knows which
 other server (B) would be hit by the packets in case 5-tuple hashing
 is used.

 A will use a simple peer-to-peer protocol to inform B to setup a
 redirection rule for the 5-tuple in question. The redirection rule
 will be deleted by B either at A's request, after the subflow has
 finished, or after a timeout. We do not discuss the specifics of the
 protocol in this document.

 Redirection of a packet is performed using IP-in-IP encapsulation.

https://datatracker.ietf.org/doc/html/rfc7323

Duchene, et al. Expires January 4, 2018 [Page 8]

Internet-Draft MPTCP LB July 2017

2.3. Application Layer Authentication

 With similar motivations to 2.2, this proposal
 [I-D.paasch-mptcp-application-authentication] decouples the token
 signalled in the TCP options from the key used in authentication,
 allowing the token to carry arbitrary information. By allowing the
 token to be arbitrarily assigned by the sender, a load balancer could
 embed routing information so it knows which server to forward the
 packets on the TCP session towards.

 For example, the token could carry a server identifier, a port
 number, and a signature based on a known secret. Furthermore, by
 generating tokens directly there is no risk of hash collisions in
 token generation. By allowing the token to be arbitrarily assigned,
 decoupled from the keys, the authentication of additional subflows is
 delegated to the application layer. A proposal for the use of TLS
 for this is defined in [I-D.paasch-mptcp-tls-authentication], whereby
 keys can be extracted from a TLS session and used to set up
 additional subflows.

3. Comparaison of the solutions

 Per-server addresses:

 o Requires individual public addresses for each of the servers,
 making IPv6 almost mandatory.

 o Requires modifications to the clients and servers stack.

 o Is transparent and works with today's load balancers.

 o Doesn't need any modification to the applications.

 o Disclose the real IP address of the servers.

 o Allows to put the load balancer off-path.

 Extra Information in Packets:

 o Doesn't require an individual public addresses for each of the
 servers.

 o Requires modifications to the load balancers servers stack.

 o Could be broken by a firewall blocking certain destination ports
 (proposal 1) or changing the value of the timestamps (proposal 2).

 o Doesn't need any modification to the applications.

Duchene, et al. Expires January 4, 2018 [Page 9]

Internet-Draft MPTCP LB July 2017

 o Doesn't disclose the real IP address of the servers.

 Application Layer Authentication:

 o Doesn't require public IP addresses

 o Requires support at clients and load balancers

 o Doesn't disclose IP addresses

 o No greater risk of middle box interference than MPTCP today

 o Additional security through no key exchange in the clear

4. Recommandations

5. IANA considerations

 This document proposes some modifications to the Multipath TCP
 options defined in [RFC6824]. These modifications do not require any
 specific action from IANA.

6. Security considerations

 Security considerations will be discussed in the next version of this
 draft.

7. Conclusion

 In this document, we have described and compared two solutions to
 load balance MultiPath TCP connections. We showed that these two
 solutions have advantages and drawbacks and cover different network
 configurations. Future versions of this draft will discuss security
 considerations.

8. References

8.1. Normative References

 [I-D.paasch-mptcp-application-authentication]
 Paasch, C. and A. Ford, "Application Layer Authentication
 for MPTCP", draft-paasch-mptcp-application-

authentication-00 (work in progress), May 2016.

 [I-D.paasch-mptcp-tls-authentication]
 Paasch, C. and A. Ford, "TLS Authentication for MPTCP",

draft-paasch-mptcp-tls-authentication-00 (work in
 progress), May 2016.

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-application-authentication-00
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-application-authentication-00
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-tls-authentication-00

Duchene, et al. Expires January 4, 2018 [Page 10]

Internet-Draft MPTCP LB July 2017

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791,
 DOI 10.17487/RFC0791, September 1981,
 <http://www.rfc-editor.org/info/rfc791>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <http://www.rfc-editor.org/info/rfc7323>.

8.2. Informative References

 [I-D.ietf-mptcp-rfc6824bis]
 Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
 Paasch, "TCP Extensions for Multipath Operation with
 Multiple Addresses", draft-ietf-mptcp-rfc6824bis-07 (work
 in progress), October 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, DOI 10.17487/RFC1323, May
 1992, <http://www.rfc-editor.org/info/rfc1323>.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC7430] Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O., and C.
 Raiciu, "Analysis of Residual Threats and Possible Fixes
 for Multipath TCP (MPTCP)", RFC 7430,
 DOI 10.17487/RFC7430, July 2015,
 <http://www.rfc-editor.org/info/rfc7430>.

Authors' Addresses

 Fabien Duchene
 UCLouvain

 Email: fabien.duchene@uclouvain.be

https://datatracker.ietf.org/doc/html/rfc791
http://www.rfc-editor.org/info/rfc791
https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://datatracker.ietf.org/doc/html/rfc7323
http://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-rfc6824bis-07
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1323
http://www.rfc-editor.org/info/rfc1323
https://datatracker.ietf.org/doc/html/rfc6182
http://www.rfc-editor.org/info/rfc6182
https://datatracker.ietf.org/doc/html/rfc7430
http://www.rfc-editor.org/info/rfc7430

Duchene, et al. Expires January 4, 2018 [Page 11]

Internet-Draft MPTCP LB July 2017

 Vladimir Olteanu
 University Politehnica of Bucharest

 Email: vladimir.olteanu@cs.pub.ro

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

 Costin Raiciu
 University Politehnica of Bucharest

 Email: costin.raiciu@cs.pub.ro

 Alan Ford
 Pexip

 Email: alan.ford@gmail.com

Duchene, et al. Expires January 4, 2018 [Page 12]

