
Internet Draft M. Duerst
<draft-duerst-i18n-norm-03.txt> W3C/Keio University
Expires in six months M. Davis
 IBM
 March 2000

Character Normalization in IETF Protocols

Status of this Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This document is not a product of any working group, but may be
discussed on the mailing lists <www-international@w3.org> or
<discuss@apps.ietf.org>.

This is a new version of an Internet Draft entitled "Normalization of
Internationalized Identifiers" that dealt with quite similar issues
and was submitted in July 1997 by the first author while he was at the
University of Zurich.

Abstract

The Universal Character Set (UCS) [ISO10646, Unicode] covers a very wide
repertoire of characters. The IETF, in [RFC 2277], requires that future IETF
protocols support UTF-8 [RFC 2279], an ASCII-compatible encoding of UCS. The
wide range of characters included in the UCS has lead to some cases of
duplicate encodings. This document proposes that in IETF protocols, the
class of duplicates called canonical equivalents be dealt with by using
Early Uniform Normalization according to Unicode Normalization Form C,
Canonical Composition [UTR15]. This document describes both Early

https://datatracker.ietf.org/doc/html/draft-duerst-i18n-norm-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2279

Uniform Normalization and Normalization Form C.

Table of contents

0. Change log
1. Introduction
2. Early Uniform Normalization
3. Canonical Composition (Normalization Form C)
 3.1 Decomposition
 3.2 Reordering
 3.3 Recomposition
 3.4 Implementation Notes
4. Stability and Versioning
5. Cases not dealt with by Canonical Equivalence
6. Security Considerations
Acknowledgements
References
Copyright
Author's Addresses

0. Change log

Changes from -02 to -03

- Fixed a bad typo in the title.
- Made a lot of wording corrections and presentation improvements,
 most of them suggested by Paul Hofmann.

1. Introduction

1.1 Motivation

The Universal Character Set (UCS) [ISO10646, Unicode] covers a very wide
repertoire of characters. The IETF, in [RFC 2277], requires that future IETF
protocols support UTF-8 [RFC 2279], an ASCII-compatible encoding of UCS. The
wide range of characters included in the UCS has lead to some cases of
duplicate encodings. This has lead to uncertainity for protocol specifiers
and implementers, because it was not clear which part of the Internet
infrastructure should take responsibility for these duplicates, and how.

There are mainly two kinds of duplicates, singleton equivalences and
precomposed/decomposed equivalences. Both of there can be illustrated
using the A character with a ring above. This character can be encoded
in three ways:

1) U+00C5 LATIN CAPITAL LETTER A WITH RING ABOVE
2) U+0041 LATIN CAPITAL LETTER A followed by U+030A COMBINING RING ABOVE
3) U+212B ANGSTROM SIGN

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2279

In all three cases, it is supposed to look the same for the reader.
The equivalence between 1) and 3) is a singleton equivalence; the
equivalence between 1) and 2) is a precomposed/decomposed equivalence.
1) is the precomposed representation, 2) is the decomposed representation.
The inclusion of these various representation alternatives was a result of
the requirement for round trip conversion with a wide range of legacy encodings
as well as of the merger between Unicode and ISO 10646.

The Unicode Standard from early on has defined Canonical Equivalence to
make clear which sequences of codepoints cases should be treated as pure
encoding duplicates and which sequences of codepoints should be treated as
genuinely different (if maybe in some cases closely related) data.
The Unicode Standard also from early on defined
decomposed normalization, what is now called Normalization Form D (case 2)
in the example above). This is very well suited for some kinds of
internal processing, but decomposition does not correspond to how data
gets converted from legacy encodings and transmitted on the Internet. In that
case, precomposed data (i.e. case 1) in the example above) is prevalent.

Note: This specification uses the term 'codepoint', and not 'character',
 to make clear that it speaks about what the standards encode,
 and not what the end user think about.

Encouraged by many factors such as a requirements analysis of the W3C
[Charreq], the Unicode Technical Committee defined Normalization Form C,
Canonical Composition (see [UTR15]). Normalization Form C in general produces
the same representation as straightforward transcoding from legacy encodings
(See Section 3.4 for the known exception). The careful and detailled definition
of Normalization Form C is mainly needed to unambigously define edge cases
(base letters with two or more combining characters).
Most of these edge cases will turn up extremely rarely in actual data.

The W3C is adapting Normalization Form C in the form of Early Uniform
Normalization, which means that it assumes that in general, data will
be already in Normalization Form C [Charmod].

This document proposes that in IETF protocols, Canonical Equivalents be dealt
with by using Early Uniform Normalization according to Unicode Normalization
Form C, Canonical Composition [UTR15]. This document describes both Early
Uniform Normalization (in Section 2) and Normalization Form C (in Section 3).
Section 4 contains an analysis of (mostly theoretical) potential risks
for the stability of Normalization Form C. For reference, Section 5 discusses
various cases of equivalences not dealt with by Normalization Form C.

2. Early Uniform Normalization

This section tries to give some guidance on how Normalization Form C,
defined later in Section 3, should be used by Internet protocols.
Each Internet protocol has to define by itself how to use Normalization
Form C, and has to take into account its particular needs. However,

the advice in this section is intended to help writers of specifications
not very familliar with text normalization issues, and to try to make
sure that the various protocols use solutions that interface easily
with each other.

This section uses various well-known Internet protocols as examples.
However, such examples do not imply that the protocol elements mentioned
actually accept non-ASCII characters. Depending on the protocol element
mentioned, that may or may not be the case. Also, the examples are not
intended to actually define how a specific protocol deals with text
normalization issues. This is solely the responsibility of the specification
for each specific protocol.

The basic principle for how to use Normalization Form C is Early
Uniform Normalization. This means that ideally, only text in
Normalization Form C appears on the wire on the Internet. This can be seen
as applying 'be conservative in what you send' to the problem
of text normalization. And (again ideally) it should not be needed
that each implemenation of an Internet protocol separately implements
normalization. Text should just be provided normalized from the
underlying infrastructure, e.g. the operating system or the keyboard
driver.

Early normalization is of particular importance for those parts of
Internet protocols that are used as identifiers. Examples would
be URIs, domain names, email addresses, identifier names in PKIX
certificates, file names in FTP, newsgroup names in NNTP, and so on.
This is due to the following reasons:

- In order for the protocol to work, it has to be very well defined
 when two protocol element values match and when not.
- Implementations, in particular on the server side, do not in any
 way have to deal with e.g. display of multilingual text, but on
 the other hand have to handle a lot of protocol-specific issues.
 Such implementations therefore should not be bothered with text
 normalization.

For free text, e.g. the content of mail messages or news postings,
Early Uniform Normalization is somewhat less important, but definitely
can improve interoperability.

For protocol elements used as identifiers, this document advises
Internet protocols to specify the following:

- Comparison should be carried out purely binary (after it has been made
 sure, where necessary, that the texts to be compared are in the same
 character encoding).
- Any kind of text, and in particular identifier-like protocol elements,
 should be sent normalized to Normalization Form C.
- In case comparison fails due to a difference in text normalization, the
 originator of the non-normalized text is responsible for the failure.

- In case implementors are aware of the fact, or suspect, that their
 underlying infrastructure produces non-normalized text, they should
 take care to do the necessary tests and if necessary the actual
normalization by themselves.
- In the case of creation of identifiers, and in particular if this
 creation is comparatively infrequent (e.g. newsgroup names, domain names),
 and happens in a rather centralized manner, explicit checks for
 normalization should be required by the protocol specification.

3. Canonical Composition (Normalization Form C)

This section describes Canonical Composition (Normalization Form C).
The description is done in a procedural way, but any other procedure
that leads to identical results can be used. The result is intended
to be exactly identical to that described by [UTR15]. Various notes
are provided to help understand the description and give implementation
hints.

Given a sequence of UCS codepoints, its Canonical Composition can
be computed with the following three steps:

1. Decomposition
2. Reordering
3. Recomposition

These steps are described in detail below.

3.1 Decomposition

For each UCS codepoint in the input sequence, check whether this
codepoint has a canonical decomposition according to the newest
version of the Unicode Character Database (field 5 in [UniData]).
If such a decomposition is found, replace the codepoint in the
input sequence by the codepoint(s) in the decomposition, and
recursivly check for and apply decomposition on the first replaced
codepoint.

Note: Fields in [UniData] are delimited by ';'. Field 5 in [UniData] is the
 6th field when counting with an index origin of 1. Fields starting with
 a tag delimited by '<' and '>' indicate compatibility decompositions;
 these compatibility decompositions MUST NOT be used for Normalization
 Form C.

Note: For Korean Hangul, the decompositions are not contained
 in [UniData], but have to be generated algorithmically
 according to the description in [Unicode].

Note: Some decompositions replace a single codepoint by another
 single codepoint.

Note: It is not necessary to check replaced codepoints other than the
 first one due to the properties of the data in the Unicode Character
 Database.

Note: It is possible to 'precompile' the decompositions to avoid
 having to apply them recursively.

3.2 Reordering

For each adjacent pair of UCS codepoints after decomposition,
check the combining classes of the UCS codepoints according to
the newest version of the Unicode Character Database (Field 3
in [UniData]). If the combining class of the first codepoint
is higher than the combining class of the second codepoint,
and at the same time the combining class of the second codepoint
is not zero, then exchange the two codepoints. Repeat this process
until no two codepoints can be exchanged anymore.

Note: A combining class greater than zero indicates that a codepoint
 is a combining mark that participates in reordering. A combining
 class of zero indicates that a codepoint is not a combining mark,
 or that it is a is a combining mark that is not affected by reordering.
 There are no combining classes below zero.

Note: Besides a few script-specific combining classes, combining classes
 mainly distinguish whether a combining mark is attached to the base
 letter or just placed near the base letter, and on which side of the
 base letter (e.g. bottom, above right,...) the combining mark is
 attached/placed. Reordering assures that combining marks placed on
 different sides of the same character are placed in a canonical order
 (because any order would visually look the same), while
 combining marks placed on the same side of a character
 are not reordered (because reordering them would change
 the combination they represent).

Note: After completing this step, the sequence of UCS codepoints
 is in Canonical Decomposition (Normalization Form D).

3.3 Recomposition

Process the sequence of UCS codepoints resulting from Reordering
from start to end. his process requires a state variable called
'initial'. At the beginning of the process, the value of 'initial'
is empty.

- If 'initial' has a value, and the codepoint immediately
 preceeding the current codepoint is this 'initial' or has a combining
 class smaller than the combining class of the current codepoint,
 and the 'initial' can be canonically recombined with with the current
 codepoint, then replace the 'initial' with the canonical recombination

 and remove the current codepoint.
- Otherwise, if the current codepoint has combining class zero,
 store its value in 'initial'.

A sequence of two codepoints can be canonically recombined to a
third codepoint if this third codepoint has a canonical decomposition
into the sequence of two codepoints (see [UniData], field 5) and
this canonical decomposition is not excluded from recombination.
For Korean Hangul, the redecompositions are not contained
in [UniData], but have to be generated algorithmically
according to the description in [Unicode].
The exclusions from recombination are defined as follows:

1) Singletons: Codepoints that have a canonical decomposition into
 a single other codepoint.
2) Non-starter: A codepoint with a decomposition starting with
 a codepoint of a combining class other than zero.
3) Post-Unicode3.0: A codepoint with a decomposition introduced
 after Unicode 3.0.
4) Script-specific: Precomposed codepoints that are not the
 generally preferred form for their script.

The list of codepoints for 1) and 2) can be produced directly
from the Unicode Character Database [UniData]. The list of
codepoints for 3) can be produced from a comparison between
the 3.0.0 version and the latest version of [UniData], but this
may be difficult. The list of codepoints for 4) cannot be computed.
For 3) and 4), the lists provided in [CompExcl] MUST be used.
[CompExcl] also provides lists for 1) and 2) for cross-checking.
The list for 3) is currently empty because there are currently
no post-Unicode3.0 codepoints with decompositions.

Note: At the beginning of recomposition, there is no 'initial'.
 An 'initial' is remembered as soon as the first codepoint
 with a combining class of zero is found. Not every codepoint
 with a combining class of zero becomes an 'initial'; the
 exceptions are those that are the second codepoint in
 a recomposition. The 'initial' as used in this description
 is slightly different from the 'starter' used in [UTR15].

Note: Checking the previous codepoint to have a combining class
 smaller than the combining class of the current codepoint
 assures that the conditions used for reordering are maintained
 in the recombination step.

Note: Exclusion of singletons is necessary because in a pair of
 canonically equivalent codepoints, the canonical decomposition
 points from the 'less desirable' codepoint to the preferred
 codepoint. In this case, both canonical decomposition and
 canonical composition have the same preference.

Note: For discussion of the exclusion of Post-Unicode3.0
 codepoints from recombination, please see Section 4
 on versioning issues.

Note: Other algorithms for recomposition have been considered, but
 this algorithm has been choosen because it provides a very good
 balance between computational and implementation complexity
 and 'power' of recombination.

3.4 Implementation Notes

This section contains various notes on potential implementation
issues, improvements, and shortcuts.

3.4.1 Avoiding decomposition, and checking for Normalization Form C

It is not always necessary to decompose
and recompose. In particular, any sequence that does not contain
any of the following is already in Normalization Form C:

- Codepoints that are excluded from recomposition
- Codepoints that appear in second position in a canonical recomposition
- Hangul Jamo codepoints (U+1100-U+11F9)
- Unknown codepoints

If a contiguous part of a sequence satisfies the above criterion
all but the last of the codepoints are already in Normalization Form C.

The above criteria can also be used to easily check that some data
is already in Normalization Form C. However, this check will reject
some cases that actually are normalized.

3.4.2 Unknown codepoints

Unknown codepoints are listed above to avoid claiming
that something is in Normalization Form C when it may indeed not be, but
they usually will be treated differently from others. The following
behaviours may be possible, depending on the context of normalization:

- Stop the normalization process with a fatal error. (This should be
 done only in very exceptional circumstances. It would mean that
 the implementation will die with data that conforms to a future version
 of Unicode.)
- Produce some warning that such codepoints have been seen, for
 further checking.
- Just copy the unknown codepoint from the input to the output,
 running the risk of not normalizing completely.
- Checking that the program-internal data is up to date via the Internet.
- Distinguish behaviour depending on which range of codepoints
 the unknown codepoint has been found.

3.4.3 Surrogates

When implementing normalization for sequences of UCS codepoints
represented as UTF-16 code units, care has to be taken that pairs of
surrogate code units that represent a single UCS codepoint are treated
appropriately.

3.4.4 Korean Hangul

There are no interactions between normalization of
Korean Hangul and the other normalizations. These two parts of normalization
can therefore be carried out separately, with different implementation
improvements.

3.4.5 Piecewise application

The various steps such as decomposition,
reordering, and recomposition, can be applied to parts of a
codepoint sequence. As an example, when normalizing a large file,
normalization can be done on each line separately because line
endings and normalization do not interact.

3.4.6 Integrating decomposition and recomposition

It is possible to
avoid full decomposition by noting that a decomposition of
a codepoint that is not in the exclusion list can be avoided
if it is not followed by a codepoint that can appear in second
position in a canonical recomposition. This condition can
be strengthened by noting that decomposition is not necessary
if the combining class of the following codepoint is higher
than the highest combining class obtained from decomposing
the character in question. In other cases, a decomposition
followed immediately by a recomposition can be precalculated.
Further details are left to the reader.

3.4.7 Decomposition

Recursive application of decomposition can be
avoided by a preprocessing step that calculates a full canonical
decomposition for each character with a canonical decomposition.

3.4.8 Reordering

The reordering step basically is a sorting problem.
Because the number of consecutive combining marks (i.e. consecutive
codepoints with combining class greater than zero) is usually
extremely small, a very simple sorting algorithm can be used,
e.g. a straightforward bubble sort.

Because reordering will occur
extremely locally, the following variant of bubble sort will lead

to a fast and simple implementation:

- Start checking the first pair (e.g. the first two codepoints).
- If there is an exchange, and we are not at the start of the
 sequence, move back by one codepoint and check again.
- Otherwise (i.e. if there is no exchange, or we are at the start
 of the sequence) and we are not at the end of the sequence,
 move forward by one codepoint and check again.
- If we are at the end of the sequence, and there has been no
 exchange for the last pair, then we are done.

3.4.9 Conversion from legacy encodings

Normalization Form C is designed so that
in almost all cases, one-to-one conversion from legacy encodings (e.g.
iso-8859-1,...) to UCS will produce a result that is already in Normalization
Form C.

The one known exception to this at the moment is the Vietnamese Windows
code page, which uses a kind of 'half-precomposed' encoding, whereas
Normalization Form C uses full precomposition for the characters needed for
Vietnamese. It was impossible to preserve the 'half-precomposed' encoding
for Vietnamese in Normalization Form C because otherwise this would have lead
to anomalies among else for French.

3.4.10 Uses of UCS in non-normalized form

The only case known where the UCS is used
in a way that is not in Normalization Form C is a group of users using the UCS
for Yiddish. The few combinations of Hebrew base letters and diacritics used
to write Yiddish are available precomposed in UCS. On the other hand, the
many combinations used in writing the Hebrew language are only available
by using combining characters.

In order to lead to an uniform model of
encoding Hebrew, the precomposed Hebrew codepoints were excluded from
recombination. This means that Yiddish using precomposed codepoints is not
in Normalization Form C. It is hoped that as soon as systems that transparently
handle composition become more widespread, Yiddish users will move to
using a decomposed representation that is in Normalization Form C.

Implementation examples can be found at [Charlint] (Perl) and [Normalizer]
(Java).

4. Stability and Versioning

Defining a normalization form for Internet-wide use requires that
this normalization form stays as stable as possible. Stability for
Normalization Form C is mainly achieved by introducing a cutoff
version. For precomposed characters encoded up to and including this

version, in principle the precomposed version is the normal form, but
precompomposed codepoints introduced after the cutoff version are
decomposed in Normalization Form C.

As the cutoff version, version 3.0 of Unicode and the second edition
of ISO/IEC 10646-1 have been choosen. These are aligned codepoint-by-
codepoint, and are easily available.

The rest of this section discusses potential threats to the stability of
Normalization Form C, the probability of such threats, and how to
avoid them.

The analysis below shows that the probability of the various
threats is extremely low. The analysis is provided here to
document the awareness of these treats and the measures that
have to be taken to avoid them. This section is only of marginal
importance to an implementer of Normalization Form C or to an
author of an Internet protocol specification.

4.1 New Precomposed Codepoints

The introduction of new (post-Unicode 3.0) precomposed codepoints
is not a threat to the stability of Normalization Form C. Such
codepoints would just provide an alternate way of encoding characters
that can already be encoded without them, by using a decomposed
form. The normalization algorithm already provides for the exclusion
of such characters from recomposition.

While Normalization Form C itself is not affected, such new codepoints
would affect implementations of Normalization Form C, because such
implementations have to be updated to correctly decompose the new
codepoints.

Note: While the new codepoint may be correctly normalized only by
updated implementations, once normalized neither older nor updated
implementations will change anything anymore.

Because the new codepoints do not actually encode any new
characters that couldn't be encoded before, because the new codepoints
won't actually be used due to Early Uniform Normalization, and because
of the above implementation problems, encoding new precomposed characters
is superfluous and should be very clearly avoided.

4.2 New Combining Marks

It is in theory possible that a new combining mark would be encoded
that is intended to represent decomposable pieces of already existing
encoded characters. In case this indeed would happen, problems for
Normalization Form C can be avoided by making sure the precomposed
character that now has a decomposition is not included in the list

of recoposition exclusions. While this helps for Normalization Form
C, adding a canonical decomposition would affect other normalization
forms, and it is therefore highly unlikely that such a canonical
decomposition will ever be added in the first place.

In case new combining marks are encoded for new scripts, or in case
a combining mark is introduced that does not appear in any precomposed
character yet, then the appropriate normalization for these characters
can easily be defined by providing the appropriate data. However,
hopefully no new encoding ambiguities are introduced for new scripts.

4.3 Changed Codepoints

A major threat to the stability of Normalization Form C would
come from changes to ISO/IEC 10646/Unicode itself, i.e. by moving
around characters or redefining codepoint or by ISO/IEC 10646 and
Unicode evolving differently in the future. These threats are
not specific to Normalization Form C, but relevant for the use
of the UCS in general, and are mentioned here for completeness.

Because of the very wide and increasing use of the UCS thoughout
the world, the amount of resistance to any changes of defined
codepoints or to any divergence between ISO/IEC 10646 and Unicode
is extremely strong. Awareness about the need for stability in
this point, as well as others, is particularly high due to the
experiences with some changes in the early history of these standards,
in particular with the reencoding of some Korean Hangul characters
in ISO/IEC 10646 amendment 5 (and the corresponding change in Unicode).
For the IETF in particular, the wording in [RFC 2279] and [RFC 2781]
stresses the importance of stability in this respect.

5. Cases not dealt with by Canonical Equivalence

This section gives a list of cases that are not dealt with by Canonical
Equivalence and Normalization Form C. This is done to help the reader
understand Normalization Form C and its limits. The list in this section
contains many cases of widely varying nature. In most cases, a viewer,
if familiar with the script in question, will be able to distinguish
the various variants.

Internet protocols can deal in various ways with the cases below.
One way is to limit the characters e.g. allowed in an identifier
so that one of the variants is disallowed. Another way is to assume
that the user can make the distinction him/herself. Another is to
understand that some characters or combinations of characters that
would lead to confusion are very difficult to actually enter on any
keyboard; it may therefore not really be worth to exclude them
explicitly.

 - Various ligatures (Latin, Arabic)

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2781

 - Croatian digraphs

 - Full-width Latin compatibility variants

 - Half-width Kana and Hangul compatibility variants

 - Vertical compatibility variants (U+FE30...)

 - Superscript/subscript variants (numbers and IPA)

 - Small form compatibility variants (U+FE50...)

 - Enclosed/encircled alphanumerics, Kana, Hangul,...

 - Letterlike symbols, Roman numerals,...

 - Squared Katakana and Latin abbreviations (units,...)

 - Hangul jamo representation alternatives for historical Hangul

 - Presence or absence of joiner/non-joiner and other control characters

 - Upper case/lower case distinction

 - Distinction between Katakana and Hiragana

 - Similar letters from different scripts
 (e.g. "A" in Latin, Greek, and Cyrillic)

 - CJK ideograph variants (glyph variants introduced due to the source
 separation rule, simplifications)

 - Various punctuation variants (apostrophes, middle dots, spaces,...)

 - Ignorable whitespace, hyphens,...

 - Ignorable accents,...

Many of the cases above are identified as compatibility equivalences in the
Unicode database. [UTR15] defines Normalization Forms KC and KD to normalize
compatibility equivalences. It may look attractive to just use Normalization
Form KC instead of Normalization Form C for Internet protocols. However,
while Canonical Equivalence that forms the base of Normalization Form C
deals with a very small number of very well defined cases of complete
equivalence (from an user point of view), Compatibility Equivalence comprises
a very wide range of cases that usually have to be examined one at a time.

6. Security Considerations

Improper implementation of normalization can cause problems in security

protocols. For example, in certificate chaining, if the program validating
a certificate chain mis-implements normalization rules, an attacker
might be able to spoof an identity by picking a name that the validator
thinks is equivalent to another name.

Acknowledgements

An earlier version of this document benefited from ideas, advice, criticism and
help from: Mark Davis, Larry Masenter, Michael Kung, Edward Cherlin, Alain
LaBonte, Francois Yergeau, and others. For the current version, the authors
were encouraged in particular by Patrick Faltstrom and Paul Hoffman.
The discussion of potential stability threats is based on contributions
by John Cowan and Kenneth Whistler. Further contributions are due to
Dan Oscarson.

References

 [Charlint] Martin Duerst. Charlint - A Character Normalization Tool.
 <http://www.w3.org/International/charlint>.

 [Charreq] Martin J. Duerst, Ed. Requirements for String Identity
 Matching and String Indexing. World Wide Web Consortium
 Working Draft. <http://www.w3.org/TR/WD-charreq>.

 [Charmod] Martin J. Duerst and Francois Yergeau, Eds. Character Model
 for the World Wide Web. World Wide Web Consortium Working
 Draft. <http://www.w3.org/TR/charmod>.

 [CompExcl] The Unicode Consortium. Composition Exclusions.
 <ftp://ftp.unicode.org/Public/UNIDATA/CompositionExclusions.txt>.

 [ISO10646] ISO/IEC 10646-1:1993. International standard -- Infor-
 mation technology -- Universal multiple-octet coded
 character Set (UCS) -- Part 1: Architecture and basic
 multilingual plane, and its Amendments.

 [Normalizer] The Unicode Consortium. Normalization Demo.
 <http://www.unicode.org/unicode/reports/tr15/Normalizer.html>

 [RFC 2277] Harald Alvestrand, IETF Policy on Character Sets and
 Languages, January 1998.
 <http://www.ietf.org/rfc/rfc2781.txt>.

 [RFC 2279] Francois Yergeau. UTF-8, a transformation format of
 ISO 10646. <http://www.ietf.org/rfc/rfc2781.txt>.

 [RFC 2781] Paul Hoffman and Francois Yergeau. UTF-16, an encoding of
 ISO 10646. <http://www.ietf.org/rfc/rfc2781.txt>.

http://www.w3.org/International/charlint
http://www.w3.org/TR/WD-charreq
http://www.w3.org/TR/charmod
ftp://ftp.unicode.org/Public/UNIDATA/CompositionExclusions.txt
http://www.unicode.org/unicode/reports/tr15/Normalizer.html
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2781.txt

 [Unicode] The Unicode Consortium. The Unicode Standard, Version
 3.0. Reading, MA, Addison-Wesley Developers Press, 2000.
 ISBN 0-201-61633-5.

 [UniData] The Unicode Consortium. UnicodeData File.
 <ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt>.
 For explanation on the content of this file, please see
 <ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.html>.

 [UTR15] Mark Davis and Martin Duerst. Unicode Normalization Forms.
 Unicode Technical Report #15.
 <http://www.unicode.org/unicode/reports/tr15/>.

Copyright

Copyright (C) The Internet Society, 2000. All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Author's Addresses

 Martin J. Duerst
 W3C/Keio University
 5322 Endo, Fujisawa
 252-8520 Japan
 mailto:duerst@w3.org

ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.txt
ftp://ftp.unicode.org/Public/UNIDATA/UnicodeData.html
http://www.unicode.org/unicode/reports/tr15/

http://www.w3.org/People/D%C3%BCrst/
 Tel/Fax: +81 466 49 1170

 Note: Please write "Duerst" with u-umlaut wherever
 possible, i.e. as "D&252;rst" in HTML and XML.

 Mark E. Davis
 IBM Center for Java Technology
 10275 North De Anza Bouleward
 Cupertino 95014 CA
 U.S.A.
 mailto:mark.davis@us.ibm.com

http://www.macchiato.com
 Tel: +1 (408) 777-5850
 Fax: +1 (408) 777-5891

#-#-# Martin J. Du"rst, I18N Activity Lead, World Wide Web Consortium
#-#-# mailto:duerst@w3.org http://www.w3.org/People/D%C3%BCrst

http://www.w3.org/People/D%C3%BCrst/
http://www.macchiato.com
http://www.w3.org/People/D%C3%BCrst

