
QUIC M. Duke
Internet-Draft F5 Networks, Inc.
Intended status: Standards Track N. Banks
Expires: May 7, 2020 Microsoft
 November 4, 2019

QUIC-LB: Generating Routable QUIC Connection IDs
draft-duke-quic-load-balancers-06

Abstract

 QUIC connection IDs allow continuation of connections across address/
 port 4-tuple changes, and can store routing information for stateless
 or low-state load balancers. They also can prevent linkability of
 connections across deliberate address migration through the use of
 protected communications between client and server. This creates
 issues for load-balancing intermediaries. This specification
 standardizes methods for encoding routing information and proposes an
 optional protocol called QUIC-LB to exchange the parameters of that
 encoding. This framework also enables offload of other QUIC
 functions to trusted intermediaries, given the explicit cooperation
 of the QUIC server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Duke & Banks Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft QUIC-LB November 2019

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. Protocol Objectives . 5
2.1. Simplicity . 5
2.2. Security . 5
2.3. Robustness to Middleboxes 6
2.4. Load Balancer Chains 6

3. First CID octet . 6
3.1. Config Rotation . 6
3.2. Configuration Failover 7
3.3. Length Self-Description 7

4. Routing Algorithms . 8
4.1. Plaintext CID Algorithm 9
4.1.1. Load Balancer Actions 9
4.1.2. Server Actions 9

4.2. Obfuscated CID Algorithm 10
4.2.1. Load Balancer Actions 10
4.2.2. Server Actions 11

4.3. Stream Cipher CID Algorithm 11
4.3.1. Load Balancer Actions 12
4.3.2. Server Actions 12

4.4. Block Cipher CID Algorithm 13
4.4.1. Load Balancer Actions 13
4.4.2. Server Actions 14

5. Retry Service . 14
5.1. Common Requirements 15
5.2. No-Shared-State Retry Service 15
5.2.1. Service Requirements 15
5.2.2. Server Requirements 17

5.3. Shared-State Retry Service 17
5.3.1. Service Requirements 19
5.3.2. Server Requirements 19

6. Configuration Requirements 19
7. Protocol Description . 22
7.1. Out of band sharing 22
7.2. QUIC-LB Message Exchange 22
7.3. QUIC-LB Packet . 22
7.4. Message Types and Formats 23

https://trustee.ietf.org/license-info

Duke & Banks Expires May 7, 2020 [Page 2]

Internet-Draft QUIC-LB November 2019

7.4.1. ACK_LB Message 24
7.4.2. FAIL Message . 24
7.4.3. ROUTING_INFO Message 24
7.4.4. STREAM_CID Message 25
7.4.5. BLOCK_CID Message 26
7.4.6. SERVER_ID Message 27
7.4.7. MODULUS Message 27
7.4.8. PLAINTEXT Message 27
7.4.9. RETRY_SERVICE_STATELESS message 28
7.4.10. RETRY_SERVICE_STATEFUL message 28

8. Security Considerations 28
8.1. Outside attackers . 29
8.2. Inside Attackers . 29

9. IANA Considerations . 29
10. References . 29
10.1. Normative References 30
10.2. Informative References 30

Appendix A. Acknowledgments 30
Appendix B. Change Log . 30
B.1. Since draft-duke-quic-load-balancers-05 30
B.2. Since draft-duke-quic-load-balancers-04 30
B.3. Since draft-duke-quic-load-balancers-03 30
B.4. Since draft-duke-quic-load-balancers-02 31
B.5. Since draft-duke-quic-load-balancers-01 31
B.6. Since draft-duke-quic-load-balancers-00 31

 Authors' Addresses . 31

1. Introduction

 QUIC packets usually contain a connection ID to allow endpoints to
 associate packets with different address/port 4-tuples to the same
 connection context. This feature makes connections robust in the
 event of NAT rebinding. QUIC endpoints usually designate the
 connection ID which peers use to address packets. Server-generated
 connection IDs create a potential need for out-of-band communication
 to support QUIC.

 QUIC allows servers (or load balancers) to designate an initial
 connection ID to encode useful routing information for load
 balancers. It also encourages servers, in packets protected by
 cryptography, to provide additional connection IDs to the client.
 This allows clients that know they are going to change IP address or
 port to use a separate connection ID on the new path, thus reducing
 linkability as clients move through the world.

 There is a tension between the requirements to provide routing
 information and mitigate linkability. Ultimately, because new
 connection IDs are in protected packets, they must be generated at

https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-05
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-04
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-03
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-02
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-01
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-00

Duke & Banks Expires May 7, 2020 [Page 3]

Internet-Draft QUIC-LB November 2019

 the server if the load balancer does not have access to the
 connection keys. However, it is the load balancer that has the
 context necessary to generate a connection ID that encodes useful
 routing information. In the absence of any shared state between load
 balancer and server, the load balancer must maintain a relatively
 expensive table of server-generated connection IDs, and will not
 route packets correctly if they use a connection ID that was
 originally communicated in a protected NEW_CONNECTION_ID frame.

 This specification provides a method of coordination between QUIC
 servers and low-state load balancers to support connection IDs that
 encode routing information. It describes desirable properties of a
 solution, and then specifies a protocol that provides those
 properties. This protocol supports multiple encoding schemes that
 increase in complexity as they address paths between load balancer
 and server with weaker trust dynamics.

 Aside from load balancing, a QUIC server may also desire to offload
 other protocol functions to trusted intermediaries. These
 intermediaries might include hardware assist on the server host
 itself, without access to fully decrypted QUIC packets. For example,
 this document specifies a means of offloading stateless retry to
 counter Denial of Service attacks. It also proposes a system for
 self-encoding connection ID length in all packets, so that crypto
 offload can consistently look up key information.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying significance described in RFC 2119.

 In this document, "client" and "server" refer to the endpoints of a
 QUIC connection unless otherwise indicated. A "load balancer" is an
 intermediary for that connection that does not possess QUIC
 connection keys, but it may rewrite IP addresses or conduct other IP
 or UDP processing.

 Note that stateful load balancers that act as proxies, by terminating
 a QUIC connection with the client and then retrieving data from the
 server using QUIC or another protocol, are treated as a server with
 respect to this specification.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Duke & Banks Expires May 7, 2020 [Page 4]

Internet-Draft QUIC-LB November 2019

 When discussing security threats to QUIC-LB, we distinguish between
 "inside observers" and "outside observers." The former lie on the
 path between the load balancer and server, which often but not always
 lies inside the server's data center or cloud deployment. Outside
 observers are on the path between the load balancer and client.
 "Off-path" attackers, though not on any data path, may also be
 "inside" or "outside" depending on whether not they have network
 access to the server without intermediation by the load balancer and/
 or other security devices.

2. Protocol Objectives

2.1. Simplicity

 QUIC is intended to provide unlinkability across connection
 migration, but servers are not required to provide additional
 connection IDs that effectively prevent linkability. If the
 coordination scheme is too difficult to implement, servers behind
 load balancers using connection IDs for routing will use trivially
 linkable connection IDs. Clients will therefore be forced choose
 between terminating the connection during migration or remaining
 linkable, subverting a design objective of QUIC.

 The solution should be both simple to implement and require little
 additional infrastructure for cryptographic keys, etc.

2.2. Security

 In the limit where there are very few connections to a pool of
 servers, no scheme can prevent the linking of two connection IDs with
 high probability. In the opposite limit, where all servers have many
 connections that start and end frequently, it will be difficult to
 associate two connection IDs even if they are known to map to the
 same server.

 QUIC-LB is relevant in the region between these extremes: when the
 information that two connection IDs map to the same server is helpful
 to linking two connection IDs. Obviously, any scheme that
 transparently communicates this mapping to outside observers
 compromises QUIC's defenses against linkability.

 However, concealing this mapping from inside observers is beyond the
 scope of QUIC-LB. By simply observing Link-Layer and/or Network-
 Layer addresses of packets containing distinct connection IDs, it is
 trivial to determine that they map to the same server, even if
 connection IDs are entirely random and do not encode routing
 information. Schemes that conceal these addresses (e.g., IPsec) can
 also conceal QUIC-LB messages.

Duke & Banks Expires May 7, 2020 [Page 5]

Internet-Draft QUIC-LB November 2019

 Inside observers are generally able to mount Denial of Service (DoS)
 attacks on QUIC connections regardless of Connection ID schemes.
 However, QUIC-LB should protect against Denial of Service due to
 inside off-path attackers in cases where such attackers are possible.

 Though not an explicit goal of the QUIC-LB design, concealing the
 server mapping also complicates attempts to focus attacks on a
 specific server in the pool.

2.3. Robustness to Middleboxes

 The path between load balancer and server may pass through
 middleboxes that could drop the coordination messages in this
 protocol. It is therefore advantageous to make messages resemble
 QUIC traffic as much as possible, as any viable path must obviously
 admit QUIC traffic.

2.4. Load Balancer Chains

 While it is possible to construct a scheme that supports multiple
 low-state load balancers in the path, by using different parts of the
 connection ID to encode routing information for each load balancer,
 this use case is out of scope for QUIC-LB.

3. First CID octet

 The first octet of a Connection ID is reserved for two special
 purposes, one mandatory (config rotation) and one optional (length
 self-description).

 Subsequent sections of this document refer to the contents of this
 octet as the "first octet."

3.1. Config Rotation

 The first two bits of any connection-ID MUST encode the configuration
 phase of that ID. QUIC-LB messages indicate the phase of the
 algorithm and parameters that they encode.

 A new configuration may change one or more parameters of the old
 configuration, or change the algorithm used.

 It is possible for servers to have mutually exclusive sets of
 supported algorithms, or for a transition from one algorithm to
 another to result in Fail Payloads. The four states encoded in these
 two bits allow two mutually exclusive server pools to coexist, and
 for each of them to transition to a new set of parameters.

Duke & Banks Expires May 7, 2020 [Page 6]

Internet-Draft QUIC-LB November 2019

 When new configuration is distributed to servers, there will be a
 transition period when connection IDs reflecting old and new
 configuration coexist in the network. The rotation bits allow load
 balancers to apply the correct routing algorithm and parameters to
 incoming packets.

 Servers MUST NOT generate new connection IDs using an old
 configuration when it has sent an Ack payload for a new
 configuration.

 Load balancers SHOULD NOT use a codepoint to represent a new
 configuration until it takes precautions to make sure that all
 connections using IDs with an old configuration at that codepoint
 have closed or transitioned. They MAY drop connection IDs with the
 old configuration after a reasonable interval to accelerate this
 process.

3.2. Configuration Failover

 If a server is configured to expect QUIC-LB messages, and it has not
 received these, it MUST generate connection IDs with the config
 rotation bits set to '11' and MUST use the "disable_migration"
 transport parameter in all new QUIC connections. It MUST NOT send
 NEW_CONNECTION_ID frames with new values.

 A load balancer that sees a connection ID with config rotation bits
 set to '11' MUST revert to 5-tuple routing.

3.3. Length Self-Description

 Local hardware cryptographic offload devices may accelerate QUIC
 servers by receiving keys from the QUIC implementation indexed to the
 connection ID. However, on physical devices operating multiple QUIC
 servers, it is impractical to efficiently lookup these keys if the
 connection ID does not self-encode its own length.

 Note that this is a function of particular server devices and is
 irrelevant to load balancers. As such, it is not negotiated between
 servers and load balancers. However, the remaining 6 bits in the
 first octet of the Connection ID are reserved to express the length
 of the following connection ID, not including the first octet.

 A server not using this functionality SHOULD make the six bits appear
 to be random.

Duke & Banks Expires May 7, 2020 [Page 7]

Internet-Draft QUIC-LB November 2019

4. Routing Algorithms

 In QUIC-LB, load balancers do not generate individual connection IDs
 to servers. Instead, they communicate the parameters of an algorithm
 to generate routable connection IDs.

 The algorithms differ in the complexity of configuration at both load
 balancer and server. Increasing complexity improves obfuscation of
 the server mapping.

 As clients sometimes generate the DCIDs in long headers, these might
 not conform to the expectations of the routing algorithm. These are
 called "non-compliant DCIDs":

 o The DCID might not be long enough for the routing algorithm to
 process.

 o The extracted server mapping might not correspond to an active
 server.

 o A field that should be all zeroes after decryption may not be so.

 Load balancers MUST forward packets with long headers with non-
 compliant DCIDs to an active server using an algorithm of its own
 choosing. It need not coordinate this algorithm with the servers.
 The algorithm SHOULD be deterministic over short time scales so that
 related packets go to the same server. For example, a non-compliant
 DCID might be converted to an integer and divided by the number of
 servers, with the modulus used to forward the packet. The number of
 servers is usually consistent on the time scale of a QUIC connection
 handshake.

 Load balancers SHOULD drop packets with non-compliant DCIDs in a
 short header.

 Load balancers MUST forward packets with compliant DCIDs to a server
 in accordance with the chosen routing algorithm.

 The load balancer MUST NOT make the routing behavior dependent on any
 bits in the first octet of the QUIC packet header, except the first
 bit, which indicates a long header. All other bits are QUIC version-
 dependent and intermediaries should not build their design on
 version-specific templates.

 There are situations where a server pool might be operating two or
 more routing algorithms or parameter sets simultaneously. The load
 balancer uses the first two bits of the connection ID to multiplex
 incoming DCIDs over these schemes.

Duke & Banks Expires May 7, 2020 [Page 8]

Internet-Draft QUIC-LB November 2019

 This section describes two participants: the load balancer and the
 server. The load balancer, in this description, generates
 configuration parameters. Note that in practice a third party
 configuration agent MAY assume this responsibility.

4.1. Plaintext CID Algorithm

 The Plaintext CID Algorithm makes no attempt to obscure the mapping
 of connections to servers, significantly increasing linkability. The
 format is depicted in the figure below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | First octet | Server ID (X=8..152) |
 +-+
 | Any (0..152-X) |
 +-+

 Figure 1: Plaintext CID Format

4.1.1. Load Balancer Actions

 The load balancer selects a number of bytes of the server connection
 ID (SCID) that it will use to route to a given server, called the
 "routing bytes". The number of bytes MUST have enough entropy to
 have a different code point for each server.

 The load balancer shares this value with servers, as explained in
Section 7, along with the value that represents that server.

 On each incoming packet, the load balancer extracts consecutive
 octets, beginning with the second byte. These bytes represent the
 server ID.

4.1.2. Server Actions

 The server chooses a connection ID length. This MUST be at least one
 byte longer than the routing bytes.

 When a server needs a new connection ID, it encodes its assigned
 server ID in consecutive octets beginning with the second. All other
 bits in the connection ID, except for the first octet, MAY be set to
 any other value. These other bits SHOULD appear random to observers.

Duke & Banks Expires May 7, 2020 [Page 9]

Internet-Draft QUIC-LB November 2019

4.2. Obfuscated CID Algorithm

 The Obfuscated CID Algorithm makes an attempt to obscure the mapping
 of connections to servers to reduce linkability, while not requiring
 true encryption and decryption. The format is depicted in the figure
 below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | First octet | Mixed routing and non-routing bits (64..152) |
 +-+

 Figure 2: Obfuscated CID Format

4.2.1. Load Balancer Actions

 The load balancer selects an arbitrary set of bits of the server
 connection ID (SCID) that it will use to route to a given server,
 called the "routing bits". The number of bits MUST have enough
 entropy to have a different code point for each server, and SHOULD
 have enough entropy so that there are many codepoints for each
 server.

 The load balancer MUST NOT select a routing mask with more than 136
 routing bits set to 1, which allows for the first octet and up to 2
 octets for server purposes in a maximum-length connection ID.

 The load balancer selects a divisor that MUST be larger than the
 number of servers. It SHOULD be large enough to accommodate
 reasonable increases in the number of servers. The divisor MUST be
 an odd integer so certain addition operations do not always produce
 an even number.

 The load balancer also assigns each server a "modulus", an integer
 between 0 and the divisor minus 1. These MUST be unique for each
 server, and SHOULD be distributed across the entire number space
 between zero and the divisor.

 The load balancer shares these three values with servers, as
 explained in Section 7.

 Upon receipt of a QUIC packet, the load balancer extracts the
 selected bits of the SCID and expresses them as an unsigned integer
 of that length. The load balancer then divides the result by the
 chosen divisor. The modulus of this operation maps to the modulus
 for the destination server.

Duke & Banks Expires May 7, 2020 [Page 10]

Internet-Draft QUIC-LB November 2019

 Note that any SCID that contains a server's modulus, plus an
 arbitrary integer multiple of the divisor, in the routing bits is
 routable to that server regardless of the contents of the non-routing
 bits. Outside observers that do not know the divisor or the routing
 bits will therefore have difficulty identifying that two SCIDs route
 to the same server.

 Note also that not all Connection IDs are necessarily routable, as
 the computed modulus may not match one assigned to any server. These
 DCIDs are non-compliant as described above.

4.2.2. Server Actions

 The server chooses a connection ID length. This MUST contain all of
 the routing bits and MUST be at least 9 octets to provide adequate
 entropy.

 When a server needs a new connection ID, it adds an arbitrary
 nonnegative integer multiple of the divisor to its modulus, without
 exceeding the maximum integer value implied by the number of routing
 bits. The choice of multiple should appear random within these
 constraints.

 The server encodes the result in the routing bits. It MAY put any
 other value into bits that used neither for routing nor config
 rotation. These bits SHOULD appear random to observers.

4.3. Stream Cipher CID Algorithm

 The Stream Cipher CID algorithm provides true cryptographic
 protection, rather than mere obfuscation, at the cost of additional
 per-packet processing at the load balancer to decrypt every incoming
 connection ID. The CID format is depicted below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | First Octet | Nonce (X=64..144) |
 +-+
 | Encrypted Server ID (Y=8..152-X) |
 +-+
 | For server use (0..152-X-Y) |
 +-+

 Figure 3: Stream Cipher CID Format

Duke & Banks Expires May 7, 2020 [Page 11]

Internet-Draft QUIC-LB November 2019

4.3.1. Load Balancer Actions

 The load balancer assigns a server ID to every server in its pool,
 and determines a server ID length (in octets) sufficiently large to
 encode all server IDs, including potential future servers.

 The load balancer also selects a nonce length and an 16-octet AES-ECB
 key to use for connection ID decryption. The nonce length MUST be at
 least 8 octets and no more than 16 octets. The nonce length and
 server ID length MUST sum to 19 or fewer octets.

 The load balancer shares these three values with servers, as
 explained in Section 7.

 Upon receipt of a QUIC packet that is not of type Initial or 0-RTT,
 the load balancer extracts as many of the earliest octets from the
 destination connection ID as necessary to match the nonce length.
 The server ID immediately follows.

 The load balancer decrypts the server ID using 128-bit AES Electronic
 Codebook (ECB) mode, much like QUIC header protection. The nonce
 octets are zero-padded to 16 octets. AES-ECB encrypts this nonce
 using its key to generate a mask which it applies to the encrypted
 server id.

 server_id = encrypted_server_id ^ AES-ECB(key, padded-nonce)

 For example, if the nonce length is 10 octets and the server ID
 length is 2 octets, the connection ID can be as small as 13 octets.
 The load balancer uses the the second through eleventh of the
 connection ID for the nonce, zero-pads it to 16 octets using the
 first 6 octets of the token, and uses this to decrypt the server ID
 in the twelfth and thirteenth octet.

 The output of the decryption is the server ID that the load balancer
 uses for routing.

4.3.2. Server Actions

 When generating a routable connection ID, the server writes arbitrary
 bits into its nonce octets, and its provided server ID into the
 server ID octets. Servers MAY opt to have a longer connection ID
 beyond the nonce and server ID. The nonce and additional bits MAY
 encode additional information, but SHOULD appear essentially random
 to observers.

 The server decrypts the server ID using 128-bit AES Electronic
 Codebook (ECB) mode, much like QUIC header protection. The nonce

Duke & Banks Expires May 7, 2020 [Page 12]

Internet-Draft QUIC-LB November 2019

 octets are zero-padded to 16 octets using the as many of the first
 octets of the token as necessary. AES-ECB encrypts this nonce using
 its key to generate a mask which it applies to the server id.

 encrypted_server_id = server_id ^ AES-ECB(key, padded-nonce)

4.4. Block Cipher CID Algorithm

 The Block Cipher CID Algorithm, by using a full 16 octets of
 plaintext and a 128-bit cipher, provides higher cryptographic
 protection and detection of non-compliant connection IDs. However,
 it also requires connection IDs of at least 17 octets, increasing
 overhead of client-to-server packets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | First octet | Encrypted server ID (X=8..144) |
 +-+
 | Encrypted Zero Padding (Y=0..144-X) |
 +-+
 | Encrypted bits for server use (144-X-Y) |
 +-+
 | Unencrypted bits for server use (0..24) |
 +-+

 Figure 4: Block Cipher CID Format

4.4.1. Load Balancer Actions

 The load balancer assigns a server ID to every server in its pool,
 and determines a server ID length (in octets) sufficiently large to
 encode all server IDs, including potential future servers. The
 server ID will start in the second octet of the decrypted connection
 ID and occupy continuous octets beyond that.

 The load balancer selects a zero-padding length. This SHOULD be at
 least four octets to allow detection of non-compliant DCIDs. The
 server ID and zero- padding length MUST sum to no more than 16
 octets. They SHOULD sum to no more than 12 octets, to provide
 servers adequate space to encode their own opaque data.

 The load balancer also selects an 16-octet AES-ECB key to use for
 connection ID decryption.

 The load balancer shares these four values with servers, as explained
 in Section 7.

Duke & Banks Expires May 7, 2020 [Page 13]

Internet-Draft QUIC-LB November 2019

 Upon receipt of a QUIC packet that is not of type Initial or 0-RTT,
 the load balancer reads the first octet to obtain the config rotation
 bits. It then decrypts the subsequent 16 octets using AES-ECB
 decryption and the chosen key.

 The decrypted plaintext contains the server id, zero padding, and
 opaque server data in that order. The load balancer uses the server
 ID octets for routing.

4.4.2. Server Actions

 When generating a routable connection ID, the server MUST choose a
 connection ID length between 17 and 20 octets. The server writes its
 provided server ID into the server ID octets, zeroes into the zero-
 padding octets, and arbitrary bits into the remaining bits. These
 arbitrary bits MAY encode additional information. Bits in the first,
 eighteenth, nineteenth, and twentieth octets SHOULD appear
 essentially random to observers. The first octet is reserved as
 described in Section 3.

 The server then encrypts the second through seventeenth octets using
 the 128-bit AES-ECB cipher.

5. Retry Service

 When a server is under load, QUICv1 allows it to defer storage of
 connection state until the client proves it can receive packets at
 its advertised IP address. Through the use of a Retry packet, a
 token in subsequent client Initial packets, and the
 original_connection_id transport parameter, servers verify address
 ownership and clients verify that there is no "man in the middle"
 generating Retry packets.

 As a trusted Retry Service is literally a "man in the middle," the
 service must communicate the original_connection_id back to the
 server so that in can pass client verification. It also must either
 verify the address itself (with the server trusting this
 verification) or make sure there is common context for the server to
 verify the address using a service-generated token.

 There are two different mechanisms to allow offload of DoS mitigation
 to a trusted network service. One requires no shared state; the
 server need only be configured to trust a retry service, though this
 imposes other operational constraints. The other requires shared
 key, but has no such constraints.

 Retry services MUST forward all non-Initial QUIC packets, as well as
 Initial packets from the server.

Duke & Banks Expires May 7, 2020 [Page 14]

Internet-Draft QUIC-LB November 2019

5.1. Common Requirements

 Regardless of mechanism, a retry service has an active mode, where it
 is generating Retry packets, and an inactive mode, where it is not,
 based on its assessment of server load and the likelihood an attack
 is underway. The choice of mode MAY be made on a per-packet basis,
 through a stochastic process or based on client address.

 A retry service MUST forward all packets for a QUIC version it does
 not understand. Note that if servers support versions the retry
 service does not, this may unacceptably increase loads on the
 servers. However, dropping these packets would introduce chokepoints
 to block deployment of new QUIC versions. Note that future versions
 of QUIC might not have Retry packets, or require different
 information.

5.2. No-Shared-State Retry Service

 The no-shared-state retry service requires no coordination, except
 that the server must be configured to accept this service. The
 scheme uses the first bit of the token to distinguish between tokens
 from Retry packets (codepoint '0') and tokens from NEW_TOKEN frames
 (codepoint '1').

5.2.1. Service Requirements

 A no-shared-state retry service MUST be present on all paths from
 potential clients to the server. These paths MUST fail to pass QUIC
 traffic should the service fail for any reason. That is, if the
 service is not operational, the server MUST NOT be exposed to client
 traffic. Otherwise, servers that have already disabled their Retry
 capability would be vulnerable to attack.

 The path between service and server MUST be free of any potential
 attackers. Note that this and other requirements above severely
 restrict the operational conditions in which a no-shared-state retry
 service can safely operate.

 Retry tokens generated by the service MUST have the format below.

Duke & Banks Expires May 7, 2020 [Page 15]

Internet-Draft QUIC-LB November 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0| ODCIL (7) | Original Destination Connection ID (0..160) |
 +-+
 | Original Destination Connection ID (...) |
 +-+
 ...
 +-+
 | Opaque Data (variable) |
 +-+

 Figure 5: Format of non-shared-state retry service tokens

 The first bit of retry tokens generated by the service must be zero.
 The token has the following additional fields:

 ODCIL: The length of the original destination connection ID from the
 triggering Initial packet. This is in cleartext to be readable for
 the server, but authenticated later in the token.

 Original Destination Connection ID: This also in cleartext and
 authenticated later.

 Opaque Data: This data MUST contain encrypted information that allows
 the retry service to validate the client's IP address, in accordance
 with the QUIC specification. It MUST also encode a secure hash of
 the original destination connection ID field to verify that this
 field has not been edited.

 Upon receipt of an Initial packet with a token that begins with '0',
 the retry service MUST validate the token in accordance with the QUIC
 specification. It must also verify that the secure hash of the
 Connect ID is correct. If incorrect, the token is invalid.

 In active mode, the service MUST issue Retry packets for all Client
 initial packets that contain no token, or a token that has the first
 bit set to '1'. It MUST NOT forward the packet to the server. The
 service MUST validate all tokens with the first bit set to '0'. If
 successful, the service MUST forward the packet with the token
 intact. If unsuccessful, it MUST drop the packet.

 Note that this scheme has a performance drawback. When the retry
 service is in active mode, clients with a token from a NEW_TOKEN
 frame will suffer a 1-RTT penalty even though it has proof of address
 with its token.

Duke & Banks Expires May 7, 2020 [Page 16]

Internet-Draft QUIC-LB November 2019

 In inactive mode, the service MUST forward all packets that have no
 token or a token with the first bit set to '1'. It MUST validate all
 tokens with the first bit set to '0'. If successful, the service
 MUST forward the packet with the token intact. If unsuccessful, it
 MUST either drop the packet or forward it with the token removed.
 The latter requires decryption and re-encryption of the entire
 Initial packet to avoid authentication failure. Forwarding the
 packet causes the server to respond without the
 original_connection_id transport parameter, which preserves the
 normal QUIC signal to the client that there is an unauthorized man in
 the middle.

5.2.2. Server Requirements

 A server behind a non-shared-state retry service MUST NOT send Retry
 packets.

 Tokens sent in NEW_TOKEN frames MUST have the first bit be set to
 '1'.

 If a server receives an Initial Packet with the first bit set to '1',
 it could be from a server-generated NEW_TOKEN frame and should be
 processed in accordance with the QUIC specification. If a server
 receives an Initial Packet with the first bit to '0', it is a Retry
 token and the server MUST NOT attempt to validate it. Instead, it
 MUST assume the address is validated and MUST extract the Original
 Destination Connection ID, assuming the format described in

Section 5.2.1.

5.3. Shared-State Retry Service

 A shared-state retry service uses a shared key, so that the server
 can decode the service's retry tokens. It does not require that all
 traffic pass through the Retry service, so servers MAY send Retry
 packets in response to Initial packets that don't include a valid
 token.

 Both server and service must have access to Universal time, though
 tight synchronization is not necessary.

 All tokens, generated by either the server or retry service, MUST use
 the following format. This format is the cleartext version. On the
 wire, these fields are encrypted using an AES-ECB cipher and the
 token key. If the token is not a multiple of 16 octets, the last
 block is padded with zeroes.

Duke & Banks Expires May 7, 2020 [Page 17]

Internet-Draft QUIC-LB November 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ODCIL | Original Destination Connection ID (0..160) |
 +-+
 | ... |
 +-+
 | |
 + +
 | |
 + Client IP Address (128) +
 | |
 + +
 | |
 +-+
 | |
 + +
 | |
 + +
 | date-time (160) |
 + +
 | |
 + +
 | |
 +-+
 | Opaque Data (optional) |
 +-+

 Figure 6: Cleartext format of shared-state retry tokens

 The tokens have the following fields:

 ODCIL: The original destination connection ID length. Tokens in
 NEW_TOKEN frames SHOULD set this field to zero.

 Original Destination Connection ID: This is copied from the field in
 the client Initial packet.

 Client IP Address: The source IP address from the triggering Initial
 packet. The client IP address is 16 octets. If an IPv4 address, the
 last 12 octets are zeroes.

 date-time: The date-time string is a total of 20 octets and encodes
 the time the token was generated. The format of date-time is
 described in Section 5.6 of [RFC3339]. This ASCII field MUST use the
 "Z" character for time-offset.

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6

Duke & Banks Expires May 7, 2020 [Page 18]

Internet-Draft QUIC-LB November 2019

 Opaque Data: The server may use this field to encode additional
 information, such as congestion window, RTT, or MTU. Opaque data
 SHOULD also allow servers to distinguish between retry tokens (which
 trigger use of the original_connection_id transport parameter) and
 NEW_TOKEN frame tokens.

5.3.1. Service Requirements

 The service MUST share a "token key" with all supported servers.

 When in active mode, the service MUST generate Retry tokens with the
 format described above when it receives a client Initial packet with
 no token.

 In active mode, the service SHOULD decrypt incoming tokens. The
 service SHOULD drop packets with an IP address that does not match,
 and SHOULD forward packets that do, regardless of the other fields.

 In inactive mode, the service SHOULD forward all packets to the
 server so that the server can issue an up-to-date token to the
 client.

5.3.2. Server Requirements

 The server MUST validate all tokens that arrive in Initial packets,
 as they may have bypassed the Retry service. It SHOULD use the date-
 time field to apply its expiration limits for tokens. This need not
 be synchronized with the retry service. However, servers MAY allow
 retry tokens marked as being a few seconds in the future, due to
 possible clock synchronization issues.

 A server MUST NOT send a Retry packet in response to an Initial
 packet that contains a retry token.

6. Configuration Requirements

 QUIC-LB strives to minimize the configuration load to enable, as much
 as possible, a "plug-and-play" model. However, there are some
 configuration requirements based on algorithm and protocol choices
 above.

 If there is any in-band communication, servers MUST be explicitly
 configured with the token of the load balancer they expect to
 interface with.

 The load balancer and server MUST agree on a routing algorithm and
 the relevant parameters for that algorithm.

Duke & Banks Expires May 7, 2020 [Page 19]

Internet-Draft QUIC-LB November 2019

 For Plaintext CID Routing, this consists of the Server ID and the
 routing bytes. The Server ID is unique to each server, and the
 routing bytes are global.

 For Obfuscated CID Routing, this consists of the Routing Bits,
 Divisor, and Modulus. The Modulus is unique to each server, but the
 others MUST be global.

 For Stream Cipher CID Routing, this consists of the Server ID, Server
 ID Length, Key, and Nonce Length. The Server ID is unique to each
 server, but the others MUST be global. The authentication token MUST
 be distributed out of band for this algorithm to operate.

 For Block Cipher CID Routing, this consists of the Server ID, Server
 ID Length, Key, and Zero-Padding Length. The Server ID is unique to
 each server, but the others MUST be global.

 A full QUIC-LB configuration MUST also specify the information
 content of the first CID octet and the presence and mode of any Retry
 Service.

 The following pseudocode depicts the data items necessary to store a
 full QUIC-LB configuration at the server. It is meant to describe
 the conceptual range and not specify the presentation of such
 configuration in an internet packet. The comments signify the range
 of acceptable values where applicable.

Duke & Banks Expires May 7, 2020 [Page 20]

Internet-Draft QUIC-LB November 2019

 uint2 config_rotation_bits;
 enum { in_band_config, out_of_band_config } config_method;
 select (config_method) {
 case in_band_config: uint64 config_token;
 case out_of_band_config: null;
 } config-method
 boolean first_octet_encodes_cid_length;
 enum { none, non_shared_state, shared_state } retry_service;
 select (retry_service) {
 case none: null;
 case non_shared_state: null;
 case shared_state: uint8 key[16];
 } retry_service_config;
 enum { none, plaintext, obfuscated, stream_cipher, block_cipher }
 routing_algorithm;
 select (routing_algorithm) {
 case none: null;
 case plaintext: struct {
 uint8 server_id_length; /* 1..19 */
 uint8 server_id[server_id_length];
 } plaintext_config;
 case obfuscated: struct {
 uint8 routing_bit_mask[19];
 uint16 divisor; /* Must be odd */
 uint16 modulus; /* 0..(divisor - 1) */
 } obfuscated_config;
 case stream_cipher: struct {
 uint8 nonce_length; /* 8..16 */
 uint8 server_id_length; /* 1..(19 - nonce_length) */
 uint8 server_id[server_id_length];
 uint8 key[16];
 } stream_cipher_config;
 case block_cipher: struct {
 uint8 server_id_length;
 uint8 zero_padding_length; /* 0..(16 - server_id_length) */
 uint8 server_id[server_id_length];
 uint8 key[16];
 } block_cipher_config;
 } routing_algorithm_config;

 This specification allows for out-of-band dissemination of this
 configuration items, but also provides an in-band method for
 deployment models that need it.

Duke & Banks Expires May 7, 2020 [Page 21]

Internet-Draft QUIC-LB November 2019

7. Protocol Description

 There are multiple means of configuration that correspond to
 differing deployment models and increasing levels of concern about
 the security of the load balancer-server path.

7.1. Out of band sharing

 When there are concerns about the integrity of the path between load
 balancer and server, operators MAY share routing information using an
 out-of-band technique, which is out of the scope of this
 specification.

 To simplify configuration, the global parameters can be shared out-
 of-band, while the load balancer sends the unique server IDs via the
 truncated message formats presented below.

7.2. QUIC-LB Message Exchange

 QUIC-LB load balancers and servers exchange messages via the QUIC-
 LBv1 protocol, which uses the QUIC invariants with version number
 0xF1000000. The QUIC-LB load balancers send the encoding parameters
 to servers and periodically retransmit until that server responds
 with an acknowledgement. Specifics of this retransmission are
 implementation-dependent.

7.3. QUIC-LB Packet

 A QUIC-LB packet uses a long header. It carries configuration
 information from the load balancer and acknowledgements from the
 servers. They are sent when a load balancer boots up, detects a new
 server in the pool or needs to update the server configuration.

Duke & Banks Expires May 7, 2020 [Page 22]

Internet-Draft QUIC-LB November 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+
 |1|C R| Reserved|
 +-+
 | Version (32) |
 +-+
 | 0x00 | 0x00 |
 +-+
 | |
 + Authentication Token (64) +
 | |
 +-+
 | Message Type |
 +-+-+-+-+-+-+-+-+

 Figure 7: QUIC-LB Packet Format

 The Version field allows QUIC-LB to use the Version Negotiation
 mechanism. All messages in this specification are specific to QUIC-
 LBv1. It should be set to 0xF1000000.

 Load balancers MUST cease sending QUIC-LB packets of this version to
 a server when that server sends a Version Negotiation packet that
 does not advertise the version.

 The length of the DCIL and SCIL fields are 0x00.

 CR The 2-bit CR field indicates the Config Rotation described in
Section 3.1.

 Authentication Token The Authentication Token is an 8-byte field
 that both entities obtain at configuration time. It is used to
 verify that the sender is not an inside off-path attacker.
 Servers and load balancers SHOULD silently discard QUIC-LB packets
 with an incorrect token.

 Message Type The Message Type indicates the type of message payload
 that follows the QUIC-LB header.

7.4. Message Types and Formats

 As described in Section 7.3, QUIC-LB packets contain a single
 message. This section describes the format and semantics of the
 QUIC-LB message types.

Duke & Banks Expires May 7, 2020 [Page 23]

Internet-Draft QUIC-LB November 2019

7.4.1. ACK_LB Message

 A server uses the ACK_LB message (type=0x00) to acknowledge a QUIC-LB
 packet received from the load balancer. The ACK-LB message has no
 additional payload beyond the QUIC-LB packet header.

 Load balancers SHOULD continue to retransmit a QUIC-LB packet until a
 valid ACK_LB message, FAIL message or Version Negotiation Packet is
 received from the server.

7.4.2. FAIL Message

 A server uses the FAIL message (type=0x01) to indicate the
 configuration received from the load balancer is unsupported.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Supp. Type | Supp. Type | ...
 +-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Servers MUST send a FAIL message upon receipt of a message type which
 they do not support, or if they do not possess all of the implied
 out-of-band configuration to support a particular message type.

 The payload of the FAIL message consists of a list of all the message
 types supported by the server.

 Upon receipt of a FAIL message, Load Balancers MUST either send a
 QUIC-LB message the server supports or remove the server from the
 server pool.

7.4.3. ROUTING_INFO Message

 A load balancer uses the ROUTING_INFO message (type=0x02) to exchange
 all the parameters for the Obfuscated CID algorithm.

Duke & Banks Expires May 7, 2020 [Page 24]

Internet-Draft QUIC-LB November 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Routing Bit Mask (152) +
 | |
 + +
 | |
 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Modulus (16) |
 +-+
 | Divisor (16) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Routing Bit Mask The Routing Bit Mask encodes a '1' at every bit
 position in the server connection ID that will encode routing
 information.

 These bits, along with the Modulus and Divisor, are chosen by the
 load balancer as described in Section 4.2.

7.4.4. STREAM_CID Message

 A load balancer uses the STREAM_CID message (type=0x03) to exchange
 all the parameters for using Stream Cipher CIDs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Nonce Len (8) | SIDL (8) |
 +-+
 | Server ID (variable) |
 +-+
 | |
 + Key (128) +
 | |
 + +
 +-+

 Figure 8: Stream CID Payload

 Nonce Len The Nonce Len field is a one-octet unsigned integer that
 describes the nonce length necessary to use this routing
 algorithm, in octets.

Duke & Banks Expires May 7, 2020 [Page 25]

Internet-Draft QUIC-LB November 2019

 SIDL The SIDL field is a one-octet unsigned integer that describes
 the server ID length necessary to use this routing algorithm, in
 octets.

 Server ID The Server ID is the unique value assigned to the
 receiving server. Its length is determined by the SIDL field.

 Key The Key is an 16-octet field that contains the key that the load
 balancer will use to decrypt server IDs on QUIC packets. See

Section 8 to understand why sending keys in plaintext may be a
 safe strategy.

7.4.5. BLOCK_CID Message

 A load balancer uses the BLOCK_CID message (type=0x04) to exchange
 all the parameters for using Stream Cipher CIDs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ZP Len (8) | SIDL (8) |
 +-+
 | Server ID (variable) |
 +-+
 | |
 + Key (128) +
 | |
 + +
 +-+

 Figure 9: Block CID Payload

 ZP Len The ZP Len field is a one-octet unsigned integer that
 describes the zero-padding length necessary to use this routing
 algorithm, in octets.

 SIDL The SIDL field is a one-octet unsigned integer that describes
 the server ID length necessary to use this routing algorithm, in
 octets.

 Server ID The Server ID is the unique value assigned to the
 receiving server. Its length is determined by the SIDL field.

 Key The Key is an 16-octet field that contains the key that the load
 balancer will use to decrypt server IDs on QUIC packets. See

Section 8 to understand why sending keys in plaintext may be a
 safe strategy.

Duke & Banks Expires May 7, 2020 [Page 26]

Internet-Draft QUIC-LB November 2019

7.4.6. SERVER_ID Message

 A load balancer uses the SERVER_ID message (type=0x05) to exchange
 explicit server IDs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SIDL (8) | Server ID (variable) |
 +-+

 Load balancers send the SERVER_ID message when all global values for
 Stream or Block CIDs are sent out-of-band, so that only the server-
 unique values must be sent in-band. It also provides all necessary
 paramters for Plaintext CIDs. The fields are identical to their
 counterparts in the Section 7.4.4 payload.

7.4.7. MODULUS Message

 A load balancer uses the MODULUS message (type=0x06) to exchange just
 the modulus used in the Obfuscated CID algorithm.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Modulus (16) |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Load balancers send the MODULUS when all global values for Obfuscated
 CIDs are sent out-of-band, so that only the server-unique values must
 be sent in-band. The Modulus field is identical to its counterpart
 in the ROUTING_INFO message.

7.4.8. PLAINTEXT Message

 A load balancer uses the PLAINTEXT message (type=0x07) to exchange
 all parameters needed for the Plaintext CID algorithm.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | SIDL (8) |
 +-+
 | |
 + Server ID (variable) +
 | |
 +-+

Duke & Banks Expires May 7, 2020 [Page 27]

Internet-Draft QUIC-LB November 2019

 The SIDL field indicates the length of the server ID field. The
 Server ID field indicates the encoding that represents the
 destination server.

7.4.9. RETRY_SERVICE_STATELESS message

 A no-shared-state retry service uses this message (type=0x08) to
 notify the server of the existence of this service. This message has
 no fields.

7.4.10. RETRY_SERVICE_STATEFUL message

 A shared-state retry service uses this message (type=0x09) to tell
 the server about its existence, and share the key needed to decrypt
 server-generated retry tokens.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 + +
 | |
 + Key (128) +
 | |
 + +
 | |
 +-+

8. Security Considerations

 QUIC-LB is intended to preserve routability and prevent linkability.
 Attacks on the protocol would compromise at least one of these
 objectives.

 Note that the Plaintext CID algorithm makes no attempt to obscure the
 server mapping, and therefore does not address these concerns. It
 exists to allow consistent CID encoding for compatibility across a
 network infrastructure. Servers that are running the Plaintext CID
 algorithm SHOULD only use it to generate new CIDs for the Server
 Initial Packet and SHOULD NOT send CIDs in QUIC NEW_CONNECTION_ID
 frames. Doing so might falsely suggest to the client that said CIDs
 were generated in a secure fashion.

 A routability attack would inject QUIC-LB messages so that load
 balancers incorrectly route QUIC connections.

 A linkability attack would find some means of determining that two
 connection IDs route to the same server. As described above, there

Duke & Banks Expires May 7, 2020 [Page 28]

Internet-Draft QUIC-LB November 2019

 is no scheme that strictly prevents linkability for all traffic
 patterns, and therefore efforts to frustrate any analysis of server
 ID encoding have diminishing returns.

8.1. Outside attackers

 For an outside attacker to break routability, it must inject packets
 that correctly guess the 64-bit token, and servers must be reachable
 from these outside hosts. Load balancers SHOULD drop QUIC-LB packets
 that arrive on its external interface.

 Off-path outside attackers cannot observe connection IDs, and will
 therefore struggle to link them.

 On-path outside attackers might try to link connection IDs to the
 same QUIC connection. The Encrypted CID algorithm provides robust
 entropy to making any sort of linkage. The Obfuscated CID obscures
 the mapping and prevents trivial brute-force attacks to determine the
 routing parameters, but does not provide robust protection against
 sophisticated attacks.

8.2. Inside Attackers

 As described above, on-path inside attackers are intrinsically able
 to map two connection IDs to the same server. The QUIC-LB algorithms
 do prevent the linkage of two connection IDs to the same individual
 connection if servers make reasonable selections when generating new
 IDs for that connection.

 On-path inside attackers can break routability for new and migrating
 connections by copying the token from QUIC-LB messages. From this
 privileged position, however, there are many other attacks that can
 break QUIC connections to the server during the handshake.

 Off-path inside attackers cannot observe connection IDs to link them.
 To successfully break routability, they must correctly guess the
 token.

9. IANA Considerations

 There are no IANA requirements.

10. References

Duke & Banks Expires May 7, 2020 [Page 29]

Internet-Draft QUIC-LB November 2019

10.1. Normative References

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport (work in progress).

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

10.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Appendix A. Acknowledgments

Appendix B. Change Log

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

B.1. Since draft-duke-quic-load-balancers-05

 o Editorial changes

 o Made load balancer behavior independent of QUIC version

 o Got rid of token in stream cipher encoding, because server might
 not have it

 o Defined "non-compliant DCID" and specified rules for handling
 them.

 o Added psuedocode for config schema

B.2. Since draft-duke-quic-load-balancers-04

 o Added standard for retry services

B.3. Since draft-duke-quic-load-balancers-03

 o Renamed Plaintext CID algorithm as Obfuscated CID

 o Added new Plaintext CID algorithm

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-05
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-04
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-03

Duke & Banks Expires May 7, 2020 [Page 30]

Internet-Draft QUIC-LB November 2019

 o Updated to allow 20B CIDs

 o Added self-encoding of CID length

B.4. Since draft-duke-quic-load-balancers-02

 o Added Config Rotation

 o Added failover mode

 o Tweaks to existing CID algorithms

 o Added Block Cipher CID algorithm

 o Reformatted QUIC-LB packets

B.5. Since draft-duke-quic-load-balancers-01

 o Complete rewrite

 o Supports multiple security levels

 o Lightweight messages

B.6. Since draft-duke-quic-load-balancers-00

 o Converted to markdown

 o Added variable length connection IDs

Authors' Addresses

 Martin Duke
 F5 Networks, Inc.

 Email: martin.h.duke@gmail.com

 Nick Banks
 Microsoft

 Email: nibanks@microsoft.com

https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-02
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-01
https://datatracker.ietf.org/doc/html/draft-duke-quic-load-balancers-00

Duke & Banks Expires May 7, 2020 [Page 31]

