
Workgroup: quic

Internet-Draft:

draft-duke-quic-protected-initial-02

Published: 13 May 2021

Intended Status: Standards Track

Expires: 14 November 2021

Authors: M. Duke

F5 Networks, Inc.

D. Schinazi

Google LLC

Protected QUIC Initial Packets

Abstract

QUIC encrypts its Initial Packets using keys derived from well-known

constants, meaning that observers can inspect the contents of these

packets and successfully spoof them. This document proposes a new

version of QUIC that encrypts Initial Packets more securely by

leveraging a Public Key distributed via the Domain Name System (DNS)

or other out-of-band system.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the mailing list

(quic@ietf.org), which is archived at https://mailarchive.ietf.org/

arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/martinduke/quic-version-aliasing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 November 2021.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/martinduke/quic-version-aliasing
https://github.com/martinduke/quic-version-aliasing
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Relationship to ECH and Version Aliasing

2. Conventions

3. Differences with QUIC Version 1

3.1. Version Number

3.2. Key Configuration

3.3. Key Derivation Labels

3.4. Initial Packet Header

3.4.1. Encryption Context

3.5. Client Packet Protection Procedure

3.6. Server Packet Protection Procedure

3.7. Retry Integrity Tag

3.8. Fallback

3.9. The Fallback Packet

3.10. New Transport Parameters

3.10.1. public_key_failed

3.10.2. ECHConfig

3.10.3. initial_encryption_context

4. Intermediaries

4.1. Client-Facing Server

4.2. Back-End Server

5. Applicability

6. Security and Privacy Considerations

6.1. Forcing Downgrade

6.2. Initial Packet Injection

6.3. Retry Injection

7. IANA Considerations

7.1. QUIC Version Registry

7.2. QUIC Transport Parameter Registry

7.3. QUIC Transport Error Codes Registry

8. References

8.1. Normative References

¶

¶

https://trustee.ietf.org/license-info

8.2. Informative References

Appendix A. Change Log

A.1. since draft-duke-quic-protected-initials-01

A.2. since draft-duke-quic-protected-initials-00

Authors' Addresses

1. Introduction

DISCLAIMER: This draft is a preliminary proposal with insufficient

security analysis. It should not be used in production systems.

The QUIC Initial Packet [QUIC-TRANSPORT] is encrypted using a key

derived from the Destination Connection ID in the packet cleartext

and a well-known salt (see Section 5.2 of [QUIC-TLS]). Section 7 of

that draft describes security vulnerabilities resulting from the

resulting lack of authentication.

This also has privacy implications, as observers can decrypt the

packet and inspect the contents, which contain the TLS Client Hello

and Server Hello Messages ([RFC8446]). The former contains QUIC

Transport Parameters, which reveal even more information about the

traffic.

Furthermore, packets vulnerable to deep inspection create an

ossification vector. Intermediaries that expect the contents of

these messages to match a certain format and template might drop

packets that do not, preventing the use of new protocol extensions

or improved security protocols.

This document proposes a new version of QUIC where the client

obtains a public key generated by the server and uses it to encrypt

a shared secret, sent in the Initial packet header, that both

endpoints can then use to protect Initial packets.

This mechanism leverages the public key that would be distributed

via DNS (or other out-of-band mechanism) to support Encrypted Client

Hello [ECHO]. That design uses Hybrid Public Key Exchange (HPKE)

[HPKE] to authenticate some HPKE configuration information and the

"outer client hello" that is in plaintext, while encrypting the

"inner client hello" that contains privacy-sensitive information.

This document uses the widespread configuration that will exist if

ECHO is widely deployed, but only sends the subset of information

necessary to seed the QUIC key generation process.

1.1. Relationship to ECH and Version Aliasing

Encrypted Client Hello [ECHO] and QUIC Version Aliasing [VERSION-

ALIASING] also exist in the solution space of concealing parts of

the Initial packet exchange from observers. The following table

summarizes the advantages and disadvantages of each.

¶

¶

¶

¶

¶

¶

¶

Property ECH
Protected

Initials

Version

Aliasing

Fields Protected
Some of

Client Hello

All Initial

Payloads

All Initial

Payloads

Delay when server loses

its keys
1 RTT 2 RTT 2 RTT

Works with TLS over TCP Yes No No

First-connection

protection
Yes Yes No

Prevents Initial packet

injection attacks
No Yes Yes

Symmetric Encryption

Only
No No Yes

Greases the Version

Field
No No Yes

Prevents Retry

injection attacks
No No Yes

No trial decryption No No Yes

Table 1

The more complex properties in the table are discussed in Section 6.

Both ECH and Protected Initials are complimentary with Version

Aliasing: they provide a computationally expensive way to protect

parts of the Initial packet during the first connection between

client and server, after which Version Aliasing can protect future

exchanges with several additional desirable properties.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. Differences with QUIC Version 1

The version of QUIC described in this specification is identical to

QUIC version 1 [QUIC-TRANSPORT] except where described in this

document.

3.1. Version Number

The version field in long headers is TBD. Note: for interoperability

exercises, use the provisional value 0xff454900.

3.2. Key Configuration

The client obtains the Encrypted ClientHello Configuration

(ECHConfig) described in Section 4 of [ECHO], which provides the

¶

¶

¶

¶

¶

context that allows protection of Initial packets. The ECHConfig is

available via a DNS record or other out-of- band system.

3.3. Key Derivation Labels

The labels used to derive keying material in [QUIC-TLS] change from

"quic key", "quic iv", "quic hp", and "quic ku" to "quicpi key",

"quicpi iv", "quicpi hp", and "quicpi ku", respectively.

3.4. Initial Packet Header

The figure below is presented in the format from [QUIC-TRANSPORT],

and adds a variable-length Encryption Context preceded by a length

field:

Encryption Context Length: A variable-length integer specifying the

length of the encryption context, in bytes. Servers MUST set this

field to zero; a client that receives a non-zero length MUST either

discard the packet or generate a connection error of type

PROTOCOL_VIOLATION.

Clients MUST include a nonzero Encryption Context Length in all

Initial packets, unless executing fallback procedures (see Section

3.8).

When the client includes a non-zero-length Encryption Context, it

MUST include an initial_encryption_context in its Client Hello, so

that this header field is included in the TLS handshake transcript.

¶

¶

¶

Initial Packet {

 Header From (1) = 1,

 Fixed Big (1) = 1,

 Long Packet Type (2) = 0,

 Reserved Bits (2),

 Packet Number Length (2),

 Version (32),

 Destination Connection ID Length (8),

 Destination Connection ID (0..160),

 Source Connection ID Length (8),

 Source Connection ID (0..160),

 Token Length (i),

 Token (..),

 Encryption Context Length (8),

 Encryption Context (..),

 Length (i),

 Packet Number (8..32),

}

¶

¶

¶

¶

3.4.1. Encryption Context

The encryption context, if nonzero length, has the following format:

Config ID: An 8-bit integer identifying the configuration

parameters, obtained from the ECHConfig. This ID implicitly

identifies the public key, Key Encapsulation Mechanism, and the set

of symmetric suites from which the following fields are selected.

SCKDF: Symmetric Cipher Key Derivation Function. The client selects

this from the cipher suites listed in the ECHConfig. This is the

cipher used to encrypt the Initial Packet. The values are listed in

Section 7.2 of [HPKE]. All endpoints MUST support HKDF-SHA256

(0x0001), which is used for QUIC Version 1 Initial packets.

SCAEADID: Symmetric Cipher Key Derivation Function. The client

selects this from the cipher suites listed in the ECHConfig. This is

the cipher used to encrypt the Initial Packet. The values are listed

in Section 7.3 of [HPKE]. All endpoints MUST support AES-128-GCM

(0x0001), which is used for QUIC Version 1 Initial packets.

The Encapsulated Secret is HPKE encapsulated. Its length is inferred

from the Encryption Context Length field.

3.5. Client Packet Protection Procedure

An client extracts the public key pkR and uses it to generate a

shared_secret:

enc is the Encapsulated Secret, and is written into that subfield of

the Encryption Context Field.

The initial_secret above is used to generate client_initial_secret

and server_initial_secret as described in Section 5.2 of [QUIC-TLS].

When applying header protection, the Context Length and Encryption

Context are not Protected.

¶

Encryption Context {

 Config ID (8),

 SCKDF (16),

 SCAEADID (16),

 Encapsulated Secret (..),

}

¶

¶

¶

¶

¶

¶

pkR = Deserialize(ECHConfig.contents.public_key)

shared_secret, enc = Encap(pkR)

initial_secret = HKDF-Extract(shared_secret,

 client_dst_connection_id || ECHConfig)

¶

¶

¶

¶

This derivation is performed once per connection. Subsequent Initial

Packets use the same keys and the same offset to the packet number,

regardless of additional Encryption Context fields or changed

connection IDs.

3.6. Server Packet Protection Procedure

The server reads the Config ID and Encapsulated Secret (enc) from

the Initial Packet. It looks up its private key (skR) associated

with the Config ID.

Otherwise, the server generates the Initial secrets:

The remainder is identical to the client procedure. All server-

generated Initial packets use the keys generated in this process.

If packet decryption fails, see Section 3.8.

The server terminates the connection with a

TRANSPORT_PARAMETER_ERROR under the following conditions:

There is a zero-length Encryption Context field, but the

initial_encryption_context transport parameter is present

There is a non-zero-length Encryption Context field, but the

initial_encryption_context transport parameter is absent or does

not match the header.

However, see Section 4 for exceptions to this transport parameter

processing rule.

3.7. Retry Integrity Tag

The Retry packet is identical to QUIC version 1, except that the key

and nonce used for the Retry Integrity Tag (Sec 5.8 of [QUIC-TLS]

change to:

This key and nonce are also used in Fallback packets (Section 3.9).

¶

¶

¶

shared_secret = Decap(enc, skR)

initial_secret = HKDF-Extract(shared_secret,

 client_dst_connection_id || ECHConfig)

¶

¶

¶

¶

*

¶

*

¶

¶

¶

secret = 0xe453a2e22377289f08a4458ee1c9a90a4e39696e026372ffc33190b8de5a0123

key = 0xbe0c690b9f66575a1d766b54e368c84e

nonce = 0x461599d35d632bf2239825bb

¶

¶

3.8. Fallback

If decryption fails, the client may not have the server's correct

configuration. In this case, the server replies with a Fallback

packet (see Section 3.9), and discards the Initial.

The client checks the Integrity Tag in the packet against the

received Fallback Packet and its own record of the Initial Packet.

If they do not match, the packet may have been corrupted, and the

client SHOULD treat the packet as lost. If they do match, the client

MUST assume that it does not have the correct ECHConfig.

When it has the incorrect config, the client composes a new Client

Hello. It MUST include the public_key_failed transport parameter

with the Config ID and public key it attempted to use. It MUST use

an Encryption Context Length of zero, and encrypt it with keys

derived from the "fallback salt"

0xbd62319ad6eeb17a9ed0d3bf75e37e4a8e7e6ac7, instead of the shared

secret that the server cannot decode. The Client Hello also MUST

include any Retry Token the previous Initial contained and MAY

include a token from a NEW_TOKEN frame.

This new Initial packet is part of the same connection and MUST use

the same Connection IDs and packet number space.

Note that the fallback salt does not provide confidentiality to the

client, and the client SHOULD NOT include privacy-sensitive

information there. See Section 6.1 for further discussion of this.

A server interprets a client Initial with a zero-length Encryption

Context as an Initial encrypted with keys derived from the fallback

salt and decrypts it accordingly.

The server checks the Config ID and public key from the

public_key_failed transport parameter to see if it should

successfully process a Protected Initial with these parameters. If

it would have, it MUST terminate the connection with an

INVALID_PROTECTED_INITIAL_DOWNGRADE error to indicate that there has

been an attack.

If the server would not have successfully decoded the packet with

those parameters, it MUST send its own public_key_failed transport

parameter to acknowledge the parameter was successfully processed.

It MAY also send a ECHConfig transport parameter to allow use of

Protected Initials in subsequent connections, a Version Aliasing

transport parameter (see [VERSION-ALIASING]) to enable a different

means of Initial Protection, both, or neither.

If the client does not receive a public_key_failed transport

parameter in response to sending a public_key_failed transport

¶

¶

¶

¶

¶

¶

¶

¶

parameter, it MUST terminate the connection with a

TRANSPORT_PARAMETER_ERROR.

The client MUST NOT include the original client hello in its TLS

transcript hash for key computation, as the server has no access to

this message. However, the client hello is an input to the Integrity

tag in the public_key_failed transport parameter, which will be in

the transcript.

3.9. The Fallback Packet

The Fallback packet uses the 0x1 packet type code, which it shares

with 0-RTT. Since 0-RTT is only sent by clients and Fallback is only

sent by servers, these two types are distinguished by the endpoint's

role in the handshake.

The Fallback packet has the following format:

The server computes the Integrity Tag by prepending the entire UDP

payload that contained the client Initial to the Fallback packet

contents (minus the tag itself, of course) to form a pseudo-packet.

The server then computes the Integrity Tag as the output of

AEAD_AES_128_GCM with the key and nonce from Section 3.7, no

plaintext, and the pseudo-packet as the Additional Data. This thus

confirms the integrity of both packets in the exchange.

3.10. New Transport Parameters

3.10.1. public_key_failed

The public_key_failed transport parameter allows detection of an

attacker injecting messages to force use of the fallback salt. For

details on use, see Section 3.8.

Its provisional type is 0x706b66.

¶

¶

¶

¶

Fallback Packet {

 Header Form (1) = 1,

 Fixed Bit (1) = 1,

 Long Packet Type (2) = 1,

 Unused (4),

 Version (32),

 Destination Connection ID Length (8),

 Destination Connection ID (0..160),

 Source Connection ID Length (8),

 Source Connection ID (0..160),

 Integrity Tag (128),

}

¶

¶

¶

¶

When sent by a client, the content of the transport parameter is as

follows:

The Integrity Tag is copied from the Fallback packet.

The other fields are populated using the ECHConfig that the client

attempted to use. The length of the Public Key is inferred from the

length field of the transport parameter.

When sent by a server, the transport parameter has no value field.

Endpoints MUST respond to a malformed transport parameter by closing

the connection with a TRANSPORT_PARAMETER_ERROR.

Note that this transport parameter is always sent as a result of a

fallback from a Protected Initial, and therefore with a zero-length

Encryption Context in the packet header. Therefore, if received with

non-zero-length Encryption Context, the receiving endpoint MUST

terminate the connection with a TRANSPORT_PARAMETER_ERROR.

3.10.2. ECHConfig

The ECHConfig transport parameter allows servers to directly provide

clients a valid configuration.

Its provisional type is 0x454348.

Its format is equivalent to ECHConfigList, as defined in Section 4

of [ECHO].

If this transport parameter does not match this format, is received

by a server, or is received in a connection where the client's most

recent Initial had a non-zero-length Encryption Context, the

receiver MUST terminate the connection with a

TRANSPORT_PARAMETER_ERROR.

3.10.3. initial_encryption_context

The format of this transport parameter is identical to the

Encryption Context described in Section 3.4.1.

Its provisional type is 0x696563.

¶

{

 Integrity Tag (128),

 Config ID (8),

 Public Key (..),

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Intermediaries

In the topology proposed in Section 3.1 of [ECHO], where a client-

facing server has its own public name and potentially fronts a

number of independent domains, only the client-facing server has the

private keys. Thus, it modifies incoming Initial Packets before

forwarding to the back-end server.

A common use case of this topology is a load balancer fronting

multiple domains using the same IP address, which makes routing

decisions based on the SNI in the Client Hello.

4.1. Client-Facing Server

The client-facing server is responsible for verifying the Initial

packet is decryptable, sending a Fallback packet (and dropping the

Initial) if it is not, and otherwise forwarding the packet encrypted

with a different key.

If an incoming Initial packet is not decryptable, the client-facing

server sends a Fallback packet and drops the Initial.

If an incoming client Initial has a non-zero length Encryption

Context field, the client-facing server MUST delete the Encryption

Context field. When forwarding to the back-end server, it encrypts

the plaintext version of this modified packet with keys derived from

the fallback salt. Thus, between client-facing server and back-end

server the packet is inspectable by observers.

Similarly, if the client is using the shared secret, the client-

facing server MUST decrypt server Initial packets encrypted with

keys derived from the fallback secret, and re-encrypt them with keys

derived from the shared secret.

The client-facing server MUST enforce correct use of the

initial_encryption_context parameter, as described in Section 3.6,

and terminate the connection if necessary.

Non-Initial packets pass unmodified through the client-facing

server. Note that client-facing servers cannot inspect any packet

payloads except for Initial packets.

4.2. Back-End Server

Back-end servers MUST have an up-to-date copy of the ECHConfigList

the client- facing server is using, though it need not hold the

private key, in order to properly process and generate the relevant

transport parameters.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Back-end servers MUST NOT take any action based on the presence or

contents of the initial_encryption_context transport parameter, as

the client-facing server has likely stripped the Encryption Context

out of the header.

In all other respects, they operate as Protected Initial servers.

5. Applicability

This version of QUIC provides no change from QUIC version 1 relating

to the capabilities available to applications. Therefore, all

Application Layer Protocol Negotiation (ALPN) ([RFC7301]) codepoints

specified to operate over QUICv1 can also operate over this version

of QUIC.

6. Security and Privacy Considerations

Sections 10.2, 10.3, 10.4, and 10.6 of [ECHO] apply to QUIC

Protected Initials as well.

Section 7.8 of [VERSION-ALIASING] is also applicable.

6.1. Forcing Downgrade

An attacker attempts to force a client to send an Initial that uses

unprotected Initials by injecting a Version Negotiation packet

(which implies the server no longer supports Protected Initials) or

a Fallback packet (which implies the server has a new cryptographic

context).

The weak form of this attack observes the Initial and injects the

Version Negotiation or Fallback packet, but cannot drop the Initial.

To counteract this, a client SHOULD NOT respond to these packets

until they have waited for Probe Timeout (PTO) for a valid server

Initial to arrive.

The strong form features an attacker that can drop Initial packets.

In this case, the client can either abandon the connection attempt

or connect with a unprotected Initial: using the fallback salt in

response to a Fallback packet, or a different version in response to

Version Negotiation.

If connecting with an unprotected Initial, the client MAY alter it

to sanitize sensitive information and obtain either a correct

ECHConfig or an aliased version before proceeding with its true

connection attempt. However, the client Initial MUST lead to the

authentication of a domain name the client trusts to provide

accurate cryptographic information (usually the public_name from the

ECHConfig). Advice for the Outer ClientHello in Section 10.5 of

[ECHO] applies here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Furthermore, if it received a Fallback packet, the client sends a

public_key_failed transport parameter to detect the downgrade

attack, and the server will terminate the connection if the Fallback

packet was an attack.

If the client received a Version Negotiation packet, it MUST

implement a downgrade detection mechanism such as [I-D.ietf-quic-

version-negotiation] or abandon the connection attempt. If it

subsequently detects a downgrade detection, or discovers that the

server does not support the same mechanism, it terminates the

connection attempt.

Note that ECH is able to retrieve an up-to-date cryptographic

context in 1 RTT, because the client hello has enough plaintext

information to begin a handshake with the public_name. Protected

Initials require reconnection with the public name, incurring a 2

RTT penalty to achieve the same result.

6.2. Initial Packet Injection

QUIC version 1 handshakes are vulnerable to DoS from observers for

the short interval that endpoints keep Initial keys (usually ~1.5

RTTS), since Initial Packets are not authenticated. With version

aliasing, attackers do not have the necessary keys to launch such an

attack.

QUIC version 1 can use a fixed symmetric cipher for its Initial

Packets because the encryption is not providing true security. As

this design aspires to stonger guarantees, the Encryption Context

field of the Initial header provides the codepoints to enable use of

other symmetric ciphers should AES-128-GCM be compromised in the

future. This is to provide cryptographic agility in accordance with

[RFC7696].

6.3. Retry Injection

This version of QUIC does not improve the security of Retry packets

with respect to QUIC version 1. The Retry Integrity Tag uses a well-

known key and relies on data in the Initial that triggered the

Retry. It therefore protects against transmission errors and

injection of Retry packets by off-path attackers that cannot observe

the Initial. To detect Retry packets injected by observers, it

relies on the subsequent exchange of transport parameters.

An attacker that consistently injects Retry packets in front of a

server that also consistently sends Retry can result in a Denial of

Service, as clients cannot accept two Retries in the same

connection.

¶

¶

¶

¶

¶

¶

¶

An alternate design would use the shared secret derived from the

Client Initial Packet to generate keys for the Retry Integrity Tag,

which would allow the client to immediately discard Retries injected

by other parties. Unfortunately, this would require servers to

perform an asymmetric crypto operation to send a Retry packet, when

in a state where it is likely computationally limited.

It is possible to enhance the security of Retry by assuming this

added computational cost. Such a design could also eliminate the

complexity associated with adding an arbitrary value to the Packet

Length field. The purpose of this addition is to avoid trial

decryption to verify the configuration is correct, but this cost is

negligible compared to extracting the shared secret.

7. IANA Considerations

7.1. QUIC Version Registry

This document requests that IANA add the following entry to the QUIC

version registry:

Value: TBD

Status: permanent

Specification: This document

Change Controller: IETF

Contact: QUIC WG

7.2. QUIC Transport Parameter Registry

This document requests that IANA add the following three entries to

the QUIC Transport Parameters registry:

Value Parameter Name Specification

TBD public_key_failed This document

TBD ECHConfig This document

TBD initial_encryption_context This document

Table 2

7.3. QUIC Transport Error Codes Registry

This document requests that IANA add the following entry to the QUIC

Transport Error Codes registry:

Value: TBD

Code: INVALID_PROTECTED_INITIAL_DOWNGRADE

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[ECHO]

[HPKE]

[I-D.ietf-quic-version-negotiation]

[QUIC-TLS]

[QUIC-TRANSPORT]

[RFC2119]

[RFC7301]

Description: Attacker is forcing insecure Initial

Specification: This document

8. References

8.1. Normative References

Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS

Encrypted Client Hello", Work in Progress, Internet-

Draft, draft-ietf-tls-esni-10, 8 March 2021, <https://

tools.ietf.org/html/draft-ietf-tls-esni-10>.

Barnes, R. L., Bhargavan, K., Lipp, B., and C. A. Wood,

"Hybrid Public Key Encryption", Work in Progress,

Internet-Draft, draft-irtf-cfrg-hpke-08, 15 February

2021, <https://tools.ietf.org/html/draft-irtf-cfrg-

hpke-08>.

Schinazi, D. and E. Rescorla,

"Compatible Version Negotiation for QUIC", Work in

Progress, Internet-Draft, draft-ietf-quic-version-

negotiation-03, 4 February 2021, <https://tools.ietf.org/

html/draft-ietf-quic-version-negotiation-03>.

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-tls-34,

14 January 2021, <https://tools.ietf.org/html/draft-ietf-

quic-tls-34>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://tools.ietf.org/html/draft-ietf-quic-

transport-34>.

8.2. Informative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

¶

¶

https://tools.ietf.org/html/draft-ietf-tls-esni-10
https://tools.ietf.org/html/draft-ietf-tls-esni-10
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-08
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-08
https://tools.ietf.org/html/draft-ietf-quic-version-negotiation-03
https://tools.ietf.org/html/draft-ietf-quic-version-negotiation-03
https://tools.ietf.org/html/draft-ietf-quic-tls-34
https://tools.ietf.org/html/draft-ietf-quic-tls-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://tools.ietf.org/html/draft-ietf-quic-transport-34
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC7696]

[RFC8446]

[VERSION-ALIASING]

RFC7301, July 2014, <https://www.rfc-editor.org/rfc/

rfc7301>.

Housley, R., "Guidelines for Cryptographic Algorithm

Agility and Selecting Mandatory-to-Implement Algorithms",

BCP 201, RFC 7696, DOI 10.17487/RFC7696, November 2015,

<https://www.rfc-editor.org/rfc/rfc7696>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Duke, M., "QUIC Version Aliasing", Work in

Progress, Internet-Draft, draft-duke-quic-version-

aliasing-05, 4 May 2021, <https://tools.ietf.org/html/

draft-duke-quic-version-aliasing-05>.

Appendix A. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

A.1. since draft-duke-quic-protected-initials-01

Redesigned fallback again without Version Negotiation

Added the initial_encryption_context transport parameter

A.2. since draft-duke-quic-protected-initials-00

Additional text comparing ECH, Version Aliasing

Adapted to foreground the split-mode use case

Clarified server initials are encrypted

Retry keys are no longer generated from the shared secret

Complete Rewrite of Fallback

New transport parameters

Added crypto agility

Authors' Addresses

Martin Duke

F5 Networks, Inc.

Email: martin.h.duke@gmail.com

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7301
https://www.rfc-editor.org/rfc/rfc7696
https://www.rfc-editor.org/rfc/rfc8446
https://tools.ietf.org/html/draft-duke-quic-version-aliasing-05
https://tools.ietf.org/html/draft-duke-quic-version-aliasing-05
mailto:martin.h.duke@gmail.com

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

mailto:dschinazi.ietf@gmail.com

	Protected QUIC Initial Packets
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relationship to ECH and Version Aliasing

	2. Conventions
	3. Differences with QUIC Version 1
	3.1. Version Number
	3.2. Key Configuration
	3.3. Key Derivation Labels
	3.4. Initial Packet Header
	3.4.1. Encryption Context

	3.5. Client Packet Protection Procedure
	3.6. Server Packet Protection Procedure
	3.7. Retry Integrity Tag
	3.8. Fallback
	3.9. The Fallback Packet
	3.10. New Transport Parameters
	3.10.1. public_key_failed
	3.10.2. ECHConfig
	3.10.3. initial_encryption_context

	4. Intermediaries
	4.1. Client-Facing Server
	4.2. Back-End Server

	5. Applicability
	6. Security and Privacy Considerations
	6.1. Forcing Downgrade
	6.2. Initial Packet Injection
	6.3. Retry Injection

	7. IANA Considerations
	7.1. QUIC Version Registry
	7.2. QUIC Transport Parameter Registry
	7.3. QUIC Transport Error Codes Registry

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Change Log
	A.1. since draft-duke-quic-protected-initials-01
	A.2. since draft-duke-quic-protected-initials-00
	Authors' Addresses

