
Workgroup: QUIC

Internet-Draft:

draft-duke-quic-version-aliasing-05

Published: 4 May 2021

Intended Status: Experimental

Expires: 5 November 2021

Authors: M. Duke

F5 Networks, Inc.

QUIC Version Aliasing

Abstract

The QUIC transport protocol preserves its future extensibility

partly by specifying its version number. There will be a relatively

small number of published version numbers for the foreseeable

future. This document provides a method for clients and servers to

negotiate the use of other version numbers in subsequent connections

and encrypts Initial Packets using secret keys instead of standard

ones. If a sizeable subset of QUIC connections use this mechanism,

this should prevent middlebox ossification around the current set of

published version numbers and the contents of QUIC Initial packets,

as well as improving the protocol's privacy properties.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

2.1. Relationship to ECH and QUIC Protected Initials

3. The Version Alias Transport Parameter

3.1. Version Number Generation

3.2. Initial Token Extension (ITE) Generation

3.3. Salt and Packet Length Offset Generation

3.4. Expiration Time

3.5. Format

3.6. Multiple Servers for One Domain

4. Client Behavior

5. Server Actions on Aliased Version Numbers

6. Considerations for Retry Packets

7. Security and Privacy Considerations

7.1. First-Connection Privacy

7.2. Version Downgrade

7.3. Retry Injection

7.4. Increased Linkability

7.5. Salt Polling

7.6. Increased Processing of Garbage UDP Packets

7.7. Increased Retry Overhead

7.8. Request Forgery

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Acknowledgments

Appendix B. Change Log

B.1. since draft-duke-quic-version-aliasing-04

B.2. since draft-duke-quic-version-aliasing-03

B.3. since draft-duke-quic-version-aliasing-02

B.4. since draft-duke-quic-version-aliasing-01

B.5. since draft-duke-quic-version-aliasing-00

Author's Address

1. Introduction

The QUIC version number is critical to future extensibility of the

protocol ([QUIC-TRANSPORT]). Past experience with other protocols,

such as TLS1.3 [RFC8446], shows that middleboxes might attempt to

¶

enforce that QUIC packets use versions known at the time the

middlebox was implemented. This has a chilling effect on deploying

experimental and standard versions on the internet.

Each version of QUIC has a "salt" [QUIC-TLS] that is used to derive

the keys used to encrypt Initial packets. As each salt is published

in a standards document, any observer can decrypt these packets and

inspect the contents, including a TLS Client Hello. A subsidiary

mechanism like Encrypted Client Hello [ECHO] might protect some of

the TLS fields inside a TLS Client Hello.

This document proposes "QUIC Version Aliasing," a standard way for

servers to advertise the availability of other versions inside the

cryptographic protection of a QUIC handshake. These versions are

syntactically identical to the QUIC version in which the

communication takes place, but use a different salt. In subsequent

communications, the client uses the new version number and encrypts

its Initial packets with a key derived from the provided salt. These

version numbers and salts are unique to the client.

If a large subset of QUIC traffic adopts his technique, middleboxes

will be unable to enforce particular version numbers or policy based

on Client Hello contents without incurring unacceptable penalties on

users. This would simultaneously protect the protocol against

ossification and improve its privacy properties.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

A "standard version" is a QUIC version that would be advertised in a

QUIC version negotiation and conforms to a specification. Any

aliased version corresponds to a standard version in all its formats

and behaviors, except for the version number field in long headers.

An "aliased version" is a version with a number generated in

accordance with this document. Except for the version field in long

headers, it conforms entirely to the specification of the standard

version.

2. Protocol Overview

When they instantiate a connection, servers select an alternate 32-

bit version number, and optionally an initial token extension, for

¶

¶

¶

¶

¶

¶

¶

¶

the next connection at random and securely derive a salt and Packet

Length Offset from those values using a repeatable process. They

communicate this using a transport parameter extension including the

version, initial token extension, salt, Packet Length Offset, and an

expiration time for that value.

If a client next connects to that server within the indicated

expiration time, it MAY use the provided version number and encrypt

its Initial Packets using a key derived from the provided salt. It

adds the Packet Length Offset to the true packet length when

encoding it in the long header. If the server provided an Initial

Token Extension, the client puts it in the Initial Packet token

field. If there is another token the client wishes to include, it

appends the Initial Token Extension to that token. The server can

reconstruct the salt and Packet Length Offset from the requested

version and token, and proceed with the connection normally.

The Packet Length Offset provides a low-cost way for the server to

verify it can derive a valid salt from the inputs without trial

decryption. This has important security implications, as described

in Section 7.3.

When generating a salt and Packet Length Offset, servers can choose

between doing so randomly and storing the mapping, or using a

cryptographic process to transform the aliased version number and

token extension into the salt. The two options provide a simple

tradeoff between computational complexity and storage requirements.

Note that clients and servers MUST implement [QUIC-VN] to use this

specification. Therefore, servers list supported versions in Version

Negotiation Packets. Both clients and servers list supported

versions in Version Negotiation Transport Parameters.

2.1. Relationship to ECH and QUIC Protected Initials

The TLS Encrypted Client Hello [ECHO] shares some goals with this

document. It encodes an "inner" encrypted Client Hello in a TLS

extension in an "outer" Client Hello. The encryption uses asymmetric

keys with the server's public key distributed via an out-of-band

mechanism like DNS. The inner Client Hello contains any privacy-

sensitive information and is only readable with the server's private

key.

Significantly, unlike QUIC Version Aliasing, ECH can operate on the

first connection between a client and server. However, from the

second connection QUIC version aliasing provides additional

benefits. It:

greases QUIC header fields and packet formats;

¶

¶

¶

¶

¶

¶

¶

* ¶

protects all of the TLS Client Hello and Server Hello;

mitigates Retry injection attacks;

Does not require a mechanism to distribute the public key;

uses smaller Client Hello messages; and

relies on computationally cheap symmetric encryption.

If ECH is operating in "Split Mode", where a client-facing server is

using the SNI information to route to a backend server, the client-

facing server MUST have the cryptographic context relevant to

version aliasing at the backend server to successfully extract the

SNI for routing purposes. Furthermore, either all backend servers

must share this context, or the client-facing server must trial

decrypt the incoming packet with all possible derived salts.

Note that in the event of the server losing state, the two

approaches have a similar fallback: ECH uses information in the

outer Client Hello, and Version Aliasing requires a connection using

a standard version. In either case, maintaining privacy requires the

outer or standard version Client Hello to exclude privacy-sensitive

information, and at least 1 RTT to allow a secure connection to

resume. This mechanism is also relevant to Version Aliasing

mitigation of Version Downgrade attacks Section 7.2.

Similarly, QUIC Protected Initials [I-D.duke-quic-protected-initial]

uses the ECH distribution mechanism to generate secure initial keys

and Retry integrity tags. While still dependent on a key

distribution system, asymmetric encryption, and relatively large

amounts of data in the client's Initial packet, it offers similar

protection properties to Version Aliasing while still not greasing

the version field.

A maximally privacy-protecting client might use Protected Initials

for any connection attempts for which it does not have an unexpired

aliased version, and QUIC version aliasing otherwise.

3. The Version Alias Transport Parameter

3.1. Version Number Generation

Servers MUST use a random process to generate version numbers. This

version number MUST NOT correspond to a QUIC version the server

advertises in QUIC Version Negotiation packets or transport

parameters. Servers SHOULD also exclude version numbers used in

known specifications or experiments to avoid confusion at clients,

whether or not they have plans to support those specifications.

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

Servers MAY use version numbers reserved for grease in Section 15.1

of [QUIC-TRANSPORT], even though they might be advertised in Version

Negotiation Packets.

Servers MUST NOT use client-controlled information (e.g. the client

IP address) in the random process, see Section 7.5.

Servers MUST NOT advertise these versions in QUIC Version

Negotiation packets.

3.2. Initial Token Extension (ITE) Generation

Servers SHOULD generate an Initial Token Extension (ITE) to provide

additional entropy in salt generation. Two clients that receive the

same version number but different extensions will not be able to

decode each other's Initial Packets.

Servers MAY choose any length that will allow client Initial Packets

to fit within the minimum QUIC packet size of 1200 octets. A four-

octet extension is RECOMMENDED. The ITE MUST appear to be random to

observers.

If a server supports multiple standard versions, it MUST either

encode the standard version of the current connection in the ITE or

store it in a lookup table.

If the server chooses to encode the standard version, it MUST be

cryptographically protected.

Encoded standard versions MUST be robust to false positives. That

is, if decoded with a new key, the version encoding must return as

invalid, rather than an incorrect value.

Alternatively, servers MAY store a mapping of unexpired aliased

versions and ITEs to standard versions. This mapping SHOULD NOT

create observable patterns, e.g. one plaintext bit indicates if the

standard version is 1 or 2.

The server MUST be able to distinguish ITEs from Resumption and

Retry tokens in incoming Initial Packets that contain an aliased

version number. As the server controls the lengths and encoding of

each, there are many ways to guarantee this.

3.3. Salt and Packet Length Offset Generation

The salt is an opaque 20-octet field. It is used to generate Initial

connection keys using the process described in [QUIC-TLS].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The Packet Length Offset is a 64-bit unsigned integer with a maximum

value of 2^62 - 1. Clients MUST ignore a transport parameter with a

value that exceeds this limit.

To reduce header overhead, servers MAY consistently use a Packet

Length Offset of zero if and only if it either (1) never sends Retry

packets, or (2) can guarantee, through the use of persistent storage

or other means, that it will never lose the cryptographic state

required to generate the salt before the promised expiration time.

Section 7.3 describes the implications if it uses zero without

meeting these conditions.

Servers MUST either generate a random salt and Packet Length Offset

and store a mapping of aliased version and ITE to salt and offset,

or generate the salt and offset using a cryptographic method that

uses the version number, ITE, and only server state that is

persistent across connections.

If the latter, servers MUST implement a method that it can repeat

deterministically at a later time to derive the salt and offset from

the incoming version number and ITE. It MUST NOT use client

controlled information other than the version number and ITE; for

example, the client's IP address and port.

3.4. Expiration Time

Servers should select an expiration time in seconds, measured from

the instant the transport parameter is first sent. This time SHOULD

be less than the time until the server expects to support new QUIC

versions, rotate the keys used to encode information in the version

number, or rotate the keys used in salt generation.

Furthermore, the expiration time SHOULD be short enough to frustrate

a salt polling attack (Section 7.5)

Conversely, an extremely short expiration time will often force the

client to use standard QUIC version numbers and salts.

3.5. Format

This document defines a new transport parameter extension for QUIC

with identifier 0x5641. The contents of the value field are

indicated below.

¶

¶

¶

¶

¶

¶

¶

¶

Figure 1: Version Alias Transport Parameter value

The definition of the fields is described above. Note that the

"Expiration" field is in seconds, and its length is encoded using

the Variable Length Integer encoding from Section 16 of [QUIC-

TRANSPORT].

The Packet Length Offset is also encoded as a Variable Length

Integer.

Clients can compute the length of the Initial Token Extension by

subtracting known and encoded field lengths from the overall

transport parameter length.

Note that servers that support version aliasing need not send the

transport parameter on every connection. Therefore, a client MAY

attempt to connect with an unexpired aliased version, even if in its

most recent connection it did not receive the transport parameter.

Clients MAY remember the value in this transport parameter for

future connections. Servers MUST either store the contents of the

transport parameter, or preserve the state to compute the full

contents based on what the client provides.

3.6. Multiple Servers for One Domain

If multiple servers serve the same entity behind a load balancer,

all such servers SHOULD either have a common configuration for

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Version (32) |

+-+

| |

+ +

| |

+ +

| Salt (160) |

+ +

| |

+ +

| |

+-+

| Packet Length Offset (i) |

+-+

| Expiration (i) |

+-+

| Initial Token Extension (variable) |

+-+

¶

¶

¶

¶

¶

encoding standard versions and computing salts, or share a common

database of mappings. They MUST NOT generate version numbers that

any of them would advertise in a Version Negotiation Packet or

Transport Parameter.

4. Client Behavior

When a client receives the Version Alias Transport Parameter, it MAY

cache the version number, ITE, salt, Packet Length Offset, and the

expiration of these values. It MAY use the version number and ITE in

a subsequent connection and compute the initial keys using the

provided salt.

Clients MUST NOT advertise aliased versions in the Version

Negotiation Transport Parameter unless they support a standard

version with the same number. Including that number signals support

for the standard version, not the aliased version.

Clients SHOULD NOT attempt to use the provided version number and

salt after the provided Expiration time has elapsed.

Clients MAY decline to use the provided version number or salt in

more than one connection. It SHOULD do so if its IP address has

changed between two connection attempts. Using a consistent version

number can link the client across connection attempts.

Clients MUST use the same standard version to format the Initial

Packet as the standard version used in the connection that provided

the aliased version.

If the server provided an ITE, the client MUST append it to any

Initial Packet token it is including from a Retry packet or

NEW_TOKEN frame, if it is using the associated aliased version. If

there is no such token, it simply includes the ITE as the entire

token.

The QUIC Token Length field MUST include the length of both any

Retry or NEW_TOKEN token and the ITE.

The Length fields of all Initial, Handshake, and 0-RTT packets in

the connection are set to the value described in [QUIC-TRANSPORT]

plus the provided Packet Length Offset, modulo 2^62.

If the response to an Initial packet using the provided version is a

Version Negotiation Packet, the client SHOULD cease attempting to

use that version and salt to the server unless it later determines

that the packet was the result of a version downgrade, see Section

7.2.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If a client receives an aliased version number that matches a

standard version that the client supports, it SHOULD assume the

server does not support the standard version and MUST use aliased

version behaviors in any connection with the server using that

version number.

If a client receives a Version Negotiation packet or Version

Negotiation transport parameter advertising a version number the

server previously sent as an aliased version, and the client

verifies any Version Negotiation Packet is not a Version Downgrade

attack (Section 7.2), it MUST discard the aliased version number,

ITE, packet length offset, and salt and not use it in future

connections.

5. Server Actions on Aliased Version Numbers

When a server receives an Initial Packet with an unsupported version

number, it SHOULD send a Version Negotiation Packet if it is

specifically configured not to generate that version number at

random.

Otherwise, it extracts the ITE, if any, and either looks up the

corresponding salt in its database or computes it using the

technique originally used to derive the salt from the version number

and ITE.

The server similarly obtains the Packet Length Offset and subtracts

it from the provided Length field, modulo 2^62. If the resulting

value is larger than the entire UDP datagram, the server discards

the packet and SHOULD send a Version Negotiation Packet.

If the server supports multiple standard versions, it uses the

standard version extracted by the ITE or stored in the mapping to

parse the decrypted packet.

In all packets with long headers, the server uses the aliased

version number and adds the Packet Length Offset to the length

field.

In the extremely unlikely event that the Packet Length Offset

resulted in a legal value but the salt is incorrect, the packet may

fail authentication. If so, or the encoded standard version is not

supported at the server, the server SHOULD send a Version

Negotiation Packet.

To reduce linkability for the client, servers SHOULD provide a new

Version Alias transport parameter, with a new version number, ITE,

salt, and Packet Length Offset, each time a client connects.

However, issuing version numbers to a client SHOULD be rate-limited

to mitigate the salt polling attack Section 7.5.

¶

¶

¶

¶

¶

¶

¶

¶

¶

6. Considerations for Retry Packets

QUIC Retry packets reduce the load on servers during periods of

stress by forcing the client to prove it possesses the IP address

before the server decrypts any Initial Packets or establishes any

connection state. Version aliasing substantially complicates the

process.

If a server has to send a Retry packet, the required format is

ambiguous without understanding which standard version to use. If

all supported standard versions use the same Retry format, it simply

uses that format with the client-provided version number.

If the supported standard versions use different Retry formats, the

server obtains the standard version via lookup or decoding and

formats a Retry containing the aliased version number accordingly.

Servers generate the Retry Integrity Tag of a Retry Packet using the

procedure in Section 5.8 of [QUIC-TLS]. However, for aliased

versions, the secret key K uses the first 16 octets of the aliased

salt instead of the key provided in the specification.

Clients MUST ignore Retry packets that contain a QUIC version other

than the version it used in its Initial Packet.

Servers MUST NOT reply to a packet with an incorrect Length field in

its long header with a Retry packet; it SHOULD reply with Version

Negotiation as described above.

7. Security and Privacy Considerations

This document intends to improve the existing security and privacy

properties of QUIC by dramatically improving the secrecy of QUIC

Initial Packets. However, there are new attacks against this

mechanism.

7.1. First-Connection Privacy

As version aliasing requires one connection over a standard QUIC

version to acquire initial state, this initial connection leaks some

information about the true target.

The client MAY alter its Initial Packet (e.g., its ALPN field) to

sanitize sensitive information and obtain another aliased version

before proceeding with its true request. Advice for the Outer

ClientHello in Section 10.5 of [ECHO] applies here. When using this

technique, the client MUST allow the handshake to complete, and

verify the 1RTT keys are correct through exchange of a PING or other

frame, to authenticate and verify the integrity of the resulting

version aliasing parameters.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Servers that support version aliasing SHOULD be liberal about the

Initial Packet content they receive, keeping the connection open

long enough to deliver their transport parameters, to support this

mechanism.

See also [I-D.duke-quic-protected-initial] for a means of extending

privacy guarantees to the first connection. Note that if this

results in a version negotiation packet, that signals that the

server has lost the state associated with these mechanisms (however,

see Section 7.2), and the client has no recourse but the technique

described in this section.

7.2. Version Downgrade

A countermeasure against version aliasing is the downgrade attack.

Middleboxes may drop a packet containing a random version and

imitate the server's failure to correctly process it. Clients and

servers are required to implement [QUIC-VN] to detect downgrades.

Note that downgrade detection only works after receiving an

authenticated response from the server. If a client immediately

responds to a Version Negotiation Packet with an Initial Packet with

a standard version number, it will have exposed its request in a

format readable to observers before it discovers if the Version

Negotiation Packet is authentic. A client SHOULD wait for an

interval to see if a valid response comes from the server before

assuming the version negotiation is valid. Even after such an

interval, the client should consider the safeguards in Section 7.1.

7.3. Retry Injection

QUIC Version 1 Retry packets are spoofable, as they follow a fixed

format, are sent in plaintext, and the integrity protection uses a

widely known key. As a result, QUIC Version 1 has verification

mechanisms in subsequent packets of the connection to validate the

origin of the Retry.

Version aliasing largely frustrates this attack. As the integrity

check key is derived from the secret salt, packets from attackers

will fail their integrity check and the client will ignore them.

The Packet Length Offset is important in this framework. Without

this mechanism, servers would have to perform trial decryption to

verify the client was using the correct salt. As this does not occur

before sending Retry Packets, servers would not detect disagreement

on the salt beforehand and would send a Retry packet signed with a

different salt than the client expects. Therefore, a client that

¶

¶

¶

¶

¶

¶

received a Retry packet with an invalid integrity check would not be

able to distinguish between the following possibilities:

a Retry packet corrupted in the network, which should be ignored;

a Retry packet generated by an attacker, which should be ignored;

or

a Retry packet from a server that lost its cryptographic state,

meaning that further communication with aliased versions is

impossible and the client should revert to using a standard

version.

The Packet Length Offset introduces sufficient entropy to make the

third possibility exceedingly unlikely.

7.4. Increased Linkability

As each version number and ITE is unique to each client, if a client

uses one twice, those two connections are extremely likely to be

from the same host. If the client has changed IP address, this is a

significant increase in linkability relative to QUIC with a standard

version numbers.

7.5. Salt Polling

Observers that wish to decode Initial Packets might open a large

number of connections to the server in an effort to obtain part of

the mapping of version numbers and ITEs to salts for a server. While

storage-intensive, this attack could increase the probability that

at least some version-aliased connections are observable. There are

three mitigations servers can execute against this attack:

use a longer ITE to increase the entropy of the salt,

rate-limit transport parameters sent to a particular client, and/

or

set a low expiration time to reduce the lifetime of the

attacker's database.

Segmenting the version number space based on client information,

i.e. using only a subset of version numbers for a certain IP address

range, would significantly amplify an attack. Observers will

generally be on the path to the client and be able to mimic having

an identical IP address. Segmentation in this way would dramatically

reduce the search space for attackers. Thus, servers are prohibited

from using this mechanism.

¶

* ¶

*

¶

*

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

7.6. Increased Processing of Garbage UDP Packets

As QUIC shares the UDP protocol number with other UDP applications,

in some deployments it may be possible for traffic intended for

other UDP applications to arrive at a QUIC server endpoint. When

servers support a finite set of version numbers, a valid version

number field is a strong indicator the packet is, in fact, QUIC. If

the version number is invalid, a QUIC Version Negotiation is a low-

cost response that triggers very early in packet processing.

However, a server that provides version aliasing is prepared to

accept almost any version number. As a result, many more

sufficiently sized UDP payloads with the first bit set to '1' are

potential QUIC Initial Packets that require generation of a salt and

Packet Length Offset.

Note that a nonzero Packet Length Offset will allow the server to

drop all but approximately 1 in every 2^49 packets, so trial

decryption is unnecessary.

While not a more potent attack then simply sending valid Initial

Packets, servers may have to provision additional resources to

address this possibility.

7.7. Increased Retry Overhead

This document requires two small cryptographic operations to build a

Retry packet instead of one, placing more load on servers when

already under load.

7.8. Request Forgery

Section 21.4 of [QUIC-TRANSPORT] describes the request forgery

attack, where a QUIC endpoint can cause its peer to deliver packets

to a victim with specific content.

Version aliasing allows the server to specify the contents of the

version field and part of the token field in Initial packets sent by

the client, potentially increasing the potency of this attack.

8. IANA Considerations

This draft chooses a transport parameter (0x5641) to minimize the

risk of collision. IANA should assign a permanent value from the

QUIC Transport Parameter Registry.

Value: TBD

Parameter Name: Version Aliasing

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[QUIC-TLS]

[QUIC-TRANSPORT]

[QUIC-VN]

[ECHO]

[I-D.duke-quic-protected-initial]

[RFC2119]

[RFC8446]

Specification: This document

9. References

9.1. Normative References

Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

Work in Progress, Internet-Draft, draft-ietf-quic-tls-34,

14 January 2021, <https://www.ietf.org/archive/id/draft-

ietf-quic-tls-34.txt>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-34, 14 January

2021, <https://www.ietf.org/archive/id/draft-ietf-quic-

transport-34.txt>.

Schinazi, D. and E. Rescorla, "Compatible Version

Negotiation for QUIC", Work in Progress, Internet-Draft,

draft-ietf-quic-version-negotiation-03, 4 February 2021,

<https://www.ietf.org/archive/id/draft-ietf-quic-version-

negotiation-03.txt>.

9.2. Informative References

Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS

Encrypted Client Hello", Work in Progress, Internet-

Draft, draft-ietf-tls-esni-10, 8 March 2021, <https://

www.ietf.org/archive/id/draft-ietf-tls-esni-10.txt>.

Duke, M., "Protected QUIC Initial Packets", Work in

Progress, Internet-Draft, draft-duke-quic-protected-

initial-00, 4 May 2021, <https://www.ietf.org/archive/id/

draft-duke-quic-protected-initial-00.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Acknowledgments

Marten Seemann was the original creator of the version aliasing

approach.

¶

¶

https://www.ietf.org/archive/id/draft-ietf-quic-tls-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-tls-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-transport-34.txt
https://www.ietf.org/archive/id/draft-ietf-quic-version-negotiation-03.txt
https://www.ietf.org/archive/id/draft-ietf-quic-version-negotiation-03.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-10.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-10.txt
https://www.ietf.org/archive/id/draft-duke-quic-protected-initial-00.txt
https://www.ietf.org/archive/id/draft-duke-quic-protected-initial-00.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8446

Appendix B. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

B.1. since draft-duke-quic-version-aliasing-04

Relationship with Encrypted Client Hello (ECH) and QUIC Protected

Initials

Corrected statement about version negotiation

B.2. since draft-duke-quic-version-aliasing-03

Discussed request forgery attacks

B.3. since draft-duke-quic-version-aliasing-02

Specified 0RTT status of the transport parameter

B.4. since draft-duke-quic-version-aliasing-01

Fixed all references to "seed" where I meant "salt."

Added the Packet Length Offset, which eliminates Retry Injection

Attacks

B.5. since draft-duke-quic-version-aliasing-00

Added "Initial Token Extensions" to increase salt entropy and

make salt polling attacks impractical.

Allowed servers to store a mapping of version number and ITE to

salt instead.

Made standard version encoding mandatory. This dramatically

simplifies the new Retry logic and changes the security model.

Added references to Version Negotiation Transport Parameters.

Extensive readability edit.

Author's Address

Martin Duke

F5 Networks, Inc.

Email: martin.h.duke@gmail.com

¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

mailto:martin.h.duke@gmail.com

	QUIC Version Aliasing
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	2.1. Relationship to ECH and QUIC Protected Initials

	3. The Version Alias Transport Parameter
	3.1. Version Number Generation
	3.2. Initial Token Extension (ITE) Generation
	3.3. Salt and Packet Length Offset Generation
	3.4. Expiration Time
	3.5. Format
	3.6. Multiple Servers for One Domain

	4. Client Behavior
	5. Server Actions on Aliased Version Numbers
	6. Considerations for Retry Packets
	7. Security and Privacy Considerations
	7.1. First-Connection Privacy
	7.2. Version Downgrade
	7.3. Retry Injection
	7.4. Increased Linkability
	7.5. Salt Polling
	7.6. Increased Processing of Garbage UDP Packets
	7.7. Increased Retry Overhead
	7.8. Request Forgery

	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Acknowledgments
	Appendix B. Change Log
	B.1. since draft-duke-quic-version-aliasing-04
	B.2. since draft-duke-quic-version-aliasing-03
	B.3. since draft-duke-quic-version-aliasing-02
	B.4. since draft-duke-quic-version-aliasing-01
	B.5. since draft-duke-quic-version-aliasing-00
	Author's Address

