
Workgroup: QUIC

Internet-Draft:

draft-duke-quic-version-aliasing-09

Published: 6 November 2022

Intended Status: Experimental

Expires: 10 May 2023

Authors: M. Duke

Google

QUIC Version Aliasing

Abstract

The QUIC transport protocol preserves its future extensibility

partly by specifying its version number. There will be a relatively

small number of published version numbers for the foreseeable

future. This document provides a method for clients and servers to

negotiate the use of other version numbers in subsequent connections

and encrypts Initial Packets using secret keys instead of standard

ones. If a sizeable subset of QUIC connections use this mechanism,

this should prevent middlebox ossification around the current set of

published version numbers and the contents of QUIC Initial packets,

as well as improving the protocol's privacy properties.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the mailing list

(quic@ietf.org), which is archived at https://mailarchive.ietf.org/

arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/martinduke/quic-version-aliasing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/martinduke/quic-version-aliasing
https://github.com/martinduke/quic-version-aliasing
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 10 May 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Protocol Overview

2.1. Relationship to ECH and QUIC Protected Initials

3. The version_aliasing Transport Parameter

3.1. Aliased Version

3.2. Standard Version

3.3. Server Connection ID

3.4. Salt

3.5. Packet Length Offset

3.6. Expiration Time

3.7. Packet Type Codepoints

3.8. Operational Considerations for Multiple-Server Architectures

3.8.1. Multiple Servers for One Domain

3.8.2. Multiple Entities With One Load Balancer

4. Additional Client Requirements

5. Fallback

5.1. Bad Salt Packets

5.2. Client Response to Bad Salt

5.3. version_aliasing_fallback Transport Parameter

5.4. Server Response to version_aliasing_fallback Transport

Parameter

6. Considerations for Retry Packets

7. Security and Privacy Considerations

7.1. Endpoint Impersonation

7.2. First-Connection Privacy

7.3. Forcing Downgrade

7.4. Initial Packet Injection

7.5. Retry Injection

7.6. Increased Linkability

¶

¶

¶

https://trustee.ietf.org/license-info

7.7. Salt Polling

7.8. Server Fingerprinting

7.9. Increased Processing of Garbage UDP Packets

7.10. Increased Retry Overhead

7.11. Request Forgery

8. IANA Considerations

8.1. QUIC Version Registry

8.2. QUIC Transport Parameter Registry

8.3. QUIC Transport Error Codes Registry

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Acknowledgments

Appendix B. Change Log

B.1. since draft-duke-quic-version-aliasing-08

B.2. since draft-duke-quic-version-aliasing-07

B.3. since draft-duke-quic-version-aliasing-05

B.4. since draft-duke-quic-version-aliasing-04

B.5. since draft-duke-quic-version-aliasing-03

B.6. since draft-duke-quic-version-aliasing-02

B.7. since draft-duke-quic-version-aliasing-01

B.8. since draft-duke-quic-version-aliasing-00

Author's Address

1. Introduction

The QUIC version number is critical to future extensibility of the

protocol ([RFC9000]). Past experience with other protocols, such as

TLS1.3 [RFC8446], shows that middleboxes might attempt to enforce

that QUIC packets use versions known at the time the middlebox was

implemented. This deters deployment of experimental and standard

versions on the internet.

Each version of QUIC has a "salt" [RFC9001] that is used to derive

the keys used to encrypt Initial packets. As each salt is published

in a standards document, any observer can decrypt these packets and

inspect the contents, including a TLS Client Hello. A subsidiary

mechanism like Encrypted Client Hello [ECHO] might protect some of

the TLS fields inside a TLS Client Hello.

This document proposes "QUIC Version Aliasing," a standard way for

servers to advertise the availability of other versions inside the

cryptographic protection of a QUIC handshake. These versions are

syntactically identical to the QUIC version in which the

communication takes place, but use a different salt. In subsequent

communications, the client uses the new version number and encrypts

its Initial packets with a key derived from the provided salt. These

version numbers and salts are unique to the client.

¶

¶

¶

If a large subset of QUIC traffic adopts his technique, middleboxes

will be unable to enforce particular version numbers or policy based

on Client Hello contents without incurring unacceptable penalties on

users. This would simultaneously protect the protocol against

ossification and improve its privacy properties.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

In this document, these words will appear with that interpretation

only when in ALL CAPS. Lower case uses of these words are not to be

interpreted as carrying significance described in RFC 2119.

A "standard version" is a QUIC version that would be advertised in a

QUIC version negotiation and conforms to a specification. Any

aliased version corresponds to a standard version in all its formats

and behaviors, except for the version number field in long headers.

QUIC versions require certain properties to support use as a

standard version. QUIC version 1 ([RFC9000]) and version 2

([I-D.draft-ietf-quic-v2]) both have the necessary properties.

Future QUIC version specifications can specify their suitability for

this purpose.

An "aliased version" is a version with a number generated in

accordance with this document. Except when specified below, it

conforms entirely to the specification of the standard version.

2. Protocol Overview

When they instantiate a connection, servers select an alternate 32-

bit version number, and optionally a server connection ID, for the

next connection at random and securely derive several parameters

from those values using a repeatable process. Among those is a

"salt" that can be used to encrypt Initial packets instead of the

well-known salt provided in the specification. Other parameters

serve to "grease" parts of the QUIC public header that are currently

unencrypted. Servers communicate these parameters using a transport

parameter.

If a client next connects to that server within the indicated

expiration time, it uses the provided version number and connection

ID, and encrypt its Initial Packets using a key derived from the

provided salt. It uses the other parameters to grease certain public

header fields. In all other respects, the packet is identical to an

Initial packet from a standard version indicated in the transport

parameter.

¶

¶

¶

¶

¶

¶

¶

When a server receives a long header packet with an aliased version,

it uses the version number and destination connection ID to recover

the parameters, which allows it to extract the header values and

decrypt the packet.

When generating parameters, servers can choose between doing so

randomly and storing the mapping, or using a cryptographic process

to transform the aliased version number and token extension into the

salt. The two options provide a simple tradeoff between

computational complexity and storage requirements.

All long header packets use the aliased version and apply the

greasing parameters. Short header packets are in every respect

unchanged from the standard version.

2.1. Relationship to ECH and QUIC Protected Initials

The TLS Encrypted Client Hello [ECHO] shares some goals with this

document. It encodes an "inner" encrypted Client Hello in a TLS

extension in an "outer" Client Hello. The encryption uses asymmetric

keys with the server's public key distributed via an out-of-band

mechanism like DNS. The inner Client Hello contains any privacy-

sensitive information and is only readable with the server's private

key.

Significantly, unlike QUIC Version Aliasing, ECH can operate on the

first connection between a client and server. However, from the

second connection QUIC version aliasing provides additional

benefits. It:

greases QUIC header fields and packet formats;

protects all of the TLS Client Hello and Server Hello;

mitigates Retry injection attacks;

does not require a mechanism to distribute the public key;

uses smaller Client Hello messages, which might allow a larger

0RTT packet in the same datagram; and

relies on computationally cheap symmetric encryption.

Note that in the event of the server losing state, the two

approaches have a similar fallback: ECH uses information in the

outer Client Hello, and Version Aliasing requires a connection using

a standard version. In either case, maintaining privacy requires the

outer or standard version Client Hello to exclude privacy-sensitive

information. However, ECH will allow confidential transmission of

data in 1 RTT, while Version Aliasing requires 2 RTTs to resume.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

This mechanism is also relevant to mitigation of downgrade attacks

(see Section 7.3).

Similarly, the QUIC Protected Initial [QUIC-PI] uses the ECH

distribution mechanism to generate secure initial keys and Retry

integrity tags. While still dependent on a key distribution system,

asymmetric encryption, and relatively large Initial packets, it

offers similar protection properties to Version Aliasing while still

not greasing the version field. Note that since QUIC Protected

Initials have their own scheme for protecting Initial packets, that

version is not suitable for use as a standard version. However,

these connections can be used to deliver the version_aliasing

transport parameter.

A maximally privacy-protecting client might use Protected Initials

for any connection attempts for which it does not have an unexpired

aliased version, and QUIC version aliasing otherwise.

See also section 1.1 of [QUIC-PI] for further discussion of

tradeoffs.

3. The version_aliasing Transport Parameter

To enable version aliasing, servers deliver a version_aliasing

transport parameter in any QUIC connection that supports transport

parameters. It has the following format.

¶

¶

¶

¶

¶

Figure 1: version_aliasing Transport Parameter value

These fields are described in the sections below.

The Packet Length Offset and Expiration Time fields are encoded

using the Variable Length Integer encoding from Section 16 of

[RFC9000]. Expiration Time is measured in seconds.

INI, 0RT, HAN, and RET are the codepoints for each long header

packet type. If any two packet types have the same codepoint, the

transport parameter is invalid.

The Connection ID Length (CID Length) is in bytes.

Note that servers that support version aliasing need not send the

transport parameter on every connection. Therefore, a client MAY

attempt to connect with an unexpired aliased version, even if in its

most recent connection it did not receive the transport parameter.

Clients remember the values in this transport parameter for a future

connection. Servers MUST either store the contents of the transport

parameter, or preserve the state to compute the full contents based

on the Aliased Version and Connection ID.

A server that receives this transport parameter MUST close the

connection with a TRANSPORT_PARAMETER_ERROR.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Aliased Version (32) |

+-+

| Standard Version (32) |

+-+

| |

+ +

| |

+ +

| Salt (160) |

+ +

| |

+ +

| |

+-+

| Packet Length Offset (i) |

+-+

| Expiration Time (i) |

+-+

|INI|0RT|HAN|RET| CID length | Connection ID (variable) |

+-+

¶

¶

¶

¶

¶

¶

¶

Servers SHOULD provide a new version_aliasing transport parameter

each time a client connects. However, issuing version numbers to a

client SHOULD be rate- limited to mitigate the salt polling

attackSection 7.7 and MAY cease to clients that are consistently

connecting with standard versions.

3.1. Aliased Version

The version MUST appear to be random, although there are certain

values that will not be sent. Specifically, it MUST NOT correspond

to a QUIC version the server advertises in QUIC Version Negotiation

packets or transport parameters. Servers SHOULD also exclude version

numbers used in known specifications or experiments to avoid

confusion at clients, whether or not they have plans to support

those specifications.

Servers MAY use version numbers reserved for grease in Section 15.1

of [RFC9000], even though they might be advertised in Version

Negotiationi Packets. Some clients may use these version numbers to

probe for Version Negotiation capability, which would likely result

in a fallback procedure (see Section 5) instead of a Version

Negotiation packet.

Servers MUST NOT use client-controlled information (e.g. the client

IP address) as in input to generate the version number, see

Section 7.7.

Servers MUST NOT advertise these versions in QUIC Version

Negotiation packets.

3.2. Standard Version

Servers also identify the Standard version that the client uses to

specify the wire formats and behaviors of the aliased version. This

version MUST meet the criteria to support version aliasing, and MUST

either be included as a supported version in the client's

version_information transport parameter (see [QUIC-VN]) or be the

standard version of the current connection.

Note that servers MUST NOT accept resumption tickets or NEW_TOKEN

tokens from a certain standard version in a connection using a

different standard version. Therefore, the choice of standard

version might impact the performance of the connection that uses an

aliased version. The standard version that generated tickets and/or

tokens is typically encoded in those tickets or tokens.

¶

¶

¶

¶

¶

¶

¶

There are several possible techniques for the server securely

recovering the standard version in use for an aliased connection:

the server could store a mapping of aliased versions to standard

version;

the server could encrypt the standard version in use in the

aliased version number and/or connection ID;

the server only accepts one standard version for aliased

versions; or

the standard version is included as an input to the parameter

generation algorithm, and the server tries all supported standard

versions and tests each resulting Packet Length Offset for

validity.

3.3. Server Connection ID

Servers SHOULD generate a Connection ID to provide additional

entropy in salt generation. Two clients that receive the same

version number but different connection IDs will not be able to

decode each other's Initial Packets.

The connection ID MUST appear to be random to observers, but it

might encode information to route the packet in the server

infrastructure, or standard version information.

The connection ID MUST NOT be between 1 and 7 bytes long. A zero-

length connection ID signals that the destination connection ID will

not be an input to the server's process, so the client may choose

any destination connection ID compliant with the standard version.

3.4. Salt

The salt is an opaque 20-octet field. It is used to generate Initial

connection keys using the process described in [RFC9001].

Servers MUST either generate a random salt and store a mapping of

aliased version and connection ID to salt, or generate the salt

using a cryptographic method that uses the version number,

connection ID, and server state that is persistent across

connections. It MUST NOT use client controlled information other

than the version number and connection ID; for example, the client's

IP address and port.

3.5. Packet Length Offset

The Packet Length Offset is a 62-bit unsigned integer. All long

headers have a packet length field; this value is added to all

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

packet lengths, modulo 2^62, to form the value sent on the wire in

all long headers, sent from either endpoint.

Aside from greasing the packet length field, this parameter provides

a low-cost means for the server to determine if the client and

server share a valid version aliasing context. For example, if the

server loses state after sending a version_aliasing transport

parameter, the derived packet length offset is extremely unlikely to

be consistent with the size of the UDP datagram. Due to possible

packet concatenation, a packet is clearly not decryptable if the

packet length is larger than the size of the UDP datagram payload.

To reduce header overhead, servers MAY consistently use a Packet

Length Offset of zero if and only if it either (1) never sends Retry

packets, or (2) can guarantee, through the use of persistent storage

or other means, that it will never lose the cryptographic state

required to generate the salt before the promised expiration time.

Section 7.5 describes the implications if it uses zero without

meeting these conditions.

Similarly, the server MAY use a smaller Packet Length Offset size

(e.g., 30 bits) to reduce the size of the packet length offset in

long headers. A smaller packet length field increases the chance

that the packet length will accidentally be valid, requiring trial

decryption. As the maximum UDP datagram size is 2^16 bytes, a 62-bit

packet length offset means that, at worst, only 1 in every 2^46

packets will be a false positive.

3.6. Expiration Time

Servers should select an expiration time in seconds, measured from

the instant the transport parameter is first sent. This time SHOULD

be less than the time until the server expects to support new QUIC

versions, rotate the keys used to encode information in the version

number, or rotate the keys used in salt generation. The expiration

need not be derivable from the aliased version and connection ID; it

is a matter of policy.

Furthermore, the expiration time SHOULD be short enough to frustrate

a salt polling attack (Section 7.7)

Conversely, an extremely short expiration time will often force the

client to use standard QUIC version numbers and salts.

The client SHOULD NOT use an aliased version if the time since the

receipt of the transport parameter exceeds the Expiration Time.

Attempting to do so is likely to result in a fallback procedure (see

Section 5). The server need not enforce this restriction; the

Expiration Time is purely advisory.

¶

¶

¶

¶

¶

¶

¶

¶

3.7. Packet Type Codepoints

The server generates the packet type codepoint for each of the four

long header packet types (Initial, 0RTT, Handshake, and Retry). Each

of these codepoints is two bits. All long headers from both

endpoints use these codepoints instead of those provided in the

standard version specification.

A straightforward implementation might take arbitrary bits from a

hash of the version number. The first two bits it reads are the

codepoint for Initial packets. The next pair of bits that is not a

duplicate of the first is the codepoint for 0RTT packets. The next

pair that does not duplicate the first two is the codepoint for

Handshake packets, and the remaining codepoint is the Retry packet.

3.8. Operational Considerations for Multiple-Server Architectures

3.8.1. Multiple Servers for One Domain

If multiple servers serve the same entity behind a load balancer,

they MUST NOT generate version numbers that any of them would

advertise in a Version Negotiation Packet or Transport Parameter.

Such servers will either need a common configuration for generating

parameters from the version number and connection ID, maintain a

commmon database of mappings, or the connection ID itself can be

used to route the Initial packet to the server that generated the

transport parameter. See [QUIC-LB] for an example of the last

approach.

3.8.2. Multiple Entities With One Load Balancer

If mutually mistrustful entities share the same IP address and port,

incoming packets are usually routed by examining the SNI at a load

balancer that routes the traffic. This use case makes concealing the

contents of the client Initial especially attractive, as the IP

address reveals less information, but there is no obvious means for

the load balancer to inspect a version aliased packet. There are

several solutions to solve this problem.

The RECOMMENDED solution is to use routable connection IDs, so

that the load balancer can correctly direct the packet without

any knowledge of its version- dependent syntax. See [QUIC-LB] for

an example design.

Each entity has its own cryptographic context, shared with the

load balancer. This requires the load balancer to trial decrypt

each incoming Initial with each context. As there is no standard

algorithm for encoding information in the version and connection

¶

¶

¶

¶

¶

*

¶

*

ID, this involves synchronizing the method, not just the key

material.

Each entity reports its Version Aliasing Transport Parameters to

the load balancer out-of-band.

Each entity is assigned certain version numbers for use. This

assignment SHOULD NOT follow observable patterns (e.g., assigning

ranges to each entity), as this would allow observers to obtain

the target server based on the version. The scheme SHOULD assign

all available version numbers to maximize the entropy of the

encoding.

All entities have a common crytographic context for deriving

salts and Packet Length Offsets from the version number and

connection ID. This isi straightforward but also increases the

risk that the keys will leak to an attacker which could then

decode Initial packets from a point where the packets are

observable. This is therefore NOT RECOMMENDED.

Note that [ECHO] and [QUIC-PI] solve this problem elegantly by only

holding the private key at the load balancer, which decodes the

sensitive information on behalf of the back-end server.

4. Additional Client Requirements

The Client MUST NOT use the contents of a Version Alias transport

parameter if the handshake does not (1) later authenticate the

server name or (2) result in both endpoints computing the same 1-RTT

keys. See Section 7.1. The authenticated server name MAY be a

"public name" distributed as described in [ECHO] rather than the

true target domain.

Clients MUST advertise aliased versions in the chosen version field

of the version_information Transport Parameter (see [QUIC-VN]).

Clients SHOULD NOT use the provided version number and connection ID

in more than one connection. Using the same connection ID in two

connections could confuse the server demultiplexer. If the client IP

has changed, reuse of these parameters can link the client across

connection attempts.

If a client receives an aliased version number that matches a

standard version that the client supports, it SHOULD assume the

server does not support the standard version and MUST use aliased

version behaviors in any connection with the server using that

version number.

If the response to an Initial packet using the provided version is a

Version Negotiation Packet, the client SHOULD assume that the server

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

no longer supports version aliasing and attempt to connect with one

of the advertised versions (while observing the considerations in

Section 7.3).

If the response to an Initial packet is a Bad Salt packet, the

client follows the procedures in Section 5.

5. Fallback

If the server has lost its encryption state, it may not be able to

generate the correct salts from previously provided versions and

connection IDs. The fallback mechanism provides a means of

recovering from this state while protecting against injection of

messages by attackers.

When a server receives a packet with an unsupported version number,

it SHOULD send a Version Negotiation Packet if it is configured not

to generate that version number at random.

If applying the packet length offset to the packet length field

results in a length longer than the UDP datagram that contains it,

the packet was not generated with the proper version aliasing

context.

The server MAY apply further checks (e.g. against the minimum QUIC

packet length) to further reduce the very small probability of a

false positive.

In the extremely unlikely event that the Packet Length Offset

resulted in a legal value but the salt is incorrect, the packet will

fail authentication. Servers MAY also interpret this as a loss of

version aliasing state.

When the packet length computation on the first packet in a

connection fails, it signals either that the packet has been

corrupted in transit, or the client is using a transport parameter

issued before a server failure. In either case, the server sends a

Bad Salt packet. The server ignores failures in subsequent packets

for that connection.

5.1. Bad Salt Packets

The Bad Salt packet has a long header and a reserved version number,

because it must not be confused with a legitimate packet in any

standard version. They are not encrypted, not authenticated, and

have the following format:

¶

¶

¶

¶

¶

¶

¶

¶

¶

Unused: The unused field is filled randomly by the sender and

ignored on receipt.

Version: The version field is reserved for use by the Bad Salt

packet.

Destination and Source Connection IDs and Lengths: These fields are

copied from the client packet, with the source fields from the

client packet written into the destination fields of the Bad Salt,

and vice versa.

Supported Version: A list of standard QUIC version numbers which the

server supports. The number of versions is inferred from the length

of the datagram.

Integrity Tag: To compute the integrity tag, the server creates a

pseudo-packet by contents of the entire client Initial UDP payload,

including any coalesced packets, with the Bad Salt packet:

In a process similar to the Retry Integrity Tag, the Bad Salt

Integrity Tag is computed as the output of AEAD_AES_128_GCM with the

following inputs:

The secret key, K, is 0xbe0c690b9f66575a1d766b54e368c84e.

The nonce, N, is 0x461599d35d632bf2239825bb.

Bad Salt Packet {

 Header Form (1) = 1,

 Unused (7),

 Version (32) = TBD (provisional value = 0x56415641),

 Destination Connection ID Length (8),

 Destination Connection ID (0..2040),

 Source Connection ID Length (8),

 Source Connection ID (0..2040),

 Supported Version (32) ...,

 Integrity Tag (128),

}

¶

¶

¶

¶

¶

¶

Bad Salt Pseudo-Packet {

 Client UDP Payload (9600..),

 Header Form (1) = 1,

 Unused (7),

 Version (32) = TBD (provisional value = 0x56415641),

 Destination Connection ID Length (8),

 Destination Connection ID (0..2040),

 Source Connection ID Length (8),

 Source Connection ID (0..2040),

 Supported Version (32) ...,

}

¶

¶

* ¶

* ¶

The plaintext, P, is empty.

The associated data, A, is the Bad Salt pseudo-packet.

These values are derived using HKDF-Expand-Label from the secret

0x767fedaff519a2aad117d8fd3ce0a04178ed205ab0d43425723e436853c4b3e2

and labels "quicva key" and "quicva iv".

The integrity tag serves to validate the integrity of both the Bad

Salt packet itself and the Initial packet that triggered it.

5.2. Client Response to Bad Salt

Upon receipt of a Bad Salt packet, the client SHOULD wait for a

Probe Timeout (PTO) to check if the Bad Salt packet was injected by

an attacker, and a valid response arrives from the actual server.

After waiting, the client checks the Integrity Tag using its record

of the Initial it sent. If this fails, the client SHOULD assume

packet corruption and resend the Initial packet.

If the verification succeeds, the client SHOULD attempt to connect

with one of the listed standard versions. It SHOULD observe the

privacy considerations in Section 7.2. It MUST include a

version_aliasing_fallback Transport Parameter in the Client Hello.

Once it sends this transport parameter, the client MUST NOT attempt

to connect with that aliased version again.

The original Client Initial is not part of the new connection.

Therefore, the Connection IDs can change, and the original client

hello is not part of the transcript for TLS key derivation.

5.3. version_aliasing_fallback Transport Parameter

The client sends this transport parameter in a TLS Client Hello

generated in response to a Bad Salt packet:

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

The Aliased Version, Connection ID, and Salt fields are taken from

the connection attempt that triggered this fallback.

The Bad Salt Integrity Tag is taken from the Bad Salt packet that

triggered this fallback. Its purpose is to include the Bad Salt

packet contents in the TLS handshake hash.

5.4. Server Response to version_aliasing_fallback Transport Parameter

A client version_aliasing_fallback transport parameter tells the

server that the client received a Bad Salt packet. The server checks

if using the version and connection ID as inputs results in the same

salt.

If the salt does not match, the server SHOULD continue with the

connection and SHOULD issue a new version_aliasing transport

parameter.

If the salt and Packet Length Offset are valid, the server MUST

terminate the connection with the error code INVALID_BAD_SALT.

Note that the client never sends this transport parameter in a

connection that uses an aliased version. A server that receives such

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Aliased Version (32) |

+-+

| CID length | Connection ID (variable) |

+-+

| |

+ +

| |

+ +

| Salt (160) |

+ +

| |

+ +

| |

+-+

| |

+ +

| |

+ Bad Salt Integrity Tag (128) +

| |

+ +

| |

+-+

¶

¶

¶

¶

¶

¶

a packet MUST terminate the connection with a

TRANSPORT_PARAMETER_ERROR.

6. Considerations for Retry Packets

QUIC Retry packets reduce the load on servers during periods of

stress by forcing the client to prove it possesses the IP address

before the server decrypts any Initial Packets or establishes any

connection state. Version aliasing substantially complicates the

process.

If a server has to send a Retry packet, the required format is

ambiguous without understanding which standard version to use. If

all supported standard versions use the same Retry format, it simply

uses that format with the client-provided version number.

If the supported standard versions use different Retry formats, the

server obtains the standard version via lookup or decoding and

formats a Retry containing the aliased version number accordingly.

Servers generate the Retry Integrity Tag of a Retry Packet using the

procedure in Section 5.8 of [RFC9001]. However, for aliased

versions, the secret key K uses the first 16 octets of the aliased

salt instead of the key provided in the specification.

Clients MUST ignore Retry packets that contain a QUIC version other

than the version it used in its Initial Packet.

Servers MUST NOT reply to a packet with an incorrect Length field in

its long header with a Retry packet; it SHOULD reply with Bad Salt

as described above.

7. Security and Privacy Considerations

This document intends to improve the existing security and privacy

properties of QUIC by dramatically improving the secrecy of QUIC

Initial Packets. However, there are new attacks against this

mechanism.

7.1. Endpoint Impersonation

An on-path attacker might respond to a standard version Initial

packet with a Version Aliasing Transport Parameter that then caused

the client to reveal sensitive information in a subsequent Initial.

As described in Section 4, clients cannot use the contents of a

Version Aliasing transport parameter until they have authenticated

the source as a trusted domain, and have verified that the 1RTT key

derivation is identical at both endpoints.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.2. First-Connection Privacy

As version aliasing requires one connection over a standard QUIC

version to acquire initial state, this initial connection leaks some

information about the true target.

The client MAY alter its Initial Packet to sanitize sensitive

information and obtain another aliased version before proceeding

with its true request. However, the client Initial must lead to the

authentication of a domain name the client trusts to provide

accurate Version Aliasing information (possibly the public_name from

an Encrypted Client Hello configuration from [ECHO]). Advice for the

Outer ClientHello in Section 10.5 of [ECHO] applies here.

Endpoints are encouraged to instead use [ECHO] or [QUIC-PI] to

increase privacy on the first connection between a client and

server.

7.3. Forcing Downgrade

An attacker can attempt to force a client to send an Initial that

uses a standard version by injecting a Version Negotiation packet

(which implies the server no longer supports aliasing) or a Bad Salt

packet (which implies the server has a new cryptographic context).

The weak form of this attack observes the Initial and injects the

Version Negotiation or Bad Salt packet, but cannot drop the Initial.

To counteract this, a client SHOULD NOT respond to these packets

until they have waited for Probe Timeout (PTO) for a valid server

Initial to arrive.

The strong form features an attacker that can drop Initial packets.

In this case, the client can either abandon the connection attempt

or connect with an standard version.

If it connects with a standard version, it should consider the

privacy advice in Section 7.2.

Furthermore, if it received a Bad Salt packet, the client sends a

Version Aliasing transport parameter to detect the downgrade attack,

and the server will terminate the connection if the Bad Salt packet

was an attack.

If the client received a Version Negotiation packet, it MUST

implement a downgrade detection mechanism such as [QUIC-VN] or

abandon the connection attempt. If it subsequently detects a

downgrade detection, or discovers that the server does not support

the same mechanism, it terminates the connection attempt.

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.4. Initial Packet Injection

QUIC version 1 handshakes are vulnerable to DoS from observers for

the short interval that endpoints keep Initial keys (usually ~1.5

RTTS), since Initial Packets are not authenticated. With version

aliasing, attackers do not have the necessary keys to launch such an

attack.

7.5. Retry Injection

QUIC Version 1 Retry packets are spoofable, as they follow a fixed

format, are sent in plaintext, and the integrity protection uses a

widely known key. As a result, QUIC Version 1 has verification

mechanisms in subsequent packets of the connection to validate the

origin of the Retry.

Version aliasing largely frustrates this attack. As the integrity

check key is derived from the secret salt, packets from attackers

will fail their integrity check and the client will ignore them.

The Packet Length Offset is important in this framework. Without

this mechanism, servers would have to perform trial decryption to

verify the client was using the correct salt. As this does not occur

before sending Retry Packets, servers would not detect disagreement

on the salt beforehand and would send a Retry packet signed with a

different salt than the client expects. Therefore, a client that

received a Retry packet with an invalid integrity check would not be

able to distinguish between the following possibilities:

a Retry packet corrupted in the network, which should be ignored;

a Retry packet generated by an attacker, which should be ignored;

or

a Retry packet from a server that lost its cryptographic state,

meaning that further communication with aliased versions is

impossible and the client should revert to using a standard

version.

The Packet Length Offset introduces sufficient entropy to make the

third possibility exceedingly unlikely.

7.6. Increased Linkability

As each version number and connection ID is unique to each client,

if a client uses one twice, those two connections are extremely

likely to be from the same host. If the client has changed IP

address, this is a significant increase in linkability relative to

QUIC with a standard version numbers.

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

¶

7.7. Salt Polling

Observers that wish to decode Initial Packets might open a large

number of connections to the server in an effort to obtain part of

the mapping of version numbers and connection IDs to salts for a

server. While storage-intensive, this attack could increase the

probability that at least some version-aliased connections are

observable. There are three mitigations servers can execute against

this attack:

use a longer connection ID to increase the entropy of the salt,

rate-limit transport parameters sent to a particular client, and/

or

set a low expiration time to reduce the lifetime of the

attacker's database.

Segmenting the version number space based on client information,

i.e. using only a subset of version numbers for a certain IP address

range, would significantly amplify an attack. Observers will

generally be on the path to the client and be able to mimic having

an identical IP address. Segmentation in this way would dramatically

reduce the search space for attackers. Thus, servers are prohibited

from using this mechanism.

7.8. Server Fingerprinting

The server chooses its own connection ID length. Therefore, the

destination server of a version-aliased packet might become clear

based on the chosen length.

7.9. Increased Processing of Garbage UDP Packets

As QUIC shares the UDP protocol number with other UDP applications,

in some deployments it may be possible for traffic intended for

other UDP applications to arrive at a QUIC server endpoint. When

servers support a finite set of version numbers, a valid version

number field is a strong indicator the packet is, in fact, QUIC. If

the version number is invalid, a QUIC Version Negotiation is a low-

cost response that triggers very early in packet processing.

However, a server that provides version aliasing is prepared to

accept almost any version number. As a result, many more

sufficiently sized UDP payloads with the first bit set to '1' are

potential QUIC Initial Packets that require computation of a salt

and Packet Length Offset.

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

Note that a nonzero Packet Length Offset will allow the server to

drop all but approximately 1 in every 2^49 packets, so trial

decryption is unnecessary.

While not a more potent attack then simply sending valid Initial

Packets, servers may have to provision additional resources to

address this possibility.

7.10. Increased Retry Overhead

This document requires two small cryptographic operations to build a

Retry packet instead of one, placing more load on servers when

already under load.

7.11. Request Forgery

Section 21.4 of [RFC9000] describes the request forgery attack,

where a QUIC endpoint can cause its peer to deliver packets to a

victim with specific content.

Version aliasing allows the server to specify the contents of the

version field and part of the token field in Initial packets sent by

the client, potentially increasing the potency of this attack.

8. IANA Considerations

8.1. QUIC Version Registry

This document request that IANA add the following entry to the QUIC

version registry:

Value: TBD

Status: permanent

Specification: This document

Change Controller: IETF

Contact: QUIC WG

8.2. QUIC Transport Parameter Registry

This document requests that IANA add the following entries to the

QUIC Transport Parameters Registry:

Value Parameter Name Specification

TBD version_aliasing This Document

TBD version_aliasing_fallback This Document

Table 1

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[QUIC-VN]

[RFC9000]

[RFC9001]

[ECHO]

[I-D.draft-ietf-quic-v2]

[QUIC-LB]

[QUIC-PI]

8.3. QUIC Transport Error Codes Registry

This document requests that IANA add the following entry to the QUIC

Transport Error Codes registry:

Value: TBD (provisional: 0x4942)

Code: INVALID_BAD_SALT

9. References

9.1. Normative References

Schinazi, D. and E. Rescorla, "Compatible Version

Negotiation for QUIC", Work in Progress, Internet-Draft,

draft-ietf-quic-version-negotiation-13, 6 November 2022,

<https://datatracker.ietf.org/doc/html/draft-ietf-quic-

version-negotiation-13>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Thomson, M., Ed. and S. Turner, Ed., "Using TLS to Secure

QUIC", RFC 9001, DOI 10.17487/RFC9001, May 2021,

<https://www.rfc-editor.org/rfc/rfc9001>.

9.2. Informative References

Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS

Encrypted Client Hello", Work in Progress, Internet-

Draft, draft-ietf-tls-esni-15, 3 October 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15>.

Duke, M., "QUIC Version 2", Work in

Progress, Internet-Draft, draft-ietf-quic-v2-07, 6

November 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-quic-v2-07>.

Duke, M., Banks, N., and C. Huitema, "QUIC-LB: Generating

Routable QUIC Connection IDs", Work in Progress,

Internet-Draft, draft-ietf-quic-load-balancers-15, 24

October 2022, <https://datatracker.ietf.org/doc/html/

draft-ietf-quic-load-balancers-15>.

Duke, M. and D. Schinazi, "Protected QUIC Initial

Packets", Work in Progress, Internet-Draft, draft-duke-

quic-protected-initial-04, 27 April 2022, <https://

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-13
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9001
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-15
https://datatracker.ietf.org/doc/html/draft-ietf-quic-v2-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-v2-07
https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers-15
https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers-15
https://datatracker.ietf.org/doc/html/draft-duke-quic-protected-initial-04

[RFC2119]

[RFC8446]

datatracker.ietf.org/doc/html/draft-duke-quic-protected-

initial-04>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

Appendix A. Acknowledgments

Marten Seemann was the original creator of the version aliasing

approach.

Appendix B. Change Log

RFC Editor's Note: Please remove this section prior to

publication of a final version of this document.

B.1. since draft-duke-quic-version-aliasing-08

Replaced Initial Token Extension with Server connection ID

B.2. since draft-duke-quic-version-aliasing-07

Added the Bad Salt Integrity Tag to the transport parameter

Greased packet types

Allowed the server to specify the standard version to connect

with

B.3. since draft-duke-quic-version-aliasing-05

Revised security considerations

Discussed multiple SNIs behind one load balancer

Removed VN from the fallback mechanism

B.4. since draft-duke-quic-version-aliasing-04

Relationship with Encrypted Client Hello (ECH) and QUIC Protected

Initials

Corrected statement about version negotiation

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

https://datatracker.ietf.org/doc/html/draft-duke-quic-protected-initial-04
https://datatracker.ietf.org/doc/html/draft-duke-quic-protected-initial-04
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8446

B.5. since draft-duke-quic-version-aliasing-03

Discussed request forgery attacks

B.6. since draft-duke-quic-version-aliasing-02

Specified 0RTT status of the transport parameter

B.7. since draft-duke-quic-version-aliasing-01

Fixed all references to "seed" where I meant "salt."

Added the Packet Length Offset, which eliminates Retry Injection

Attacks

B.8. since draft-duke-quic-version-aliasing-00

Added "Initial Token Extensions" to increase salt entropy and

make salt polling attacks impractical.

Allowed servers to store a mapping of version number and ITE to

salt instead.

Made standard version encoding mandatory. This dramatically

simplifies the new Retry logic and changes the security model.

Added references to Version Negotiation Transport Parameters.

Extensive readability edit.

Author's Address

Martin Duke

Google

Email: martin.h.duke@gmail.com

* ¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

mailto:martin.h.duke@gmail.com

	QUIC Version Aliasing
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	2.1. Relationship to ECH and QUIC Protected Initials

	3. The version_aliasing Transport Parameter
	3.1. Aliased Version
	3.2. Standard Version
	3.3. Server Connection ID
	3.4. Salt
	3.5. Packet Length Offset
	3.6. Expiration Time
	3.7. Packet Type Codepoints
	3.8. Operational Considerations for Multiple-Server Architectures
	3.8.1. Multiple Servers for One Domain
	3.8.2. Multiple Entities With One Load Balancer

	4. Additional Client Requirements
	5. Fallback
	5.1. Bad Salt Packets
	5.2. Client Response to Bad Salt
	5.3. version_aliasing_fallback Transport Parameter
	5.4. Server Response to version_aliasing_fallback Transport Parameter

	6. Considerations for Retry Packets
	7. Security and Privacy Considerations
	7.1. Endpoint Impersonation
	7.2. First-Connection Privacy
	7.3. Forcing Downgrade
	7.4. Initial Packet Injection
	7.5. Retry Injection
	7.6. Increased Linkability
	7.7. Salt Polling
	7.8. Server Fingerprinting
	7.9. Increased Processing of Garbage UDP Packets
	7.10. Increased Retry Overhead
	7.11. Request Forgery

	8. IANA Considerations
	8.1. QUIC Version Registry
	8.2. QUIC Transport Parameter Registry
	8.3. QUIC Transport Error Codes Registry

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Acknowledgments
	Appendix B. Change Log
	B.1. since draft-duke-quic-version-aliasing-08
	B.2. since draft-duke-quic-version-aliasing-07
	B.3. since draft-duke-quic-version-aliasing-05
	B.4. since draft-duke-quic-version-aliasing-04
	B.5. since draft-duke-quic-version-aliasing-03
	B.6. since draft-duke-quic-version-aliasing-02
	B.7. since draft-duke-quic-version-aliasing-01
	B.8. since draft-duke-quic-version-aliasing-00

	Author's Address

