
Workgroup: taps

Internet-Draft:

draft-duke-taps-transport-discovery-00

Published: 9 April 2021

Intended Status: Informational

Expires: 11 October 2021

Authors: M. Duke

F5 Networks, Inc.

TAPS Transport Discovery

Abstract

The Transport Services architecture decouples applications from the

protocol implementations that transport their data. While it is

often straightforward to connect applications with transports that

are present in the host operating system, providing a means of

discovering user-installed implementations dramatically enlarges the

use cases. This document discusses considerations for the design of

a discovery mechanism and an example of such a design.

Discussion of this work is encouraged to happen on the TAPS IETF

mailing list taps@ietf.org or on the GitHub repository which

contains the draft: https://github.com/martinduke/draft-duke-taps-

transport-discovery.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 October 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/taps@ietf.org
https://github.com/martinduke/draft-duke-taps-transport-discovery
https://github.com/martinduke/draft-duke-taps-transport-discovery
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions

3. Entities

4. Protocol Implementation

5. Protocol Installer

6. TAPS

7. Security Considerations

8. IANA Considerations

9. Informative References

Appendix A. Acknowledgments

Author's Address

1. Introduction

The Transport Services architecture [I-D.ietf-taps-arch] enables

applications to be protocol-agnostic by presenting an interface

where applications can specify their required properties, and the

service will select whichever protocol implementation available in

the system best meets those requirements. This increases application

portability and eases the introduction of new transport innovations

by not requiring changes to applications.

It is sometimes straightforward for a Transport Services interface

to identify the transports available in the host operating system.

However, including transports installed by the user greatly expands

use cases for the architecture. This document presents

considerations for the secure design of a system for discovery of

new protocol implementations.

Protocol Discovery would ideally have several desirable properties.

The transport services API should not have to recompile when

installing new implementations. This would not only disrupt

ongoing connections, but also involve ordinary users in the

complex business of downloading and building source code.

It should support user-space implementations. Most protocol

innovation begins with user space implementations, and many

transports (e.g. TLS, HTTP, QUIC) are usually implemented outside

the kernel long after reaching maturity.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

https://trustee.ietf.org/license-info

Protocol Discovery should not subject ordinary users to security

vulnerabilities. A new protocol installation is an opportunity to

hijack a user's networking stack, and Protocol Discovery requires

strong protections against arbitrary code performing operations

other than advertised on application data.

Conversely, sophisticated users need a means of discovering

implementations that are too new to have fully developed internet

trust mechanisms. This is the only means of initially deploying

new protocols for existing apps, and is the most plausible model

to deploy transport services API shims for existing protocol

libraries (e.g., the common TLS implementations) before their

proponents deploy native support.

Applications should not have to bring their own implementations.

The Transport Services API has the concept of "framers" (see Sec.

7.1 of [I-D.ietf-taps-interface]) that provide some ability for

applications to provide additional protocol encapsulation around

their messages. However, one important advantage of Transport

Services is that applications do not have to rely on a third-

party implementation that might not offer long term support, or

add to their footprint where a functionally equivalent protocol

implementation is already present on the system.

This document attempts to resolve the tension between some of these

properties.

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

"TAPS" is an abbreviation for the transport services API.

For brevity, this document will use "app" as a shorthand for

"application."

As in other TAPS documents, the concept of a "transport protocol" is

expanded beyond the traditional "transport layer" to include other

protocols that encapsulate application data, such as TLS, HTTP, and

Websockets.

3. Entities

The Transport Services API (TAPS) is responsible for matching

protocol capabilities with application requirements, and mediating

further app communication with the selected protocol implementation.

In this document, it actively discovers what implementations are

available in the system.

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

The protocol implementation instantiates the transport. In this

document, it offers a dynamically linked library that conforms to

standard interfaces so that TAPS can interchangeability interact

with it. In practice, this may be a shim layer if the underlying

implementation does not support TAPS.

The protocol installer, aside from installing the implementation

library and/or a TAPS shim layer, also is responsible for notifying

TAPS that the implementation is present, and what its capabilities

are.

Finally, the application leverages TAPS to initiate, manage, and

terminate communications with other endpoints. This document does

not require any changes to application behavior beyond those in the

core TAPS design.

More detailed requirements for each of these entities is below.

4. Protocol Implementation

The protocol implementation must offer a dynamically linked library

that offers certain APIs.

These APIs are TBD.

5. Protocol Installer

The installer might use the operating system's package manager or

"app store", or be a simple script. Besides installing the

implementation, the installer also writes data to a registry that

TAPS will access to discover the implementation.

This data will include:

the name of the supported protocol(s);

optionally, the versions of those protocols;

the path to the implementations TAPS-compliant library;

the properties that the protocol implementation supports, as

described in Section 4.2 of [I-D.ietf-taps-interface]; and

information to authenticate the entry (see Section 7).

Of course, a de-installer should remove the appropriate registry

entry.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

6. TAPS

TAPS creates a registry for protocol implementations, which might be

a database or a directory. To prevent inadvertent security

vulnerabilities, the host system SHOULD, at minimum, require

administrative privileges to write to the registry.

No later than upon receipt of request for a Preconnection, TAPS MUST

access the registry to determine the available protocols and their

properties. It is perfectly valid for there to be multiple

implementations of a protocol.

TAPS SHOULD validate entries in the registry using the provided

authentication data.

7. Security Considerations

User-space installation of protocols provides enormous opportunities

for attackers to hijack a network stack. While this has always been

possible with arbitrary protocol implementations, with TAPS

applications completely unaware of the installation can be victims

of such an attack.

An implementation might advertise properties it does not actually

provide to attract more traffic. For example, a "TLS" implementation

might not encrypt anything at all.

Moreover, in principle an implementation could deliver application

data anywhere it wanted with little visibility to the application,

much less the user.

The origin of the protocol installer is important to the trust

model. Obviously, transports in the kernel do not introduce

vulnerabilities specific to TAPS. A trusted package manager (e.g.

the Apple App Store or yum) may imply a minimal level of veracity of

the available packages. Protocol implementations directly downloaded

from the internet without mediation throught these mechanisms

require the greatest care.

Ongoing work on this document will largely focus on building

mechanisms to mitigate this weakness. Some promising approaches

include:

administrative privileges to alter the TAPS registry;

a special certificate authority that provides an authentication

of the implementation's explicit and implicit claims, as well as

the integrity of the installed binary;

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

[I-D.ietf-taps-arch]

[I-D.ietf-taps-interface]

[RFC2119]

each installer generates a private key and provides the

corresponding public key, so that only possessors of the private

key can modify or delete the registry entry;

confirmation by a human, prominently warned of potential

consequences, if the installation is not mediated through a

trusted authority.

8. IANA Considerations

This document has no IANA requirements.

9. Informative References

Pauly, T., Trammell, B., Brunstrom, A.,

Fairhurst, G., Perkins, C., Tiesel, P., and C. Wood, "An

Architecture for Transport Services", Work in Progress,

Internet-Draft, draft-ietf-taps-arch-09, 2 November 2020,

<http://www.ietf.org/internet-drafts/draft-ietf-taps-

arch-09.txt>.

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,

Kuehlewind, M., Perkins, C., Tiesel, P., Wood, C., and T.

Pauly, "An Abstract Application Layer Interface to

Transport Services", Work in Progress, Internet-Draft,

draft-ietf-taps-interface-10, 2 November 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-taps-

interface-10.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Appendix A. Acknowledgments

Tim Worsley contributed important ideas to this document.

Author's Address

Martin Duke

F5 Networks, Inc.

Email: martin.h.duke@gmail.com

*

¶

*

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-ietf-taps-arch-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-arch-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-10.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
mailto:martin.h.duke@gmail.com

	TAPS Transport Discovery
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Entities
	4. Protocol Implementation
	5. Protocol Installer
	6. TAPS
	7. Security Considerations
	8. IANA Considerations
	9. Informative References
	Appendix A. Acknowledgments
	Author's Address

