
Workgroup: Network Working Group

Internet-Draft: draft-dunglas-mercure-05

Published: 3 April 2020

Intended Status: Informational

Expires: 5 October 2020

Authors: K. Dunglas

Les-Tilleuls.coop

The Mercure Protocol

Abstract

Mercure is a protocol enabling the pushing of data updates to web

browsers and other HTTP clients in a fast, reliable and battery-

efficient way. It is especially useful for publishing real-time

updates of resources served through web APIs to reactive web and

mobile apps.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 October 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Terminology

2. Discovery

3. Subscription

4. Publication

5. Authorization

5.1. Publishers

5.2. Subscribers

6. Reconnection and State Reconciliation

7. Subscription Events

8. Encryption

9. IANA Considerations

9.1. Well-Known URIs Registry

9.2. Link Relation Types Registry

10. Security Considerations

11. Normative References

12. Informative References

Author's Address

1. Terminology

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this

document, are to be interpreted as described in [RFC2119].

Topic: The unit to which one can subscribe to changes. The topic

MUST be identified by an IRI [RFC3987] or by a string. Using an

HTTPS [RFC7230] or HTTP [RFC7230] URI [RFC3986] is RECOMMENDED.

Publisher: An owner of a topic. Notifies the hub when the topic

feed has been updated. As in almost all pubsub systems, the

publisher is unaware of the subscribers, if any. Other pubsub

systems might call the publisher the "source". Typically a

website or a web API, but can also be a web browser.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Subscriber: A client application that subscribes to real-time

updates of topics. Typically a Progressive Web App or a Mobile

App, but can also be a server.

Target: A subscriber, or a group of subscribers. A publisher is

able to securely dispatch updates to specific targets. The target

MUST be identified by an IRI [!@RFC3987] or by a string. Using an

HTTPS [RFC7230] or HTTP [RFC7230] URI is RECOMMENDED.

Hub: A server that handles subscription requests and distributes

the content to subscribers when the corresponding topics have

been updated. Any hub MAY implement its own policies on who can

use it.

2. Discovery

The URL of the hub SHOULD should be the "well-known" [RFC5785] fixed

path /.well-known/mercure.

If the publisher is a server, it SHOULD advertise the URL of one or

more hubs to the subscriber, allowing it to receive live updates

when topics are updated. If more than one hub URL is specified, it

is RECOMMENDED that the publisher notifies each hub, so the

subscriber MAY subscribe to one or more of them.

The publisher SHOULD include at least one Link Header [RFC5988] with

rel=mercure (a hub link header). The target URL of these links MUST

be a hub implementing the Mercure protocol.

The publisher MAY provide the following target attributes in the

Link Headers:

last-event-id: the globally unique identifier of the last event

dispatched by the publisher at the time of the generation of this

resource. If provided, it MUST be passed to the hub through a

query parameter called Last-Event-ID and will be used to ensure

that possible updates having been made during between the

resource generation time and the connection to the hub are not

lost. See section #Re-Connection-and-State-Reconciliation. If

this attribute is provided, the publisher MUST always set the id

parameter when sending updates to the hub.

content-type: the content type of the updates that will pushed by

the hub. If omitted, the subscriber MUST assume that the content

type will be the same as that of the original resource. Setting

the content-type attribute is especially useful to hint that

partial updates will be pushed, using formats such as JSON Patch

[RFC6902] or JSON Merge Patch [RFC7386].

*

¶

*

¶

*

¶

¶

¶

¶

¶

*

¶

*

¶

key-set=<JWKS>: the key(s) to decrypt updates encoded in the JWKS

(JSON Web Key Set) format (see the Encryption section).

All these attributes are optional.

The publisher MAY also include one Link Header [RFC5988] with

rel=self (the self link header). It SHOULD contain the canonical URL

for the topic to which subscribers are expected to use for

subscriptions. If the Link with rel=self is omitted, the current URL

of the resource MUST be used as a fallback.

Minimal example:

GET /books/foo.jsonld HTTP/1.1

Host: example.com

HTTP/1.1 200 Ok

Content-type: application/ld+json

Link: <https://example.com/.well-known/mercure>; rel="mercure"

{"@id": "/books/foo.jsonld", "foo": "bar"}

Links embedded in HTML or XML documents (as defined in the WebSub

recommendation) MAY also be supported by subscribers.

Note: the discovery mechanism described in this section is strongly

inspired from the one specified in the WebSub recommendation.

3. Subscription

The subscriber subscribes to a URL exposed by a hub to receive

updates from one or many topics. To subscribe to updates, the client

opens an HTTPS connection following the Server-Sent Events

specification to the hub's subscription URL advertised by the

publisher. The GET HTTP method must be used. The connection SHOULD

use HTTP/2 to leverage mutliplexing and other advanced features of

this protocol.

The subscriber specifies the list of topics to get updates from by

using one or several query parameters named topic. The value of

these query parameters MUST be URI templates [RFC6570].

Note: a URL is also a valid URI template.

The protocol doesn't specify the maximum number of topic parameters

that can be sent, but the hub MAY apply an arbitrary limit.

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.w3.org/TR/websub/#discovery
https://www.w3.org/TR/websub/#discovery
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://html.spec.whatwg.org/multipage/server-sent-events.html

The EventSource JavaScript interface MAY be used to establish the

connection. Any other appropriate mechanism including, but not

limited to, readable streams and XMLHttpRequest (used by popular

polyfills) MAY also be used.

The hub sends updates concerning all subscribed resources matching

the provided URI templates and the provided targets (see section

#Authorization). If no targets are specified, the update is

dispatched to all subscribers. The hub MUST send these updates as

text/event-stream compliant events.

The data property MUST contain the new version of the topic. It can

be the full resource, or a partial update by using formats such as

JSON Patch @RFC6902 or JSON Merge Patch @RFC7386.

All other properties defined in the Server-Sent Events specification

MAY be used and SHOULD be supported by hubs.

The resource SHOULD be represented in a format with hypermedia

capabilities such as JSON-LD [W3C.REC-json-ld-20140116], Atom

[RFC4287], XML [W3C.REC-xml-20081126] or HTML [W3C.REC-

html52-20171214].

Web Linking [RFC5988] SHOULD be used to indicate the IRI of the

resource sent in the event. When using Atom, XML or HTML as the

serialization format for the resource, the document SHOULD contain a

link element with a self relation containing the IRI of the

resource. When using JSON-LD, the document SHOULD contain an @id

property containing the IRI of the resource.

Example:

// The subscriber subscribes to updates

// for the https://example.com/foo topic

// and to any topic matching https://example.com/books/{name}

const url = new URL('https://example.com/.well-known/mercure');

url.searchParams.append('topic', 'https://example.com/foo');

url.searchParams.append('topic', 'https://example.com/bar/{id}');

const eventSource = new EventSource(url);

// The callback will be called every time an update is published

eventSource.onmessage = function ({data}) {

 console.log(data);

};

The hub MAY require that subscribers are authorized to receive

updates.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://html.spec.whatwg.org/multipage/server-sent-events.html#the-eventsource-interface
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API/Using_readable_streams
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest
https://html.spec.whatwg.org/multipage/server-sent-events.html#sse-processing-model

4. Publication

The publisher send updates by issuing POST HTTPS requests on the hub

URL. When it receives an update, the hub dispatches it to

subscribers using the established server-sent events connections.

An application CAN send events directly to subscribers without using

an external hub server, if it is able to do so. In this case, it MAY

NOT implement the endpoint to publish updates.

The request MUST be encoded using the application/x-www-form-

urlencoded format and contain the following data:

topic: IRIs of the updated topic. If this key is present several

times, the first occurrence is considered to be the canonical URL

of the topic, and other ones are considered to be alternate URLs.

The hub MUST dispatch this update to subscribers that are

subscribed to both canonical or alternate URLs.

data: the content of the new version of this topic.

target (optional): target audience of this update. This key can

be present several times. See section #Authorization for further

information.

id (optional): the topic's revision identifier: it will be used

as the SSE's id property. If omitted, the hub MUST generate a

valid globally unique id. It MAY be a UUID [RFC4122]. Even if

provided, the hub MAY ignore the id provided by the client and

generate its own id.

type (optional): the SSE's event property (a specific event

type).

retry (optional): the SSE's retry property (the reconnection

time).

In the event of success, the HTTP response's body MUST be the id

associated to this update generated by the hub and a success HTTP

status code MUST be returned. The publisher MUST be authorized to

publish updates. See section #Authorization.

5. Authorization

To ensure that they are authorized, both publishers and subscribers

must present a valid JWS [RFC7515] in compact serialization to the

hub. This JWS SHOULD be short-lived, especially if the subscriber is

a web browser. A different key MAY be used to sign subscribers' and

publishers' tokens.

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

¶

¶

Two mechanisms are defined to present the JWS to the hub:

using an Authorization HTTP header

using a cookie

If the publisher or the subscriber is not a web browser, it SHOULD

use an Authorization HTTP header. This Authorization header MUST

contain the string Bearer followed by the JWS. The hub will check

that the JWS conforms to the rules (defined later) ensuring that the

client is authorized to publish or subscribe to updates.

By the EventSource specification, web browsers can not set custom

HTTP headers for such connections, and they can only be estabilished

using the GET HTTP method. However, cookies are supported and can be

included even in cross-domain requests if the CORS credentials are

set:

If the publisher or the subscriber is a web browser, it SHOULD send

a cookie called mercureAuthorization containing the JWS when

connecting to the hub.

Whenever possible, the mercureAuthorization cookie SHOULD be set

during the discovery to improve the overall security. See section

#Discovery. Consequently, if the cookie is set during the discovery,

both the publisher and the hub have to share the same second level

domain. The Domain attribute MAY be used to allow the publisher and

the hub to use different subdomains.

The cookie SHOULD have the Secure, HttpOnly and SameSite attributes

set. The cookie's Path attribute SHOULD also be set to the hub's

URL. See section #Security-Considerations.

When using authorization mechanisms, the connection MUST use an

encryption layer such as HTTPS.

If both an Authorization HTTP header and a cookie named

mercureAuthorization are presented by the client, the cookie MUST be

ignored. If the client tries to execute an operation it is not

allowed to, a 403 HTTP status code SHOULD be returned.

5.1. Publishers

Publishers MUST be authorized to dispatch updates to the hub, and

MUST prove that they are allowed to send updates.

To be allowed to publish an update, the JWT presented by the

publisher MUST contain a claim called mercure, and this claim MUST

contain a publish key. mercure.publish MUST contain an array of

targets the publisher is allowed to dispatch updates to.

¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://html.spec.whatwg.org/multipage/server-sent-events.html#dom-eventsourceinit-withcredentials
https://html.spec.whatwg.org/multipage/server-sent-events.html#dom-eventsourceinit-withcredentials

If mercure.publish:

is not defined, then the publisher MUST NOT be authorized to

dispatch any update

contains an empty array, then the publisher is only allowed to

dispatch public updates

contains the reserved string * as an array value, then the

publisher is authorized to dispatch updates to all targets

If a topic is not public, the POST request sent by the publisher to

the hub MUST contain a list of keys named target. Their values MUST

be of type string, and it is RECOMMENDED to use valid IRIs. They can

be, for instance, a user ID or a list of group IDs. If an update

contains at least one target the publisher is not authorized for,

the hub MUST NOT dispatch the update (even if some targets in the

list are allowed) and SHOULD return a 403 HTTP status code.

5.2. Subscribers

Subscribers MAY need to be authorized to connect to the hub. To

receive updates destined to specific targets, they MUST be

authorized, and MUST prove they belong to at least one of the

specified targets. If the subscriber is not authorized, it MUST NOT

receive any update having at least one target.

To receive updates destined for specific targets, the JWS presented

by the subscriber MUST have a claim named mercure with a key named

subscribe that contains an array of strings: a list of targets the

user is authorized to receive updates for. The targets SHOULD be

IRIs.

If at least one target is specified, the update MUST NOT be sent to

the subscriber by the hub, unless the mercure.subscribe array of the

JWS presented by the subscriber contains at least one of the

specified targets.

If the mercure.subscribe array contains the reserved string value *,

then the subscriber is authorized to receive updates destined for

all targets.

6. Reconnection and State Reconciliation

To allow re-establishment in case of connection lost, events

dispatched by the hub SHOULD include an id property. The value

contained in this id property SHOULD be a globally unique

identifier. To do so, a UUID [RFC4122] MAY be used.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

According to the server-sent events specification, in case of

connection lost the subscriber will try to automatically re-connect.

During the re-connection, the subscriber MUST send the last received

event id in a Last-Event-ID HTTP header.

The server-sent events specification doesn't allow this HTTP header

to be set during the first connection (before a reconnection). In

order to fetch any update dispatched between the initial resource

generation by the publisher and the connection to the hub, the

subscriber MUST send the event id provided during the discovery in

the last-event-id link's attribute in a query parameter named Last-

Event-ID when connecting to the hub.

If both the Last-Event-ID HTTP header and the query parameter are

present, the HTTP header MUST take precedence.

If the Last-Event-ID HTTP header or query parameter exists, the hub

SHOULD send all events published following the one bearing this

identifier to the subscriber.

The hub MAY discard some messages for operational reasons. The

subscriber MUST NOT assume that no update will be lost, and MUST re-

fetch the original topic to ensure this (for instance, after a long

disconnection time).

The hub MAY also specify the reconnection time using the retry key,

as specified in the server-sent events format.

7. Subscription Events

The hub MAY publish an update when a subscription to a topic is

created or terminated. If this feature is implemented by the hub, an

update MUST be dispatched every time that a subscription is created

or terminated, and for each topic to which the client subscribes.

The topic of this update MUST follow the pattern https://

mercure.rocks/subscriptions/{topic}/{subscriptionID} where topic is

the URL-encoded value of the subscribed topic and subscriptionID is

an unique identifier for this subscription. subscriptionID MAY be a

UUID [RFC4122].

The content of the update MUST be a JSON-LD [W3C.REC-json-

ld-20140116] document containing at least the following properties:

@id: the identifier of this update, it MUST be the same value as

the subscription update's topic

@type: the fixed value https://mercure.rocks/Subscription

topic: the topic to which the subscription refers

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

* ¶

https://html.spec.whatwg.org/multipage/iana.html#last-event-id

active: true when the subscription is created, and false when it

is terminated

subscribe: the subscription targets provided by the subscriber

(see section #Authorization)

publish: the publication targets provided by the subscriber (see

section #Authorization)

address (optional): the IP address ([RFC0791], [RFC8200]) of the

subscriber

The JSON-LD document MAY contain other properties.

In order to only allow authorized subscribers to receive

subscription events, the subscription update MUST be marked as

intended for subscribers providing the following targets:

the fixed value https://mercure.rocks/targets/subscriptions

a URL following the pattern https://mercure.rocks/targets/

subscriptions/{topic} where topic is the URL-encoded value of the

subscribed topic

8. Encryption

Using HTTPS does not prevent the hub from accessing the update's

content. Depending of the intended privacy of information contained

in the update, it MAY be necessary to prevent eavesdropping by the

hub.

To make sure that the message content can not be read by the hub,

the publisher MAY encode the message before sending it to the hub.

The publisher SHOULD use JSON Web Encryption [RFC7516] to encrypt

the update content. The publisher MAY provide the relevant

encryption key(s) in the key-set attribute of the Link HTTP header

during the discovery. The key-set attribute SHOULD contain a key

encoded using the JSON Web Key Set [RFC7517] format. Any other out-

of-band mechanism MAY be used instead to share the key between the

publisher and the subscriber.

Update encryption is considered a best practice to prevent mass

surveillance. This is especially relevant if the hub is managed by

an external provider.

*

¶

*

¶

*

¶

*

¶

¶

¶

* ¶

*

¶

¶

¶

¶

9. IANA Considerations

9.1. Well-Known URIs Registry

A new "well-known" URI as described in Section 2 has been registered

in the "Well-Known URIs" registry as described below:

URI Suffix: mercure

Change Controller: IETF

Specification document(s): This specification, Section 2

Related information: N/A

9.2. Link Relation Types Registry

A new "Link Relation Type" as described in Section 2 has been

registered in the "Link Relation Type" registry with the following

entry:

Relation Name: mercure

Description: The Mercure Hub to use to subscribe to updates of

this resource.

Reference: This specification, Section 2

Note: this relation type has not been registered yet. In the

meantime, the relation type https://git.io/mercure MAY be used

instead.

10. Security Considerations

The confidentiality of the secret key(s) used to generate the JWTs

is a primary concern. The secret key(s) MUST be stored securely.

They MUST be revoked immediately in the event of compromission.

Possessing valid JWTs allows any client to subscribe, or to publish

to the hub. Their confidentiality MUST therefore be ensured. To do

so, JWTs MUST only be transmitted over secure connections.

Also, when the client is a web browser, the JWT SHOULD not be made

accessible to JavaScript scripts for resilience against Cross-site

Scription (XSS) attacks). It's the main reason why, when the client

is a web browser, using HttpOnly cookies as the authorization

mechanism SHOULD always be preferred.

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

*

¶

* ¶

¶

¶

¶

¶

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS

[RFC7516]

[RFC7517]

[RFC3987]

[RFC8200]

[RFC3986]

[W3C.REC-json-ld-20140116]

In the event of compromission, revoking JWTs before their expiration

is often difficult. To that end, using short-lived tokens is

strongly RECOMMENDED.

The publish endpoint of the hub may be targeted by Cross-Site

Request Forgery (CSRF) attacks) when the cookie-based authorization

mechanism is used. Therefore, implementations supporting this

mechanism MUST mitigate such attacks.

The first prevention method to implement is to set the

mercureAuthorization cookie's SameSite attribute. However, some web

browsers still not support this attribute and will remain

vulnerable. Additionally, hub implementations SHOULD use the Origin

and Referer HTTP headers set by web browsers to verify that the

source origin matches the target origin. If none of these headers

are available, the hub SHOULD discard the request.

CSRF prevention techniques, including those previously mentioned,

are described in depth in OWASP's Cross-Site Request Forgery (CSRF)

Prevention Cheat SheetPreventionCheat_Sheet).

11. Normative References

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://

www.rfc-editor.org/info/rfc7516>.

Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/

RFC7517, May 2015, <https://www.rfc-editor.org/info/

rfc7517>.

Duerst, M. and M. Suignard, "Internationalized Resource

Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,

January 2005, <https://www.rfc-editor.org/info/rfc3987>.

Deering, S. and R. Hinden, "Internet Protocol, Version 6

(IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/

RFC8200, July 2017, <https://www.rfc-editor.org/info/

rfc8200>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Sporny, M., Kellogg, G., and M.

Lanthaler, "JSON-LD 1.0", World Wide Web Consortium

Recommendation REC-json-ld-20140116, 16 January 2014,

<http://www.w3.org/TR/2014/REC-json-ld-20140116>.

¶

¶

¶

¶

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF
https://caniuse.com/#feat=same-site-cookie-attribute
https://caniuse.com/#feat=same-site-cookie-attribute
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
http://www.w3.org/TR/2014/REC-json-ld-20140116

[RFC7515]

[RFC0791]

[RFC2119]

[RFC7230]

[RFC5785]

[RFC5988]

[RFC6570]

[RFC6902]

[RFC7386]

[RFC4287]

[W3C.REC-html52-20171214]

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known

Uniform Resource Identifiers (URIs)", RFC 5785, DOI

10.17487/RFC5785, April 2010, <https://www.rfc-

editor.org/info/rfc5785>.

Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/

RFC5988, October 2010, <https://www.rfc-editor.org/info/

rfc5988>.

Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/

RFC6570, March 2012, <https://www.rfc-editor.org/info/

rfc6570>.

12. Informative References

Bryan, P., Ed. and M. Nottingham, Ed., "JavaScript Object

Notation (JSON) Patch", RFC 6902, DOI 10.17487/RFC6902,

April 2013, <https://www.rfc-editor.org/info/rfc6902>.

Hoffman, P. and J. Snell, "JSON Merge Patch", RFC 7386,

DOI 10.17487/RFC7386, October 2014, <https://www.rfc-

editor.org/info/rfc7386>.

Nottingham, M., Ed. and R. Sayre, Ed., "The Atom

Syndication Format", RFC 4287, DOI 10.17487/RFC4287,

December 2005, <https://www.rfc-editor.org/info/rfc4287>.

Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium Recommendation REC-html52-20171214, 14

https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc5988
https://www.rfc-editor.org/info/rfc5988
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6902
https://www.rfc-editor.org/info/rfc7386
https://www.rfc-editor.org/info/rfc7386
https://www.rfc-editor.org/info/rfc4287

[RFC4122]

[W3C.REC-xml-20081126]

December 2017, <https://www.w3.org/TR/2017/REC-

html52-20171214>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Bray, T., Paoli, J., Sperberg-McQueen, M.,

Maler, E., and F. Yergeau, "Extensible Markup Language

(XML) 1.0 (Fifth Edition)", World Wide Web Consortium

Recommendation REC-xml-20081126, 26 November 2008,

<http://www.w3.org/TR/2008/REC-xml-20081126>.

Author's Address

Kévin Dunglas

Les-Tilleuls.coop

82 rue Winston Churchill

59160 Lille

France

Email: kevin@les-tilleuls.coop

https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2017/REC-html52-20171214
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
http://www.w3.org/TR/2008/REC-xml-20081126
mailto:kevin@les-tilleuls.coop

	The Mercure Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Terminology
	2. Discovery
	3. Subscription
	4. Publication
	5. Authorization
	5.1. Publishers
	5.2. Subscribers

	6. Reconnection and State Reconciliation
	7. Subscription Events
	8. Encryption
	9. IANA Considerations
	9.1. Well-Known URIs Registry
	9.2. Link Relation Types Registry

	10. Security Considerations
	11. Normative References
	12. Informative References
	Author's Address

