
Workgroup: Network Working Group

Internet-Draft: draft-dunglas-vulcain-00

Published: 3 April 2020

Intended Status: Informational

Expires: 5 October 2020

Authors: K. Dunglas

Les-Tilleuls.coop

The Vulcain Protocol

Abstract

This specification defines new HTTP headers (and query parameters)

allowing a client to inform the server of the exact data it needs:

Preload informs the server that relations of the main requested

resource will be necessary. The server can then reduce the number

of round-trips by sending the related resources ahead of time

using HTTP/2 [RFC7540] Server Push. When using Server Push isn't

possible (resources served by a different authority, server not

supporting HTTP/2...), the server can hint the client to fetch

those resources as early as possible by using the preload link

relation [W3C.CR-preload-20171026] and the 103 status code

[RFC8297].

Fields informs the server of the list of fields of the retrieved

resources that will be used. In order to improve performance and

reduce bandwidth usage, the server can omit the fields not

requested.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 October 2020.

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Terminology

2. Preload Header

2.1. Using Preload Link Relations

3. Fields Header

4. Selectors

4.1. Extended JSON Pointer

5. Query Parameters

6. Computing Links Server-Side

7. Security Considerations

8. IANA considerations

9. Normative References

10. Informative References

Author's Address

1. Terminology

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this

document, are to be interpreted as described in [RFC2119].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

2. Preload Header

Many formats including HTML [W3C.REC-html52-20171214], JSON-LD

[W3C.REC-json-ld-20140116], Atom [RFC4287], XML [W3C.REC-

xml-20081126], HAL and JSON:API allow the use of Web Linking

[RFC5988] to represent references between resources.

The Preload HTTP header allows the client to ask the server to

transmit resources linked to the main resource it will need as soon

as possible. To do so, the Preload header MUST contain a selector

[#selectors] referencing links to resources that SHOULD be

preloaded.

The server MUST recursively follow links referenced by the selector.

When a selector traverses several resources, all the traversed

resources SHOULD be sent to the client. If several links referencing

the same resource are selected, this resource MUST be sent at most

once.

The server MAY limit the number resources that it sends in response

to one request.

Multiple selectors can be sent by passing multiple Preload HTTP

headers.

Considering the following resources:

/books

{

 "member": [

 "/books/1",

 "/books/2"

]

}

/books/1

{

 "title": "1984",

 "author": "/authors/1"

}

/books/2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-kelly-json-hal-08
https://jsonapi.org/

{

 "title": "Homage to Catalonia",

 "author": "/authors/1"

}

/authors/1

{

 "givenName": "George",

 "familyName": "Orwell"

}

The Preload HTTP header can be used to ask the server to immediately

push resources related to the requested one:

GET /books/ HTTP/2

Preload: /member/*/author

In addition to /books, the server SHOULD use HTTP/2 Server Push to

push the /books/1, /books/2 and /authors/1 resources. While it is

referenced twice, /authors/1 MUST be pushed only once.

Server Push requests generated by the server for related resources

MUST include the remaining selector in a Preload HTTP header. When

requesting a pushed relation, the client MUST compute the remaining

selector and pass it in the Preload header.

Example:

Explicit Request:

GET /books/ HTTP/2

Preload: /member/*/author

Request to a relation generated by the server (for the push) and the

client:

GET /books/1 HTTP/2

Preload: /author

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.1. Using Preload Link Relations

If it's not possible or beneficial to use HTTP/2 Server Push

(reference to a resource not served by the same authority, client or

server not supporting HTTP/2, client having disabled Server

Push...), preload link relations [W3C.CR-preload-20171026] SHOULD be

used as a fallback.

The server MUST NOT add preload link relations if the related

resources are pushed using HTTP/2 Server Push.

3. Fields Header

The Fields HTTP header allows the client to ask the server to return

only the specified fields of the requested resource, and of the

preloaded related resources.

The Fields HTTP header MUST contain a selector (see #Selector). The

server SHOULD return only the fields matching this selector.

Multiple Fields HTTP headers can be passed. All fields matching at

least one of these headers MUST be returned. Other fields of the

resource MAY be omitted.

Considering the following resources:

/books/1

{

 "title": "1984",

 "genre": "novel",

 "author": "/authors/1"

}

/authors/1

{

 "givenName": "George",

 "familyName": "Orwell"

}

And the following HTTP request:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

GET /books/1 HTTP/2

Preload: /author

Fields: /author/familyName

Fields: /genre

The server must return a response containing the following JSON

document:

{

 "genre": "novel",

 "author": "/authors/1"

}

And push the following filtered /authors/1 resource:

{

 "familyName": "Orwell"

}

Server Push requests generated by the server for related resources

MUST include the remaining selector in a Fields HTTP header. When

requesting a pushed relation, the client MUST compute the remaining

selector and pass it in the Fields header.

Example:

Explicit Request:

GET /books/ HTTP/2

Fields: /member/*/author

Request to a relation generated by the server (for the push) and the

client:

GET /books/1 HTTP/2

Fields: /author

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Selectors

Selectors used as value of the Preload and Fields HTTP headers

depend on the Content-Type of the requested resource. This

specification defines default selector formats for common content-

types, and a mechanism to use other selector formats.

The client SHOULD use the Accept HTTP header to request the resource

in a format compatible with selectors used in Preload and Fields

HTTP headers.

The client can use the Prefer HTTP header [RFC7240] with the

selector preference to ask the server to use a specific selector

format:

GET /books/1 HTTP/2

Accept: text/xml

Prefer: selector=css

Fields: brand > name

If no explicit preferences have been passed, the server MUST assume

that the selector format is the default corresponding to the format

of the resource.

The following table defines the default selector format for common

formats:

Format Selector format Identifier

JSON Extended JSON Pointer Section 4.1 json-pointer

XML XPath [W3C.REC-xpath-19991116] xpath

HTML CSS selectors [W3C.REC-selectors-3-20181106] css

Table 1

The client and the server can negotiate the use of other selector

formats using the Prefer HTTP header.

4.1. Extended JSON Pointer

For JSON documents, the default selector format is JSON Pointer

[RFC6901]. However, JSON Pointer doesn't provide a mechanism to

select entire collections.

This specification defines an extension to the JSON Pointer format

allowing to select every element of a collection, the * character.

Considering the following JSON document:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "books": [

 {

 "title": "1984",

 "author": "George Orwell"

 },

 {

 "title": "The Handmaid's Tale",

 "author": "Margaret Atwood"

 }

]

}

The /books/*/author JSON Pointer selects the author field of every

objects in the books array.

The * character is escaped by encoding it as the ~2 character

sequence.

By design, this selector is simple and limited. Simple selectors

make it easier to limit the complexity of requests executed by the

server.

5. Query Parameters

Another option available to clients is to utilize Request URI query-

string parameters to pass preload and fields selectors. The preload

and query parameters MAY be used to pass selectors corresponding

respectively to the Preload and Fields HTTP headers. To pass

multiple selectors, parameters can be passed multiple times.

Example: /books/1?fields=/title&fields=/author&preload=/author

When using query parameters, the server MUST pass the remaining part

of the selector as parameter of the generated link.

Example:

GET /books/?preload=/member/*/author HTTP/2

{

 "member": {

 "/books/1?preload=/author",

 "/books/1?preload=/author"

 }

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

As altering the URI can have undesirable effects, using HTTP headers

SHOULD be preferred. Support for query parameters is OPTIONAL. A

server supporting query parameters MUST also support the

corresponding HTTP headers.

6. Computing Links Server-Side

While using hypermedia capabilities of the HTTP protocol through Web

Linking SHOULD always be preferred, sometimes links between

resources are known by the server but are not provided in the HTTP

response.

In such cases, the server can compute the link server-side in order

to push the related resource. Such server-side computed links MAY be

documented, for instance by providing an OpenAPI specification

containing Link objects.

Considering the following resources and assuming that the server

knows that the author field references the resources /authors/{id}

resource:

/books/1

{

 "title": "1984",

 "author": 1

}

/authors/1

{

 "givenName": "George",

 "familyName": "Orwell"

}

In response to this request , both /books/1 and /authors/1 should be

pushed:

GET /books/1 HTTP/2

Preload: /author

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.openapis.org/
http://spec.openapis.org/oas/v3.0.2#link-object

[RFC8297]

[RFC5988]

[W3C.REC-selectors-3-20181106]

[RFC3864]

[W3C.CR-preload-20171026]

[RFC2119]

[W3C.REC-xpath-19991116]

7. Security Considerations

Using the Preload header can lead to a large number of resources to

be generated and pushed. The server SHOULD limit the maximum number

of resources to push. The depth of the selector SHOULD also be

limited by the server.

8. IANA considerations

The Preloadand Fields header fields will be added to the "Permanent

Message Header Field Names" registry defined in [RFC3864].

A selector registry could also be added.

9. Normative References

Oku, K., "An HTTP Status Code for Indicating Hints", RFC

8297, DOI 10.17487/RFC8297, December 2017, <https://

www.rfc-editor.org/info/rfc8297>.

Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/

RFC5988, October 2010, <https://www.rfc-editor.org/info/

rfc5988>.

Ã elik, T., Etemad, E., Glazman, D., Hickson, I., Linss,

P., and J. Williams, "Selectors Level 3", World Wide Web

Consortium Recommendation REC-selectors-3-20181106, 6

November 2018, <https://www.w3.org/TR/2018/REC-

selectors-3-20181106>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Grigorik, I. and Y. Weiss, "Preload",

World Wide Web Consortium CR CR-preload-20171026, 26

October 2017, <https://www.w3.org/TR/2017/CR-

preload-20171026>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Clark, J. and S. DeRose, "XML Path Language

(XPath) Version 1.0", World Wide Web Consortium

Recommendation REC-xpath-19991116, 16 November 1999,

<http://www.w3.org/TR/1999/REC-xpath-19991116>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc8297
https://www.rfc-editor.org/info/rfc8297
https://www.rfc-editor.org/info/rfc5988
https://www.rfc-editor.org/info/rfc5988
https://www.w3.org/TR/2018/REC-selectors-3-20181106
https://www.w3.org/TR/2018/REC-selectors-3-20181106
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.w3.org/TR/2017/CR-preload-20171026
https://www.w3.org/TR/2017/CR-preload-20171026
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
http://www.w3.org/TR/1999/REC-xpath-19991116

[RFC7540]

[RFC7240]

[RFC6901]

[W3C.REC-html52-20171214]

[W3C.REC-json-ld-20140116]

[W3C.REC-xml-20081126]

[RFC4287]

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Snell, J., "Prefer Header for HTTP", RFC 7240, DOI

10.17487/RFC7240, June 2014, <https://www.rfc-editor.org/

info/rfc7240>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

10. Informative References

Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium Recommendation REC-html52-20171214, 14

December 2017, <https://www.w3.org/TR/2017/REC-

html52-20171214>.

Sporny, M., Kellogg, G., and M.

Lanthaler, "JSON-LD 1.0", World Wide Web Consortium

Recommendation REC-json-ld-20140116, 16 January 2014,

<http://www.w3.org/TR/2014/REC-json-ld-20140116>.

Bray, T., Paoli, J., Sperberg-McQueen, M.,

Maler, E., and F. Yergeau, "Extensible Markup Language

(XML) 1.0 (Fifth Edition)", World Wide Web Consortium

Recommendation REC-xml-20081126, 26 November 2008,

<http://www.w3.org/TR/2008/REC-xml-20081126>.

Nottingham, M., Ed. and R. Sayre, Ed., "The Atom

Syndication Format", RFC 4287, DOI 10.17487/RFC4287,

December 2005, <https://www.rfc-editor.org/info/rfc4287>.

Author's Address

Kévin Dunglas

Les-Tilleuls.coop

2 rue Hegel

59000 Lille

France

Email: kevin@les-tilleuls.coop

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7240
https://www.rfc-editor.org/info/rfc7240
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.w3.org/TR/2017/REC-html52-20171214
https://www.w3.org/TR/2017/REC-html52-20171214
http://www.w3.org/TR/2014/REC-json-ld-20140116
http://www.w3.org/TR/2008/REC-xml-20081126
https://www.rfc-editor.org/info/rfc4287
mailto:kevin@les-tilleuls.coop

	The Vulcain Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Terminology
	2. Preload Header
	2.1. Using Preload Link Relations

	3. Fields Header
	4. Selectors
	4.1. Extended JSON Pointer

	5. Query Parameters
	6. Computing Links Server-Side
	7. Security Considerations
	8. IANA considerations
	9. Normative References
	10. Informative References
	Author's Address

