
Workgroup: Network Working Group

Internet-Draft: draft-dunglas-vulcain-01

Published: September 12, 2020

Intended Status: Standards Track

Expires: March 16, 2021

Authors: K. Dunglas

Les-Tilleuls.coop

The Vulcain Protocol

Abstract

This specification defines new HTTP headers (and query parameters)

allowing a client to inform the server of the exact data it needs:

Preload informs the server that relations of the main requested

resource will be necessary. The server can then reduce the number

of round-trips by sending the related resources ahead of time

using HTTP/2 [RFC7540] Server Push. When using Server Push isn't

possible (resources served by a different authority, client or

server not supporting HTTP/2...), the server can hint the client

to fetch those resources as early as possible by using the

preload link relation [W3C.CR-preload-20190626] and the 103

status code [RFC8297].

Fields informs the server of the list of fields of the retrieved

resources that will be used. In order to improve performance and

reduce bandwidth usage, the server can omit the fields not

requested.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 16, 2021.

¶

*

¶

*

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Terminology

2. Preload Header

2.1. Preload Example

2.2. Using Preload Link Relations

3. Fields Header

3.1. Fields Example

4. Selectors

4.1. Extended JSON Pointer

5. Query Parameters

6. Computing Links Server-Side

7. Security Considerations

8. IANA considerations

9. Implementation Status

9.1. Vulcain Gateway Server

9.2. Helix Vulcain Filters

10. Acknowledgements

11. Normative References

12. Informative References

Author's Address

1. Terminology

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this

document, are to be interpreted as described in [RFC2119].

2. Preload Header

Many formats including HTML [W3C.REC-html52-20171214], JSON-LD

[W3C.REC-json-ld-20140116], Atom [RFC4287], XML [W3C.REC-

xml-20081126], HAL and JSON:API allow the use of Web Linking

[RFC5988] to represent references between resources.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://jsonapi.org/

The Preload HTTP header allows the client to ask the server to

transmit resources linked to the main resource it will need as soon

as possible.

Preload is a List Structured Header [I-D.ietf-httpbis-header-

structure]. Its values MUST be Strings (Section 3.3.3 of [I-D.ietf-

httpbis-header-structure]). Its ABNF is:

Preload = sf-list

sf-item = sf-string

Its values are selectors Section 4 matching links to resources that

SHOULD be preloaded. If a value is an empty String, then all links

of the current documents are matched.

The server MUST recursively follow links matched by the selector.

When a selector traverses several resources, all the traversed

resources SHOULD be sent to the client. If several links referencing

the same resource are selected, this resource MUST be sent at most

once.

The server MAY limit the number resources that it sends in response

to one request.

Example:

Preload: "/member/*/author", "/member/*/comments"

The following optional parameters are defined:

A Parameter whose name is rel, and whose value is a String

(Section 3.3.3 of [I-D.ietf-httpbis-header-structure]) or a Token

(Section 3.3.4 of [I-D.ietf-httpbis-header-structure]), conveying

the expected relation type of the selected links.

A Parameter whose name is hreflang, and whose value is a String

(Section 3.3.3 of [I-D.ietf-httpbis-header-structure]), conveying

the expected language of the selected links.

A Parameter whose name is type, and whose value is a String

(Section 3.3.3 of [I-D.ietf-httpbis-header-structure]), conveying

the expected media type of the selected links.

The rel parameter contains a relation type as defined in [RFC5988].

If this parameter is provided, the server SHOULD preload only

relations matched by the provided selector and having this type.

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

The hreflang parameter contains a language as defined in [RFC5988].

If this parameter is provided, the server SHOULD preload only

relations matched by the provided selector and in this language.

When possible (for instance, when doing a HTTP/2 Server Push), the

server SHOULD set the Accept-Language request header to this value.

If the hreflang parameter isn't provided but the server is able to

guess the expected language of the relation using other mechanisms

(such as the hreflang attribute defined by the Atom format for the

atom:link element, [RFC4287] Section 4.2.7.4), then the Accept-

Language request header SHOULD be set to the guessed value.

The type parameter contains a media type as defined in [RFC5988]. If

this parameter is provided, the server SHOULD preload only relations

matched by the provided selector and having this media type. When

possible (for instance, when doing a HTTP/2 Server Push), the server

SHOULD set the Accept request header to this value. If the type

parameter isn't provided but the server is able to guess the

expected media type of the relation using other mechanisms (such as

the type attribute defined by the Atom format for the atom:link

element, [RFC4287] Section 4.2.7.3), then the Accept request header

SHOULD be set to the guessed value.

If several parameters are provided for the same selector, the server

SHOULD preload only relations matching the selector and constraints

hinted by the parameters.

Examples:

Preload: "/member/*/author"; hreflang="fr-FR"

Preload: "/member/*/author/avatar"; type="image/webp"

The server SHOULD preload all links matched by the /member/*/author

selector and having a lang of fr-FR, as well as all links matching

the /member/*/author/avatar selector and having a type of image/

webp.

Preload: ""; rel=author

Preload: ""; rel="https://example.com/custom-rel"

The server SHOULD preload all links of the requested resource having

the relation type author or https://example.com/custom-rel.

2.1. Preload Example

Considering the following resources:

¶

¶

¶

¶

¶

¶

¶

¶

¶

/books

{

 "member": [

 "/books/1",

 "/books/2"

]

}

/books/1

{

 "title": "1984",

 "author": "/authors/1"

}

/books/2

{

 "title": "Homage to Catalonia",

 "author": "/authors/1"

}

/authors/1

{

 "givenName": "George",

 "familyName": "Orwell"

}

The Preload HTTP header can be used to ask the server to immediately

push resources related to the requested one:

GET /books/ HTTP/2

Preload: "/member/*/author"

In addition to /books, the server SHOULD use HTTP/2 Server Push to

push the /books/1, /books/2 and /authors/1 resources. While it is

referenced twice, /authors/1 MUST be pushed only once.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Server Push requests generated by the server for related resources

MUST include the remaining selector in a Preload HTTP header. When

requesting a pushed relation, the client MUST compute the remaining

selector and pass it in the Preload header.

Explicit Request:

GET /books/ HTTP/2

Preload: "/member/*/author"

Request to a relation generated by the server (for the push) and the

client:

GET /books/1 HTTP/2

Preload: "/author"

2.2. Using Preload Link Relations

Sometimes, it's not possible or beneficial to use HTTP/2 Server

Push: reference to a resource not served by the same authority,

client or server not supporting HTTP/2, client having disabled

Server Push, resource probably already stored in the cache of the

client... To hint the client to preload the resources by initiating

and early request, the server CAN add references to the resources to

preload using preload link relations [W3C.CR-preload-20190626].

3. Fields Header

The Fields HTTP header allows the client to ask the server to return

only the specified fields of the requested resource, and of the

preloaded related resources.

The Fields HTTP header is a List Structured Header accepting the

exact same values than the Preload HTTP header defined in Section 2.

The Fields HTTP header MUST contain a selector (see #Selector). The

server SHOULD return only the fields matching this selector.

All matched fields MUST be returned if they exist. Other fields of

the resource MAY be omitted.

3.1. Fields Example

Considering the following resources:

/books/1

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "title": "1984",

 "genre": "novel",

 "author": "/authors/1"

}

/authors/1

{

 "givenName": "George",

 "familyName": "Orwell"

}

And the following HTTP request:

GET /books/1 HTTP/2

Preload: "/author"

Fields: "/author/familyName", "/genre"

The server must return a response containing the following JSON

document:

{

 "genre": "novel",

 "author": "/authors/1"

}

And push the following filtered /authors/1 resource:

{

 "familyName": "Orwell"

}

Server Push requests generated by the server for related resources

MUST include the remaining selector in a Fields HTTP header. When

requesting a pushed relation, the client MUST compute the remaining

selector and pass it in the Fields header.

Example:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Explicit Request:

GET /books/ HTTP/2

Fields: "/member/*/author"

Request to a relation generated by the server (for the push) and the

client:

GET /books/1 HTTP/2

Fields: "/author"

4. Selectors

Selectors used as value of the Preload and Fields HTTP headers

depend on the Content-Type of the requested resource. This

specification defines default selector formats for common content-

types, and a mechanism to use other selector formats.

The client SHOULD use the Accept HTTP header to request the resource

in a format compatible with selectors used in Preload and Fields

HTTP headers.

The client can use the Prefer HTTP header [RFC7240] with the

selector preference to ask the server to use a specific selector

format:

GET /books/1 HTTP/2

Accept: text/xml

Prefer: selector=css

Fields: "brand > name"

If no explicit preferences have been passed, the server MUST assume

that the selector format is the default corresponding to the format

of the resource.

The following table defines the default selector format for common

formats:

Format Selector format Identifier

JSON Extended JSON Pointer Section 4.1 json-pointer

XML XPath [W3C.REC-xpath-19991116] xpath

HTML CSS selectors [W3C.REC-selectors-3-20181106] css

Table 1

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The client and the server can negotiate the use of other selector

formats using the Prefer HTTP header.

4.1. Extended JSON Pointer

For JSON documents, the default selector format is JSON Pointer

[RFC6901]. However, JSON Pointer doesn't provide a mechanism to

select entire collections.

This specification defines an extension to the JSON Pointer format

allowing to select every element of a collection, the * character.

Considering the following JSON document:

{

 "books": [

 {

 "title": "1984",

 "author": "George Orwell"

 },

 {

 "title": "The Handmaid's Tale",

 "author": "Margaret Atwood"

 }

]

}

The /books/*/author JSON Pointer selects the author field of every

objects in the books array.

The * character is escaped by encoding it as the ~2 character

sequence.

By design, this selector is simple and limited. Simple selectors

make it easier to limit the complexity of requests executed by the

server.

5. Query Parameters

Another option available to clients is to utilize Request URI query-

string parameters to pass preload and fields selectors.

The preload and query parameters MAY be used to pass selectors

corresponding respectively to the Preload and Fields HTTP headers.

Valid values for these query parameters are exactly the same than

the ones defined of the Preload and Fields HTTP headers.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

In conformance with the Section 3.4 of the URI RFC [RFC3986], values

of query parameters MUST be percent-encoded.

For instance, the list of fields selector "/title","/author" and the

preload selector "/author" passed using query parameters will result

in the following URL: /books/1?

fields=%22%2Ftitle%22%2C%22%2Fauthor%22&preload=%22%2Fauthor%22.

When using query parameters, the server MUST pass the remaining part

of the selector as parameter of the generated link.

Preload and Fields HTTP headers aren't CORS safe-listed request-

headers. Query parameters, on the other hand, allow to send cross-

site requests that don't trigger preflight requests. Also, query

parameters don't require clients to compute the remaining part of

the selector when requesting relations.

However, support for query parameters can be challenging to

implement by servers (links contained in served documents MUST be

modified) and generate URLs that are hard to read for a human.

Altering the URI can also have undesirable effects.

For these reasons, using HTTP headers SHOULD be preferred. Support

for query parameters is OPTIONAL. A server supporting query

parameters MUST also support the corresponding HTTP headers.

Example:

GET /books/?preload=%22%2Fmember%2F%2A%2Fauthor%22 HTTP/2

{

 "member": {

 "/books/1?preload=%22%2Fauthor%22",

 "/books/1?preload=%22%2Fauthor%22"

 }

}

Example using parameters:

GET /books/?preload=%22%2Fmember%2F%2A%22%3B%20rel%3Dauthor HTTP/2

{

 "member": {

 "/books/1?preload=%22%22%3B%20rel%3Dauthor",

 "/books/1?preload=%22%22%3B%20rel%3Dauthor"

 }

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://fetch.spec.whatwg.org/#cors-safelisted-request-header
https://fetch.spec.whatwg.org/#cors-safelisted-request-header

6. Computing Links Server-Side

While using hypermedia capabilities of the HTTP protocol through Web

Linking SHOULD always be preferred, sometimes links between

resources are known by the server but are not provided in the HTTP

response.

In such cases, the server can compute the link server-side in order

to push the related resource. Such server-side computed links MAY be

documented, for instance by providing an OpenAPI specification

containing Link objects.

Considering the following resources and assuming that the server

knows that the author field references the resources /authors/{id}

resource:

/books/1

{

 "title": "1984",

 "author": 1

}

/authors/1

{

 "givenName": "George",

 "familyName": "Orwell"

}

In response to this request , both /books/1 and /authors/1 should be

pushed:

GET /books/1 HTTP/2

Preload: "/author"

7. Security Considerations

Using the Preload header can lead to a large number of resources to

be generated and pushed. The server SHOULD limit the maximum number

of resources to push. The depth of the selector SHOULD also be

limited by the server.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.openapis.org/
http://spec.openapis.org/oas/v3.0.2#link-object

8. IANA considerations

The Preloadand Fields header fields will be added to the "Permanent

Message Header Field Names" registry defined in [RFC3864].

A selector registry could also be added.

9. Implementation Status

[RFC Editor Note: Please remove this entire section prior to

publication as an RFC.]

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC6982]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist. According to RFC 6982, "this will

allow reviewers and working groups to assign due consideration to

documents that have the benefit of running code, which may serve as

evidence of valuable experimentation and feedback that have made the

implemented protocols more mature. It is up to the individual

working groups to use this information as they see fit."

9.1. Vulcain Gateway Server

Organization responsible for the implementation:

Les-Tilleuls.coop

Implementation Name and Details:

Vulcain.rocks, available at https://vulcain.rocks

Brief Description:

A gateway server allowing to add support for the Vulcain protocol to

any existing API. It is written in Go and is optimized for

performance.

Level of Maturity:

Beta.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://vulcain.rocks

Coverage:

All the features of the protocol as well as the extended JSON

pointer selector.

Version compatibility:

The implementation follows the draft version 00.

Licensing:

All code is covered under the GNU Affero Public License version 3 or

later.

Implementation Experience:

Used in production.

Contact Information:

Kévin Dunglas, kevin+vulcain@dunglas.fr https://vulcain.rocks

Interoperability:

Reported compatible with all major browsers and server-side tools.

9.2. Helix Vulcain Filters

Organization responsible for the implementation:

Adobe

Implementation Name and Details:

Helix Vulcain Filters, available at https://github.com/adobe/helix-

vulcain-filters

Brief Description:

Vulcain-like filters for OpenWhisk web actions.

Level of Maturity:

Stable.

Coverage:

HTTP headers as well as the extended JSON pointer selector.

Version compatibility:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

mailto:kevin+vulcain@dunglas.fr
https://vulcain.rocks
https://github.com/adobe/helix-vulcain-filters
https://github.com/adobe/helix-vulcain-filters

[RFC7240]

[W3C.REC-selectors-3-20181106]

[RFC6901]

[RFC3986]

[RFC7540]

The implementation follows the draft version 00.

Licensing:

All code is covered under the Apache License 2.0.

Implementation Experience:

Used in production.

Contact Information:

https://www.adobe.com/about-adobe/contact.html

Interoperability:

Reported compatible with all major browsers and server-side tools.

10. Acknowledgements

The author would like to thank Evert Pot, who authored the Prefer-

Push Internet-Draft from which some parts of this specification is

inspired, and André R. who gave good design ideas.

11. Normative References

Snell, J., "Prefer Header for HTTP", RFC 7240, DOI

10.17487/RFC7240, June 2014, <https://www.rfc-editor.org/

info/rfc7240>.

Ã elik, T., Etemad, E., Glazman, D., Hickson, I., Linss,

P., and J. Williams, "Selectors Level 3", World Wide Web

Consortium Recommendation REC-selectors-3-20181106,

November 6, 2018, <https://www.w3.org/TR/2018/REC-

selectors-3-20181106>.

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,

"JavaScript Object Notation (JSON) Pointer", RFC 6901,

DOI 10.17487/RFC6901, April 2013, <https://www.rfc-

editor.org/info/rfc6901>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.adobe.com/about-adobe/contact.html
https://www.rfc-editor.org/info/rfc7240
https://www.rfc-editor.org/info/rfc7240
https://www.w3.org/TR/2018/REC-selectors-3-20181106
https://www.w3.org/TR/2018/REC-selectors-3-20181106
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986

[W3C.REC-xpath-19991116]

[RFC3864]

[RFC8297]

[RFC5988]

[I-D.ietf-httpbis-header-structure]

[W3C.CR-preload-20190626]

[RFC2119]

[W3C.REC-html52-20171214]

[W3C.REC-xml-20081126]

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Clark, J. and S. DeRose, "XML Path Language

(XPath) Version 1.0", World Wide Web Consortium

Recommendation REC-xpath-19991116, November 16, 1999,

<https://www.w3.org/TR/1999/REC-xpath-19991116>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Oku, K., "An HTTP Status Code for Indicating Hints", RFC

8297, DOI 10.17487/RFC8297, December 2017, <https://

www.rfc-editor.org/info/rfc8297>.

Nottingham, M., "Web Linking", RFC 5988, DOI 10.17487/

RFC5988, October 2010, <https://www.rfc-editor.org/info/

rfc5988>.

Nottingham, M. and P. Kamp, "Structured Field Values for

HTTP", Work in Progress, Internet-Draft, draft-ietf-

httpbis-header-structure-19, June 3, 2020, <https://

tools.ietf.org/html/draft-ietf-httpbis-header-

structure-19>.

Grigorik, I. and Y. Weiss, "Preload",

World Wide Web Consortium CR CR-preload-20190626, June

26, 2019, <https://www.w3.org/TR/2019/CR-

preload-20190626>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

12. Informative References

Faulkner, S., Eicholz, A., Leithead, T., Danilo, A., and

S. Moon, "HTML 5.2", World Wide Web Consortium

Recommendation REC-html52-20171214, December 14, 2017,

<https://www.w3.org/TR/2017/REC-html52-20171214>.

Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and

F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth

Edition)", World Wide Web Consortium Recommendation REC-

https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.w3.org/TR/1999/REC-xpath-19991116
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc8297
https://www.rfc-editor.org/info/rfc8297
https://www.rfc-editor.org/info/rfc5988
https://www.rfc-editor.org/info/rfc5988
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-19
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-19
https://tools.ietf.org/html/draft-ietf-httpbis-header-structure-19
https://www.w3.org/TR/2019/CR-preload-20190626
https://www.w3.org/TR/2019/CR-preload-20190626
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.w3.org/TR/2017/REC-html52-20171214

[RFC4287]

[RFC6982]

[W3C.REC-json-ld-20140116]

xml-20081126, November 26, 2008, <https://www.w3.org/TR/

2008/REC-xml-20081126>.

Nottingham, M., Ed. and R. Sayre, Ed., "The Atom

Syndication Format", RFC 4287, DOI 10.17487/RFC4287,

December 2005, <https://www.rfc-editor.org/info/rfc4287>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", RFC

6982, DOI 10.17487/RFC6982, July 2013, <https://www.rfc-

editor.org/info/rfc6982>.

Sporny, M., Kellogg, G., and M. Lanthaler, "JSON-LD 1.0",

World Wide Web Consortium Recommendation REC-json-

ld-20140116, January 16, 2014, <https://www.w3.org/TR/

2014/REC-json-ld-20140116>.

Author's Address

Kévin Dunglas

Les-Tilleuls.coop

82 rue Winston Churchill

59160 Lille

France

Email: kevin@les-tilleuls.coop

https://www.w3.org/TR/2008/REC-xml-20081126
https://www.w3.org/TR/2008/REC-xml-20081126
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc6982
https://www.rfc-editor.org/info/rfc6982
https://www.w3.org/TR/2014/REC-json-ld-20140116
https://www.w3.org/TR/2014/REC-json-ld-20140116
mailto:kevin@les-tilleuls.coop

	The Vulcain Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Terminology
	2. Preload Header
	2.1. Preload Example
	2.2. Using Preload Link Relations

	3. Fields Header
	3.1. Fields Example

	4. Selectors
	4.1. Extended JSON Pointer

	5. Query Parameters
	6. Computing Links Server-Side
	7. Security Considerations
	8. IANA considerations
	9. Implementation Status
	9.1. Vulcain Gateway Server
	9.2. Helix Vulcain Filters

	10. Acknowledgements
	11. Normative References
	12. Informative References
	Author's Address

