
Individual Submission L. Dusseault
Internet-Draft OSAF
Expires: December 3, 2007 J. Snell
 June 2007

PATCH Method for HTTP
draft-dusseault-http-patch-08

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 3, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 Several applications extending HTTP require a feature to do partial
 resource modification. Existing HTTP functionality only allows a
 complete replacement of a document. This proposal adds a new HTTP
 method, PATCH, to modify an existing HTTP resource.

Dusseault & Snell Expires December 3, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft HTTP PATCH June 2007

Table of Contents

1. Introduction . 3
2. Mechanisms . 3
2.1. PATCH Method . 3
2.1.1. Example . 5

2.2. Error handling . 5
2.3. Advertising Support in OPTIONS 7
2.3.1. Example . 7

3. IANA Considerations . 8
3.1. The 'Accept-Patch' Response Header 8

4. Security Considerations 8
5. References . 9
5.1. Normative References 9
5.2. Informative References 9

Appendix A. Acknowledgements 9
Appendix B. Changes . 9
B.1. Changes from -00 . 9
B.2. Changes from -01 . 9
B.3. Changes from -02 . 10
B.4. Changes from -03 . 10
B.5. Changes from -04 . 10
B.6. Changes from -05 . 10
B.7. Changes from -06 . 11
B.8. Changes from -07 . 11

Appendix C. Notes to RFC Editor 12
 Authors' Addresses . 12
 Intellectual Property and Copyright Statements 13

Dusseault & Snell Expires December 3, 2007 [Page 2]

Internet-Draft HTTP PATCH June 2007

1. Introduction

 This specification defines the new HTTP 1.1 [RFC2616] method PATCH
 that is used to apply partial modifications to a HTTP resource.

 A new method is necessary to improve interoperability and prevent
 errors. The PUT method is already defined to overwrite a resource
 with a complete new body, and can not be reused to do partial
 changes. Otherwise, proxies and caches and even clients and servers
 may get confused as to the result of the operation.

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in [RFC2119].

2. Mechanisms

2.1. PATCH Method

 The PATCH method requests that a set of changes described in the
 request entity be applied to the resource identified by the Request-
 URI. The set of changes is represented in a format called a "patch
 document" identified by a media type. PATCH is neither safe or
 idempotent as defined by [RFC2616] Section 9.1.

 The difference between the PUT and PATCH requests is reflected in the
 way the server processes the enclosed entity to modify the resource
 identified by the Request-URI. In a PUT request, the enclosed entity
 is considered to be a modified version of the resource stored on the
 origin server and the client is requesting that stored version be
 replaced. With PATCH, however, the enclosed entity contains a set of
 instructions describing how a resource currently residing on the
 origin server should be modified to produce a new version. The
 changes described by the entity MAY result in the creation of one or
 more new resources on the server, however it is not intended that the
 body of the PATCH request be used as the content of such resources.

 The server MUST always apply the entire set of changes atomically and
 never provide (e.g. in response to a GET during this operation) a
 partially-modified representation. If the entire patch document
 cannot be successfully applied then the server MUST fail the entire
 request, applying none of the changes. The determination of what
 constitutes a successful PATCH can vary depending on the patch
 document and the type of resource being modified. The actual method
 for determining how to apply the patch document to the resource is
 defined entirely by the origin server. See Error Handling in section

2.2 for details on status codes and possible error conditions.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616#section-9.1

Dusseault & Snell Expires December 3, 2007 [Page 3]

Internet-Draft HTTP PATCH June 2007

 If the request passes through a cache and the Request-URI identifies
 one or more currently cached entities, those entries SHOULD be
 treated as stale. Responses to this method are not cacheable, unless
 the response includes appropriate Cache-Control or Expires header
 fields. However, the 303 (See Other) response can be used to direct
 the user agent to retrieve a cacheable resource.

 Collisions from multiple requests are more dangerous than PUT
 collisions, because a patch document that is not operating from a
 known base point may corrupt the resource. Clients wishing to apply
 a patch document to a known entity can first acquire the strong ETag
 of the resource to be modified, and use that Etag in the If-Match
 header on the PATCH request to verify that the resource is still
 unchanged. If a strong ETag is not available for a given resource,
 the client can use If-Unmodified-Since as a less-reliable safeguard.

 It is RECOMMENDED that Servers provide strong ETags for all resources
 for which PATCH is supported.

 A PATCH response with a 2xx status code indicates that the PATCH
 request was a success. When the server responds with a status code
 of 200 OK, it MUST include a representation of the modified resource.
 A 200 response whose entity payload is empty indicates that the
 result of the PATCH request is an empty resource. If the server
 chooses not to return a representation of the modified resource, it
 can use 204 No Content. With either a 200 or 204 response, the
 server MAY include appropriate entity headers applied to the modified
 resource to allow the client to verify the success of the operation.

 The server MUST NOT ignore any Content-* (e.g. Content-Range)
 headers that it does not understand or implement and MUST return a
 501 (Not Implemented) response in such cases.

 If the Request-URI identifies a resource with multiple alternate
 representations, the server can choose to respond in a variety of
 ways. For instance, the server can decide which representation to
 alter and might even be able to change them all consistently
 depending on the patch format. A particular patch document might be
 able to identify specific representations to modify or might be
 capable of describing changes to multiple representations. If the
 server cannot choose a representation, it can reject the request with
 an error or the server can choose to redirect the request (e.g. using
 301 Moved Permanently or 302 Found), in which case the user agent
 makes its own decision regarding whether or not to proceed with the
 request.

 Clients are advised to take caution when sending multiple PATCH
 requests, or sequences of requests that include PATCH, over a

Dusseault & Snell Expires December 3, 2007 [Page 4]

Internet-Draft HTTP PATCH June 2007

 pipelined connection as there are no guarantees that pipelined
 requests will be processed by the server in the same order in which
 the client sends them. Such sequences of requests can be made safer
 by using conditional request mechanisms such as If-Match. See

[RFC2616] Section 8.1.2.2 for additional details regarding pipelining
 and non-idempotent requests.

 There is no guarantee that a resource can be modified with PATCH.
 Further, it is expected that different patch document formats will be
 appropriate for different types of resources and that no single
 format will be appropriate for all types of resources. Therefore,
 there is no single default patch document format that implementations
 are required to support. Servers MUST ensure that a received patch
 document is appropriate for the type of resource identified by the
 Request-URI.

2.1.1. Example

 Simple PATCH example

 PATCH /file.txt HTTP/1.1
 Host: www.example.com
 Content-type: application/example
 If-Match: "e0023aa4e"
 Content-Length: 100

 [description of changes]

 This example illustrates use of a hypothetical patch document on an
 existing text file.

 Successful PATCH response to existing text file

 HTTP/1.1 200 OK
 ETag: "e0023aa4f"
 Content-MD5: Q2hlY2sgSW50ZWdyaXR5IQ==
 Content-Type: text/plain

 [modified resource]

2.2. Error handling

 There are several known conditions under which a PATCH request can
 fail.

https://datatracker.ietf.org/doc/html/rfc2616#section-8.1.2.2

Dusseault & Snell Expires December 3, 2007 [Page 5]

Internet-Draft HTTP PATCH June 2007

 Malformed patch document: Can be specified using a 400 Bad Request
 when the server finds that the patch document provided by the
 client was improperly formatted. The definition of badly
 formatted depends on the patch document chosen, but generally if
 the server finds it cannot handle the patch due to the
 serialization of the patch document, this response ought to be
 appropriate.
 Unsupported patch document: Specified using a 415 Unsupported Media
 Type when the client sends a patch document that the server
 doesn't support for the resource identified by the Request-URI.
 Such a response SHOULD include an Accept-Patch response header as
 described in Section 2.3 to notify the client what patch document
 formats are supported.
 Unprocessable request: Can be specified with a 422 Unprocessable
 Entity [RFC4918] when the server understands the patch document
 and the syntax of the patch document appears valid, but the server
 is incapable of processing the request. There are a number of
 situations that could lead to such a result, for example:
 * The client attempted to apply a patch document to an empty
 resource, but the patch document chosen cannot be applied to an
 empty resource.
 * The client attempted to apply a structural modification and the
 structures assumed to exist did not exist (e.g. a patch which
 specifies changing element 'foo' to element 'bar' but element
 'foo' doesn't exist).
 * The client attempted to modify a resource in a way that would
 cause the resource to become invalid. For instance, a
 modification to a well-formed XML document that would cause it
 to no longer be well-formed.
 * The client attempted to modify a resource that has multiple
 representations but the server was unable to choose which
 representation to modify.
 Conflicting modification: Specified with a 412 Precondition Failed
 when a client uses either the If-Match or If-Unmodified-Since
 request headers and attempts to apply a patch document to a
 resource whose state has changed since the patch was created. If
 the server detects a possible conflicting modification and neither
 the If-Match or If-Unmodified-Since request headers are used, the
 server can return a 409 Conflict response.
 Concurrent modification: When a server receives multiple concurrent
 requests to modify a resource, those requests SHOULD be queued and
 processed in the order in which they are received. If a server is
 incapable of queuing concurrent requests, all subsequent requests
 SHOULD be rejected using a 409 Conflict response until the first
 modification request is complete.

 Other HTTP status codes can also be used under the appropriate
 circumstances.

https://datatracker.ietf.org/doc/html/rfc4918

Dusseault & Snell Expires December 3, 2007 [Page 6]

Internet-Draft HTTP PATCH June 2007

 The entity body of error responses SHOULD contain enough information
 to communicate the nature of the error to the client. The content-
 type of the response entity can vary across implementations.

2.3. Advertising Support in OPTIONS

 A server can advertise its support for the PATCH method by adding it
 to the listing of allowed methods in the "Allow" OPTIONS response
 header defined in HTTP/1.1.

 Clients also need to know whether the server supports specific patch
 document formats, so this specification introduces a new response
 header "Accept-Patch" used to specify the patch document formats
 accepted by the server. "Accept-Patch" MUST appear in the OPTIONS
 response for any resource that supports the use of the PATCH method.
 The presence of the "Accept-Patch" header in response to any method
 is an implicit indication that PATCH is allowed on the resource
 identified by the Request-URI.

 Accept-Patch = "Accept-Patch" ":" #(media-range)

 The Accept-Patch header specifies a listing of media ranges as
 defined by [RFC2616], Section 14.1. Note that, unlike the HTTP
 Accept request header, the Accept-Patch header does not use quality
 factors.

2.3.1. Example

 Example: OPTIONS request and response for specific resource

 [request]

 OPTIONS /example/buddies.xml HTTP/1.1
 Host: www.example.com

 [response]

 HTTP/1.1 200 OK
 Allow: GET, PUT, POST, OPTIONS, HEAD, TRACE, DELETE, PATCH
 Accept-Patch: application/example, text/example

 The examples show a server that supports PATCH generally using two
 hypothetical patch documents.

https://datatracker.ietf.org/doc/html/rfc2616#section-14.1

Dusseault & Snell Expires December 3, 2007 [Page 7]

Internet-Draft HTTP PATCH June 2007

3. IANA Considerations

3.1. The 'Accept-Patch' Response Header

 The 'Accept-Patch' response header should be added to the permanent
 registry (see [RFC3864]).

 Header field name: Accept-Patch

 Applicable Protocol: HTTP

 Status: standard

 Author/Change controller: IETF

 Specification document: this specification

4. Security Considerations

 The security considerations for PATCH are nearly identical to the
 security considerations for PUT. In addition, one might be concerned
 that a document that is patched might be more likely to be corrupted,
 but that concern can be addressed through the use of mechanisms such
 as conditional requests using ETags and the If-Match request header.

 Sometimes an HTTP intermediary might try to detect viruses being sent
 via HTTP by checking the body of the PUT/POST request or GET
 response. The PATCH method complicates such watch-keeping because
 neither the source document nor the patch document might be a virus,
 yet the result could be. This security consideration is not
 materially different from those already introduced by byte-range
 downloads, downloading patch documents, uploading zipped (compressed)
 files and so on.

 Individual patch documents will have their own specific security
 considerations that will likely vary depending on the types of
 resources being patched. The considerations for patched binary
 resources, for instance, will be different than those for patched XML
 documents.

5. References

https://datatracker.ietf.org/doc/html/rfc3864

Dusseault & Snell Expires December 3, 2007 [Page 8]

Internet-Draft HTTP PATCH June 2007

5.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

5.2. Informative References

 [RFC4918] Dusseault, L., "HTTP Extensions for Web Distributed
 Authoring and Versioning (WebDAV)", RFC 4918, June 2007.

Appendix A. Acknowledgements

 PATCH is not a new concept, it first appeared in HTTP in drafts of
 version 1.1 written by Roy Fielding and Henrik Frystyk.

 Thanks to Adam Roach, Chris Sharp, Julian Reschke, Geoff Clemm, Scott
 Lawrence, Jeffrey Mogul, Roy Fielding, Greg Stein, Jim Luther, Alex
 Rousskov, Jamie Lokier, Joe Hildebrand, Mark Nottingham and Michael
 Balloni for review and advice on this document.

Appendix B. Changes

B.1. Changes from -00

 OPTIONS support: removed "Patch" header definition and used Allow and
 new "Accept-Patch" headers instead.

 Supported delta encodings: removed vcdiff and diffe as these do not
 have defined MIME types and did not seem to be strongly desired.

 PATCH method definition: Clarified cache behavior.

B.2. Changes from -01

 Removed references to XCAP - not yet a RFC.

 Fixed use of MIME types (this "fix" now obsolete)

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc4918

Dusseault & Snell Expires December 3, 2007 [Page 9]

Internet-Draft HTTP PATCH June 2007

 Explained how to use MOVE or COPY in conjunction with PATCH, to
 create a new resource based on an existing resource in a different
 location.

B.3. Changes from -02

 Clarified that MOVE and COPY are really independent of PATCH.

 Clarified when an ETag must change, and when Last-Modified must be
 used.

 Clarified what server should do if both Content-Type and IM headers
 appear in PATCH request.

 Filled in missing reference to DeltaV and ACL RFCs.

 Stopped using 501 Unsupported for unsupported delta encodings.

 Clarified what a static resource is.

 Refixed use of MIME types for patch formats.

 Limited the scope of some restrictions to apply only to usage of
 required diff format.

B.4. Changes from -03

 Various typographical, terminology consistency, and other minor
 clarifications or fixes.

B.5. Changes from -04

 Moved paragraphs on ACL and RFC3229 interoperability to new section.

 Added security considerations.

 Added IANA considerations, registration of new namespace, and
 discontinued use of "DAV:" namespace for new elements.

 Added example of error response.

B.6. Changes from -05

 Due to various concerns it didn't seem likely the application/gdiff
 registration could go through so switching to vcdiff as required diff
 format, and to RFC3229's approach to specifying diff formats,
 including use of the IM header.

https://datatracker.ietf.org/doc/html/rfc3229
https://datatracker.ietf.org/doc/html/rfc3229

Dusseault & Snell Expires December 3, 2007 [Page 10]

Internet-Draft HTTP PATCH June 2007

 Clarified what header server MUST use to return MD5 hash.

 Reverted to using 501 Unsupported for unsupported delta encodings.

B.7. Changes from -06

 The reliance on RFC 3229 defined patch documents has been factored
 out in favor of delta encodings identified by MIME media type.

 The required use of DeltaV-based error reporting has been removed in
 favor of using basic HTTP status codes to report error conditions.

 The Accept-Patch response header has been redefined as a listing of
 media-ranges, similar to the Accept request header.

 Added James Snell as a co-author.

B.8. Changes from -07

 Terminology change from "delta encoding" to "patch document"

 Added clarification on the safety and idempotency of PATCH

 Updated the caching rules of PATCH responses

 200 responses MUST include a representation of the modified resource.
 204 responses are used to indicate successful response without
 returning a representation.

 Suggest using 422 Unprocessable Entity to indicate that a properly
 formatted patch document cannot be processed

 Clarify the use of 412 and 409 to indicate concurrent and conflicting
 resource modifications.

 Added registration for the Accept-Patch header.

 Relaxed the requirements for the use of If-Match and If-Unmodified-
 Since.

 Add language that clarifies the difference between PUT and PATCH.

 Add language that clarifies the issues with PATCH and Content
 Negotiation.

 Use of Accept-Patch on any response implies that PATCH is supported.

 Add language advising caution when pipelining PATCH requests.

https://datatracker.ietf.org/doc/html/rfc3229

Dusseault & Snell Expires December 3, 2007 [Page 11]

Internet-Draft HTTP PATCH June 2007

Appendix C. Notes to RFC Editor

 The RFC Editor should remove this section and the Changes section.

Authors' Addresses

 Lisa Dusseault
 Open Source Application Foundation
 2064 Edgewood Dr.
 Palo Alto, CA 94303
 US

 Email: lisa@osafoundation.org

 James M Snell

 Phone:
 Email: jasnell@gmail.com
 URI: http://www.snellspace.com

http://www.snellspace.com

Dusseault & Snell Expires December 3, 2007 [Page 12]

Internet-Draft HTTP PATCH June 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Dusseault & Snell Expires December 3, 2007 [Page 13]

