
Network Working Group R. Earhart
Internet Draft: AP Carnegie Mellon
Document: draft-earhart-ap-spec-01.txt January 1998
Expires July 1998

Access Protocol

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months, and may be updated, replaced, or obsoleted by other documents
 at any time. It is not appropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress".

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 This document suggests a proposed protocol for the Internet
 community, and requests discussion and suggestions for improvements.
 Distribution of this draft is unlimited.

 The protocol discussed in this document is experimental and subject
 to change. Persons planning on either implementing or using this
 protocol are STRONGLY URGED to get in touch with the author before
 embarking on such a project.

Copyright

 Copyright (C) The Internet Society 1998. All Rights Reserved.

Abstract

 The Access Protocol defines a standard extensible framework upon
 which application-specific protocols may be layered, providing a
 piece of infrastructure for a common class of internet protocols.

Earhart [Page 1]

https://datatracker.ietf.org/doc/html/draft-earhart-ap-spec-01.txt

Internet DRAFT Access Protocol January 1998

Attributions

 Substantial portions of this protocol and of the text of this
 document come from [ACAP], which itself borrows much from [IMAP4].

1. Motivation

 There are an increasing number of internet application-level
 protocols, solving a wide variety of problems. But as time goes on,
 it's becoming increasingly obvious that in the course of their
 development, regargless of their application-level purpose, many of
 the protocols need to solve the same infrastructure problems, such as

 Representation of commands (interleaving, protocol structure)
 Representation of command data
 Security (Authentication and authorization)
 Internationalization (UTF8, language control, etc.)
 Error reporting
 And a variety of minor issues (inactivity timeouts, etc.)

 It's hoped that by defining a common infrastructure between
 application-specific command suites and the underlying stream
 protocol provided by services such as TCP, a number of these problems
 can be solved in a general way, allowing application-specific
 protocols to be more rapidly developed and deployed.

 In addition, by abstracting the infrastructure from the application,
 it's hoped that each will be able to evolve independantly, and that
 the state of the art in protocol design will improve and advance
 faster than if each new infrastructure-level idea had to be
 individually incorporated into each application level protocol.

 ASN.1/BER is *not* used, as there is a significant feeling in the
 applications area community that the complexity of these standards is
 a significant barrier to implementation.

 It is recognized that not all application level protocols will fit
 into this model; TELNET is a good example of a protocol that does not
 belong in this framework. Nevertheless, it is believed that this is
 of sufficient utility to enough protocols to be worth advancing as an
 IETF standard.

2. Conventions Used in this Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

Earhart [Page 2]

Internet DRAFT Access Protocol January 1998

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

3. Protocol Overview

3.1. Link Level

 The Access Protocol assumes a reliable data stream such as provided
 by TCP. The command protocol that uses the AP is responsible for
 specifying any parameters to be used in constructing the stream.

3.2. Commands and Responses

 An AP session consists of the establishment of a client/server
 connection, an initial greeting from the server, and client/server
 interactions. These client/server interactions consist of a client
 command, server data, and a server completion result.

 All interactions transmitted by client and server are in the form of
 lines; that is, strings that end with a CRLF. The protocol receiver
 of an AP client or server is either reading a line, or is reading a
 sequence of octets with a known count followed by a line. Both
 clients and servers MUST be capable of handling lines of arbitrary
 length.

3.2.1. Client Protocol Sender and Server Protocol Receiver

 The client command begins an operation. Each client command is
 prefixed with a identifier composed of one to thirty-two characters
 (typically a short alphanumeric string, e.g., A0001, A0002, etc.)
 called a "tag". A different tag is generated by the client for each
 command.

 There are two cases in which a line from the client does not
 represent a complete command. In one case, a command argument is
 quoted with an octet count (see the description of literal in section

4.1.3); in the other case, the command arguments require server
 feedback (see the AUTHENTICATE command). In some of these cases, the
 server sends a command continuation request if it is ready for the
 next part of the command. This response is prefixed with the token
 "+".

 Note: If, instead, the server detected an error in the command, it
 sends a BAD or NO completion response with tag matching the

Earhart [Page 3]

Internet DRAFT Access Protocol January 1998

 command (as described below) to reject the command and prevent the
 client from sending any more of the command.

 It is also possible for the server to send a completion or
 intermediate response for some other command (if multiple commands
 are in progress), or untagged data. In either case, the command
 continuation request is still pending; the client takes the
 appropriate action for the response, and reads another response
 from the server.

 The server reads a command line from the client, parses the command
 and its arguments, and transmits server data and a server command
 completion result.

3.2.1. Server Protocol Sender and Client Protocol Receiver

 Data transmitted by the server to the client come in four forms:
 command continuation requests, command completion results,
 intermediate responses, and untagged responses.

 A command continuation request is prefixed with the token "+".

 A command completion result indicates the success or failure of the
 operation. It is tagged with the same tag as the client command
 which began the operation. Thus, if more than one command is in
 progress, the tag in a server completion response identifies the
 command to which the response applies. There are three possible
 server completion responses: OK (indicating success), NO (indicating
 failure), or BAD (indicating protocol error such as unrecognized
 command or command syntax error).

 An intermediate response returns data which can only be interpreted
 within the context of a command in progress. It is tagged with the
 same tag as the client command which began the operation. Thus, if
 more than one command is in progress, the tag in an intermediate
 response identifies the command to which the response applies. A
 tagged response other than "OK", "NO", or "BAD" is an intermediate
 response.

 An untagged response returns data or status messages which may be
 interpreted outside the context of a command in progress. It is
 prefixed with the token "*". Untagged data may be sent as a result
 of a client command, or may be sent unilaterally by the server.
 There is no syntactic difference between untagged data that resulted
 from a specific command and untagged data that were sent
 unilaterally.

Earhart [Page 4]

Internet DRAFT Access Protocol January 1998

 The protocol receiver of an AP client reads a response line from the
 server. It then takes action on the response based upon the first
 token of the response, which may be a tag, a "*", or a "+" as
 described above.

 A client MUST be prepared to accept any server response at all times.
 This includes untagged data that it may not have requested.

 This topic is discussed in greater detail in the Server Responses
 section.

3.3. State and Flow Diagram

 An AP server is in one of at least three states. Most commands are
 valid in only certain states. It is a protocol error for the client
 to attempt a command while the server is in an inappropriate state
 for that command. In this case, a server MUST respond with a BAD
 command completion result.

3.3.1. Non-Authenticated State

 In non-authenticated state, the user must supply authentication
 credentials before most commands will be permitted. This state is
 entered when a connection starts.

3.3.2. Authenticated State

 In authenticated state, the user is authenticated and most commands
 will be permitted. This state is entered when acceptable
 authentication credentials have been provided.

3.3.3. Logout State

 In logout state, the session is being terminated, and the server will
 close the connection. This state can be entered as a result of a
 client request or by unilateral server decision.

3.3.4. Other States

 Protocols using AP MAY define more states, as desired. These states
 MUST only be reachable from the authenticated state, and MUST only
 transition between themselves, to the authenticated state, or to the
 logout state.

Earhart [Page 5]

Internet DRAFT Access Protocol January 1998

 Protocol-specific states MUST only affect the operation of commands
 defined in those protocols, or in extensions to those protocols. In
 particular, the NOOP and LOGOUT commands MUST always be available.

 Protocols MAY define new commands which transition to the logout
 state.

 +--------------------------------------+
 |initial connection and server greeting|
 +--------------------------------------+
 || (1) (2) ||
 VV ||
 +-----------------+ ||
 |non-authenticated| ||
 +-----------------+ ||
 || (4) || (3) || | | | |
 || VV ||
 || +----------------+ ||
 || | authenticated |<=++ ||
 || +----------------+ || ||
 || || (4) || (5) || (5) ||
 || || VV || ||
 || || +------------+ || ||
 || || |other states|==++ ||
 || || +------------+ ||
 || || || (4) ||
 VV VV VV VV
 +--------------------------------------+
 | logout and close connection |
 +--------------------------------------+

 (1) connection (AP greeting)
 (2) rejected connection (BYE greeting)
 (3) successful AUTHENTICATE command
 (4) LOGOUT or other closing command, server shutdown,
 or connection closed.
 (5) State-transition command defined by protocol using AP

3.4. Operational Considerations

3.4.1. Untagged Status Updates

 At any time, a server MAY send data that the client did not request.
 It is recognized that this will cause perfectly good TCP connections
 to be torn down if the network is unavailable for some transient
 reason; nevertheless, this is better than forcing the client to poll

Earhart [Page 6]

Internet DRAFT Access Protocol January 1998

 the server for update information.

3.4.2. Response when No Command in Progress

 Server implementations are permitted to send an untagged response
 while there is no command in progress. Server implementations that
 send such responses MUST deal with flow control considerations.
 Specifically, they must either (1) verify that the size of the data
 does not exceed the underlying transport's available window size, or
 (2) use non-blocking writes.

3.4.3. Autologout Timer

 Servers MAY implement an inactivity autologout timer. If such a
 timer is implemented, that timer MUST be at least 30 minutes'
 duration. The receipt of ANY data from the client during that
 interval MUST suffice to reset the autologout timer.

 Open Issue: is this really necessary? I'd rather forbid timers
 and the NOOP command, and say that it's the responsibility of the
 underlying stream protocol to ensure that the other side's still
 alive...)

3.4.4. Multiple Commands in Progress

 The client is not required to wait for the completion result of a
 command before sending another command, subject to flow control
 constraints on the underlying data stream. Similarly, a server is
 not required to process a command to completion before beginning
 processing of the next command, although the server MUST compute the
 results of a command as though any changes caused by previous
 commands had taken place, and as though any changes caused by
 subsequent commands have not yet taken place.

 Protocols which use this protocol as their basis SHOULD NOT define
 commands in such a way as to create an ambiguity when results from
 seperate commands are interlaced or reordered.

4. Protocol Elements

4.1. Data Formats

 AP uses textual commands and responses. Data in AP can be in one of
 four forms: atom, number, string, parenthesized list, or NIL.

Earhart [Page 7]

Internet DRAFT Access Protocol January 1998

4.1.1. Atom

 An atom consists of one to 1024 non-special characters.

4.1.2. Number

 A number consists of one or more digit characters, and represents a
 numeric value.

4.1.3. String

 A string is in one of two forms: literal and quoted string. The
 literal form is the general form of string. The quoted string form
 is an alternative that avoids the overhead of processing a literal at
 the cost of restrictions of what may be in a quoted string.

 A literal is a sequence of zero or more octets (including CR and LF),
 prefix-quoted with an octet count in the form of an open brace ("{"),
 the number of octets, close brace ("}"), and CRLF. In the case of
 literals transmitted from server to client, the CRLF is immediately
 followed by the octet data.

 There are two forms of literals transmitted from client to server.
 The form where the open brace ("{") and number of octets is
 immediately followed by a close brace ("}") and CRLF is called a
 synchronizing literal. When sending a synchronizing literal, the
 client must wait to receive a command continuation request (described
 later in this document) before sending the octet data (and the
 remainder of the command). The other form of literal, the non-
 synchronizing literal, is used to transmit a string from client to
 server without waiting for a command continuation request. The non-
 synchronizing literal differs from the synchronizing literal by
 having a plus ("+") between the number of octets and the close brace
 ("}") and by having the octet data immediately following the CRLF.

 A quoted string is a sequence of zero to 1024 octets excluding CR,
 LF, double quote (<">), or backslash ("\") with double quote (<">)
 characters at each end.

 The empty string is respresented as "" (a quoted string with zero
 characters between double quotes), as {0} followed by CRLF (a
 synchronizing literal with an octet count of 0), or as {0+} followed
 by a CRLF (a non-synchronizing literal with an octet count of 0).

 Note: Even if the octet count is 0, a client transmitting a
 synchronizing literal MUST wait to receive a command continuation

Earhart [Page 8]

Internet DRAFT Access Protocol January 1998

 request.

4.1.4. Parenthesized List

 Data structures are represented as a "parenthesized list"; a sequence
 of data items, delimited by space, and bounded at each end by
 parentheses. A parenthesized list can contain other parenthesized
 lists, using multiple levels of parentheses to indicate nesting.

 The empty list is represented as () -- a parenthesized list with no
 members.

4.1.5. NIL

 The special atom "NIL" represents the non-existence of a particular
 data item that is represented as a string or parenthesized list, as
 distinct from the empty string "" or the empty parenthesized list ().

4.2. Server Status Responses

 Server status responses (defined in the ABNF as "status-response")
 MAY include an optional response code. A response code consists of
 data inside parentheses in the form of an atom, possibly followed by
 a space and arguments (defined in the ABNF as "resp-code"). The
 response code contains additional information or status codes for
 client software beyond the condition triggering the status response,
 and are defined when there is a specific action that a client can
 take based upon the additional information.

 The currently defined response codes are:

 AUTH-TOO-WEAK
 This response code is returned on a tagged NO result
 from an AUTHENTICATE command. It indicates that site
 security policy forbids the use of the requested
 mechanism for the specified authentication identity.

 ENCRYPT-NEEDED
 This response code is returned on a tagged NO result
 from an AUTHENTICATE command. It indicates that site
 security policy requires the use of a strong encryption
 mechanism for the specified authentication identity and
 mechanism.

Earhart [Page 9]

Internet DRAFT Access Protocol January 1998

 SASL This response code can occur in the tagged OK response
 to a successful AUTHENTICATE command and includes the
 optional final server response data from the server as
 specified by SASL [SASL].

 TRANSITION-NEEDED
 This response code occurs on a NO response to an
 AUTHENTICATE command. It indicates that the user name
 is valid, but the entry in the authentication database
 needs to be updated in order to permit authentication
 with the specified mechanism. This can happen if a user
 has an entry in a system authentication database such as
 Unix /etc/passwd, but does not have credentials suitable
 for use by the specified mechanism.

 TRYLATER A command failed due to a temporary server failure. The
 client MAY continue using local information and try the
 command later.

 Additional response codes MAY be defined by protocols layered on top
 of AP or by particular client or server implementations of those
 protocols. Additional response codes not defined in standards-track
 documents MUST be prefixed with an "X". Client implementations MUST
 ignore response codes that they do not recognize.

4.3. Server Command Continuation Request

 The command continuation request is indicated by a "+" token instead
 of a tag. This indicates that the server is ready to accept the
 continuation of a command from the client. The remainder of this
 response is a line of text.

 This response is used in the AUTHENTICATE command to transmit server
 data to the client, and request additional client data. This
 response is also used if an argument to any command is a
 synchronizing literal. Protocols layered upon this protocol may
 define additional commands which use continuations, although these
 should be few and far between.

 The client is not permitted to send the octets of a synchronizing
 literal unless the server indicates that it expects it. This permits
 the server to process commands and reject errors on a line-by-line
 basis, assuming it checks for non-synchronizing literals at the end
 of each line. The remainder of the command, including the CRLF that
 terminates a command, follows the octets of the literal. If there

Earhart [Page 10]

Internet DRAFT Access Protocol January 1998

 are any additional command arguments the literal octets are followed
 by a space and those arguments.

5. Protocol Specification

5.1. Initial Connection

 Upon session startup, the server sends one of two untagged responses:
 AP or BYE. The BYE response is documented in section 5.2.8.

 Open Issue: I'm tempted to change this a little - have the client
 send its capabilities list in its greeting, and have the server
 send back a tagged OK, NO, BAD, or BYE response. This would cause
 negligable network load when used with TCP (the data could be
 carried in the initial TCP SYN packet which has to be sent
 anyway), and would allow the server to discover what the client's
 capable of, at the expense of changing the state diagram a little,
 hosing backwards compatibility, and adding an additional step for
 people accessing servers via telnet.

5.1.1. AP Untagged Response

 Data: capability list

 The untagged AP response indicates that the session is ready to
 accept commands and contains a space-separated listing of
 capbilities that the server supports. Each capability is an atom
 name, possibly followed by an argument in parenthesis (the
 argument MAY contain parenthesis, but the parenthesis MUST be
 balanced).

 AP capability names MUST be defined in a standards track or IESG
 approved experimental RFC and registered with IANA according to
 the rules in section <section>.

 Client implementations MAY require any capability names, but MUST
 ignore any unknown capability names. It is recommended that
 clients require as few capabilities as possible.

 The following initial capabilities are defined:

 IMPLEMENTATION
 The IMPLEMENTATION capability has one argument which is
 a string describing the server implementation. AP
 clients MUST NOT alter their behavior based on this
 value. It is intended primarily for debugging purposes.

Earhart [Page 11]

Internet DRAFT Access Protocol January 1998

 SASL The SASL capability includes a list of the
 authentication mechanisms supported by the server. See
 [SASL] for more information.

 Example: S: * AP IMPLEMENTATION ("ACME v3.5") SASL ("GSSAPI")

5.2. Any State

 The following commands and responses are valid in any state.

5.2.1 NOOP Command

 Arguments: none

 Data: no specific data for this command (but see below)

 Result: OK - noop completed
 BAD - command unknown or arguments invalid

 The NOOP command always succeeds. It does nothing. It can be
 used to reset any inactivity autologout timer on the server.

 Example: C: a002 NOOP
 S: a002 OK "NOOP completed"

5.2.2 LANG Command

 Arguments: list of language preferences

 Data: intermediate response: LANG

 Result: OK - lang completed
 NO - no matching language available
 BAD - command unknown or arguments invalid

 One or more arguments are supplied to indicate the client's
 preferred languages [LANG-TAGS] for error messages. The server
 will match each client preference in order against its internal
 table of available error string languages. For a client
 preference to match a server language, the client's language tag
 MUST be a prefix of the server's tag and match up to a "-" or the
 end of string. If a match is found, the server returns an
 intermediate LANG response and an OK response. The LANG response
 indicates the actual language selected.

Earhart [Page 12]

Internet DRAFT Access Protocol January 1998

 If no LANG command is issued, all error text strings MUST be in
 the registered language "i-default" [CHARSET-LANG-POLICY],
 intended for an international audience.

 Example: C: A003 LANG "fr-ca" "fr" "en-ca" "en-uk"
 S: A003 LANG "fr-ca"
 S: A003 OK "Bonjour"

5.2.3 LANG Intermediate Response

 Data: language for error responses

 The LANG response indicates the language which will be used for
 responses (in the ABNF, the final "quoted" element of resp-body).

5.2.4 LOGOUT Command

 Arguments: none

 Data: mandatory untagged response: BYE

 Result: OK - logout completed
 BAD - command unknown or arguments invalid

 The LOGOUT command informs the server that the client is done with
 the session. The server must send a BYE untagged response before
 the (tagged) OK response, and then close the network connection.

 Example: C: A023 LOGOUT
 S: * BYE "Server logging out"
 S: A023 OK "LOGOUT completed"

 (Server and client then close the connection)

5.2.5. OK Response

 Data: optional response code
 human-readable text

 The OK response indicates an information message from the server.
 When tagged, it indicates successful completion of the associated
 command. The human-readable text may be presented to the user as
 an information message. The untagged form indicates an
 information-only message; the nature of the information may be

Earhart [Page 13]

Internet DRAFT Access Protocol January 1998

 indicated by a response code.

 Example: S: * OK "Main disk is back on-line"

5.2.6. NO Response

 Data: optional response code
 human-readable text

 The NO response indicates an operational error message from the
 server. When tagged, it indicates unsuccessful completion of the
 associated command. The untagged form indicates a warning; the
 command may still complete successfully. The human-readable text
 describes the condition.

 Example: C: A222 AUTHENTICATE "FOOBAR"
 S: A222 NO "Unknown SASL mechanism"

5.2.7 BAD Response

 Data: optional response code
 human-readable text

 The BAD response indicates an error message from the server. When
 tagged, it reports a protocol-level error in the client's command;
 the tag indicates the command that caused the error. The untagged
 form indicates a protocol-level error for which the associated
 command can not be determined; it may also indicate an internal
 server failure. The human-readable text describes the condition.

 Example: C: ...empty line...
 S: * BAD "Empty command line"
 C: A443 BLURDYBLOOP
 S: A443 BAD "Unknown command"
 C: A444 NOOP Hello
 S: A444 BAD "invalid arguments"

5.2.8. BYE Untagged Response

 Data: optional response code
 human-readable text

 The untagged BYE response indicates that the server is about to
 close the connection. The human-readable text may be displayed to
 the user in a status report by the client. The BYE response may

Earhart [Page 14]

Internet DRAFT Access Protocol January 1998

 be sent as part of a normal logout sequence, or as a panic
 shutdown announcement by the server. It SHOULD also used by
 server implementations as an announcement of an inactivity
 autologout.

 This response is also used as one of two possible greetings at
 session startup. As a greeting, it indicates that the server is
 not willing to accept a session from this client.

 Example: S: * BYE "Autologout; idle for too long"

5.2.9. ALERT Untagged Response

 Data: optional response code
 human-readable text

 The human-readable text contains a special human generated alert
 message that MUST be presented to the user in a fashion that calls
 the user's attention to the message. This is intended to be used
 for vital messages from the server administrator to the user, such
 as a warning that the server will soon be shut down for
 maintenance.

 Example: S: * ALERT "This server will be shut down in 10 minutes
 for system maintenance."

5.3. Non-Authenticated State

 In non-authenticated state, the AUTHENTICATE command establishes
 authentication and enters authenticated state. The AUTHENTICATE
 command provides a general mechanism for a variety of authentication
 techniques.

 Server implementations may allow non-authenticated access to certain
 information. The convention is to use an AUTHENTICATE command with
 the SASL ANONYMOUS mechanism [ANON].

 Once authenticated (including as anonymous), it is not possible to
 re-enter non-authenticated state.

 In addition to the universal commands (NOOP and LOGOUT), the only
 command valid in non-authenticated state is AUTHENTICATE.

5.3.1 AUTHENTICATE Command

Earhart [Page 15]

Internet DRAFT Access Protocol January 1998

 Arguments: SASL mechanism name
 optional initial response

 Data: continuation data may be requested

 Result: OK - authenticate completed, now in authenticated state
 NO - authenticate failure: unsupported authentication
 mechanism, credentials rejected
 BAD - command unknown or arguments invalid,
 authentication exchange cancelled

 The AUTHENTICATE command indicates a SASL [SASL] authentication
 mechanism to the server. If the server supports the requested
 authentication mechanism, it performs an authentication protocol
 exchange to authenticate and identify the user. Optionally, it
 also negotiates a security layer for subsequent protocol
 interactions. If the requested authentication mechanism is not
 supported, the server rejects the AUTHENTICATE command by sending
 a tagged NO response.

 The authentication protocol exchange consists of a series of
 server challenges and client answers that are specific to the
 authentication mechanism. A server challenge consists of a
 command continuation request with the "+" token followed by a
 string. The client answer consists of a line consisting of a
 string. If the client wishes to cancel an authentication
 exchange, it should issue a line with a single unquoted "*". If
 the server receives such an answer, it must reject the
 AUTHENTICATE command by sending a tagged BAD response.

 The optional initial-response argument to the AUTHENTICATE command
 is used to save a round trip when using authentication mechanisms
 that are defined to send no data in the initial challenge. When
 the initial-response argument is used with such a mechanism, the
 initial empty challenge is not sent to the client and the server
 uses the data in the initial-response argument as if it were sent
 in response to the empty challenge. If the initial-response
 argument to the AUTHENTICATE command is used with a mechanism that
 sends data in the initial challenge, the server rejects the
 AUTHENTICATE command by sending a tagged NO response.

 The service name specified by this protocol's profile of SASL is
 "ap".

 If a security layer is negotiated through the SASL authentication
 exchange, it takes effect immediately following the CRLF that
 concludes the authentication exchange for the client, and the CRLF
 of the tagged OK response for the server.

Earhart [Page 16]

Internet DRAFT Access Protocol January 1998

 All AP implementations MUST implement the CRAM-MD5 SASL mechanism
 [CRAM-MD5], although they MAY offer a configuration option to
 disable it if site security policy dictates. The example below is
 the same example described in the CRAM-MD5 specification.

 If an AUTHENTICATE command fails with a NO response, the client
 may try another authentication mechanism by issuing another
 AUTHENTICATE command. In other words, the client may request
 authentication types in decreasing order of preference.

 Example: S: * OK IMPLEMENTATION ("Blorfysoft v3.5")
 SASL ("CRAM-MD4" "KERBEROS_V4")
 C: A001 AUTHENTICATE "CRAM-MD5"
 S: + "1896.697170952@postoffice.reston.mci.net>"
 C: "tim b913a602c7eda7a495b4e6e7334d3890"
 S: A001 OK "CRAM-MD5 authentication successful"

 Note: the line breaks in the first client answer are for
 editorial clarity and are not in real authenticators.

5.3. Authenticated State

 In the authenticated state, the universal commands (NOOP and LOGOUT)
 are valid, in addition to any commands defined by protocols that use
 AP as their foundation.

6. Design Philosophy

 Protocols layered on top of AP SHOULD define a set of commands to be
 valid in the authenticated state. In addition, protocols MAY define
 an atom to be returned in the initial AP greeting, possibly allowing
 multiple protocols to be used over the same connection.

 Ideally, protocols should limit themselves as much as possible to a
 simple, uncomplicated suite of commands that relate to each other.
 Where possible, protocols should be broken up into orthogonal
 components, such that the components may be reused in other
 protocols.

 Example: Instead of defining an advisory lock mechanism, advisory
 locking should be split into a seperate extension, useable
 by whatever protocols happen to require it.

 Quota management is another set of commands that could be
 written as an extension and made available to all protocols

Earhart [Page 17]

Internet DRAFT Access Protocol January 1998

 that involve quotas.

 New commands and responses SHOULD only be defined for the
 Authenticated state.

 Responses to commands SHOULD be tagged. This is essential for
 allowing multiple commands to execute simultaneously, and experience
 shows that this leads to much simpler implementations for both
 clients and servers.

 Where textual data is exchanged, protocols SHOULD use UTF8 [UTF8]
 whenever possible, for internationalization.

 New command completion responses MUST NOT be defined -- every command
 MUST be completed by an "OK", "NO", or "BAD" response.

7. Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in [ABNF] This uses the ABNF core
 rules as specified in Appendix A of the ABNF specification [ABNF].

 Except as noted otherwise, all alphabetic characters are case-
 insensitive. The use of upper or lower case characters to define
 token strings is for editorial clarity only. Implementations MUST
 accept these strings in a case-insensitive fashion.

 Protocols based on AP should refer to this formal syntax, and augment
 selected parts via the ABNF "=/" operator, as indicated in the
 comments.

 The client produces a sequence of octets matching "command-client";
 the server consumes these, and returns a sequence of octets matching
 "response-server".

 Protocols using AP MAY augment "capability" (subject to the
 requirement that "capability" MUST match "capability-generic"),
 "command" (subject to the requirement that "command" MUST match
 "command-generic"), "response" (subject to the requirement that
 "response" MUST match "response-generic"), "resp-code" (subject to
 the requirement that "resp-code" MUST match "resp-code-generic"), or
 "status-response" (subject to the requirement that "status-response"
 MUST match "status-response-generic"). Other syntax elements SHOULD
 NOT be redefined.

 For readability, rules which MAY be augmented are defined using the

Earhart [Page 18]

Internet DRAFT Access Protocol January 1998

 "=/" operator; all other rules are defined using "=".

 A number of symbols are defined solely for use by protocols using AP.

 ATOM-CHAR = "!" / %x23-27 / %x2A-5B / %x5D-7A / %x7C-7E
 ; Any CHAR except ATOM-SPECIALS

 ATOM-SPECIALS = "(" / ")" / "{" / SPACE / CTL / QUOTED-SPECIALS

 DIGIT-NZ = %x31-39
 ; 1-9

 QUOTED-CHAR = SAFE-UTF8-CHAR / "\" QUOTED-SPECIALS

 QUOTED-SPECIALS = <"> / "\"

 SAFE-CHAR = %x01-09 / %x0B-0C / %x0E-21 /
 %x23-5B / %x5D-7F
 ; Any CHAR except CR, LF, or QUOTED-SPECIALS

 SAFE-UTF8-CHAR = SAFE-CHAR / UTF8-2 / UTF8-3 / UTF8-4 /
 UTF8-5 / UTF8-6
 TAG-CHAR = %x21 / %x23-27 / %x2C-5B / %x5D-7A / %x7C-7E
 ; Any ATOM-CHAR except "*" or "+"

 TEXT-UTF8-CHAR = SAFE-UTF8-CHAR / QUOTED-SPECIALS

 UTF8-1 = %x80-BF

 UTF8-2 = %xC0-DF UTF8-1

 UTF8-3 = %xE0-EF 2UTF8-1

 UTF8-4 = %xF0-F7 3UTF8-1

 UTF8-5 = %xF8-FB 4UTF8-1

 UTF8-6 = %xFC-FD 5UTF8-1

 UTF8-CHAR = TEXT-UTF8-CHAR / CR / LF

 argument = atom
 / string
 / number
 / "(" [argument *(SP argument)] ")"

 atom = 1*1024ATOM-CHAR

Earhart [Page 19]

Internet DRAFT Access Protocol January 1998

 auth-type = <"> auth-type-name <">

 auth-type-name = iana-token
 ; As defined in [SASL]

 capability =/ "IMPLEMENTATION" SP "(" quoted ")"

 capability =/ "SASL" SP "(" auth-type *(SP auth-type) ")"

 ; Other capabilities MAY be defined by protocols using AP,
 ; but MUST syntactically match capability-generic

 capability-arg = atom
 / quoted
 / "(" [capability-arg *(SP capability-arg)] ")"

 capability-generic = atom [SP "(" [capability-arg] ")"]

 command-client = tag SP command CRLF

 command =/ "NOOP"

 command =/ "LOGOUT"

 command =/ "AUTHENTICATE" SP auth-type
 [SP string] *(CRLF string)

 ; Other commands MAY be defined by protocols using AP,
 ; but MUST syntactically match command-generic

 command-generic = atom *(SP argument)

 iana-token = atom
 ; MUST be registered with IANA

 literal = "{" number ["+"] "}" CRLF *OCTET
 ; The number represents the number of octets

 literal-utf8 = "{" number ["+"] "}" CRLF *UTF8-CHAR
 ; The number represents the number of octets,
 ; not the number of characters

 nil = "NIL"

 number = 1*DIGIT

 nz-number = DIGIT-NZ *DIGIT

Earhart [Page 20]

Internet DRAFT Access Protocol January 1998

 quoted = <"> *QUOTED-CHAR <">

 resp-argument = atom
 / quoted
 / number
 / "(" [resp-argument *(SP resp-argument)] ")"

 resp-body = SP ["(" resp-code ")" SP] quoted

 resp-code =/ "AUTH-TOO-WEAK"

 resp-code =/ "ENCRYPT-NEEDED"

 resp-code =/ "SASL"

 resp-code =/ "TRANSITION-NEEDED"

 resp-code =/ "TRYLATER"

 ; Other resp-codes MAY be defined by protocols using AP,
 ; but MUST syntactically match resp-code-generic

 resp-code-generic = atom *(SP resp-argument)

 response =/ "AP" *(SP capability)

 response =/ status-response

 ; Other responses MAY be defined by protocols using AP,
 ; but MUST syntactically match response-generic

 response-generic = atom *(SP argument)

 response-server = (tag / "*") response CRLF

 status-response =/ "OK" resp-body

 status-response =/ "NO" resp-body

 status-response =/ "BAD" resp-body

 status-response =/ "BYE" resp-body

 status-response =/ "ALERT" resp-body

 ; Other status-responses MAY be defined by protocols using AP,
 ; but MUST syntactically match status-response-generic

Earhart [Page 21]

Internet DRAFT Access Protocol January 1998

 status-response-generic = atom resp-body

 string = quoted / literal

 string-utf8 = quoted / literal-utf8

 tag = 1*32TAG-CHAR

8. Security Considerations

 AP protocol transactions are sent in the clear over the network
 unless some form of privacy protection is negotiated in the
 AUTHENTICATE command.

 AP's security is defined by [SASL], and thus has the same security
 considerations.

9. References

 [ABNF] Crocker, D., and Overell, P., "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 <url:ftp://ds.internic.net/rfc/rfc2234.txt>

 [ACAP] Myers, J., and Newman, C., "Application Configuration Access
 Protocol (ACAP)", RFC 2244, November 1997.

 <url:ftp://ds.internic.net/rfc/rfc2244.txt>

 [ANON] Newman, C., "Anonymous SASL Mechanism", RFC 2245, November
 1997.

 <url:ftp://ds.internic.net/rfc/rfc2245.txt>

 [CHARSET-LANG-POLICY] Alvestrand, H., "IETF Policy on Character Sets
 and Languages", work in progress.

 [COMPARATOR] Newman, C., Myers, J., "Comparators", work in progress.

 [CRAM-MD5] Klensin, J., Catoe, R., and Krumviede, P., "IMAP/POP
 AUTHorize Extension for Simple Challenge/Response", RFC 2195,
 September 1997.

 <url:ftp://ds.internic.net/rfc/rfc2195.txt>

 [IMAP4] Crispin, M., "Internet Message Access Protocol - Version

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2245
https://datatracker.ietf.org/doc/html/rfc2195

Earhart [Page 22]

Internet DRAFT Access Protocol January 1998

 4rev1", RFC 2060, December 1996.

 <url:ftp://ds.internic.net/rfc/rfc2060.txt>

 [LANG-TAGS] Alvestrand, H., "Tags for the Identification of
 Languages", RFC 1766, March 1995.

 <url:ftp://ds.internic.net/rfc/rfc1766.txt>

 [SASL] Myers, J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997.

 <url:ftp://ds.internic.net/rfc/rfc2222.txt>

 [UTF8] Yergeau, F., "UTF-8, a transformation format of Unicode and
 ISO 10646", RFC 2044, October 1996.

 <url:ftp://ds.internic.net/rfc/rfc2044.txt>

10. Full Copyright Statement

 Copyright (C) The Internet Society 1998. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/rfc2060
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2044

Earhart [Page 23]

Internet DRAFT Access Protocol January 1998

11. Author's Address

 Robert H. Earhart
 Carnegie Mellon
 5000 Forbes Ave.
 Pittsburgh PA, 15213-3890

 Email: earhart+@cmu.edu

Expires July 1998

Earhart [Page 24]

