
Workgroup: SFC Working Group

Internet-Draft: draft-eastlake-cturi-09

Published: 4 June 2023

Intended Status: Standards Track

Expires: 6 December 2023

Authors: D. Eastlake

Futurewei Technologies

Mapping Between MIME Types, Content-Types, and URIs

Abstract

Multipurpose Internet Mail Extension (MIME) Content-Type headers,

the MIME types used therein, and Uniform Resource Identifiers (URIs)

are being used, in different contexts, to label entities. A mapping

is specified from each kind of label into the other. This makes it

possible to express the meaning of almost any URI or Content-Type in

the syntax of the other.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 December 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Introduction to URIs and MIME Type/Content-Type

1.2. Definitions and Conventions

1.3. Additional Features

1.4. Overview of Remaining Sections

2. Mapping of Content-Type to URI

2.1. Simple Mapping of MIME Type to URI

2.2. Mapping of Content-Type to URI

2.3. Content-Type Mapping Special Case for Closure

2.4. Controlled Mapping of a Content-Type to a URI

3. Mapping of URI to Content-Type

3.1. Simple Mapping of URI to Content-Type

3.2. URI Mapping Special Case for Basic Closure

3.3. Controlled Mapping of a URI to a Content-Type

4. Troublesome Characters

5. IANA Considerations and Potential Conflicts

5.1. IANA Considerations

5.2. Potential Conflicts

6. Security Considerations

7. Normative References

8. Informative References

Appendix A. Code

Author's Address

1. Introduction

Both MIME types [RFC2046] and URIs [RFC3986] have come to be used

for type labeling and similar information. Both new MIME types and

XML applications using new URIs for type labeling are continuing to

be created and there does not appear to be any prospect that either

syntax will become so dominant that the other will wither.

In most protocols where there are provisions for a general "type

label", that label is restricted to the syntax of a URI or the

syntax of a Content-Type. In some cases, it will be useful to be

able to express labels which already exist in the "other" syntax.

That is, it may be useful in a URI syntax slot to be able to express

a MIME type or Content-Type and, conversely, it may be useful in a

Content-Type syntax slot to be able to express a URI.

Ability to express Content-Types as URIs makes is easy to talk about

them in [RDF] or other languages which refer to things with URIs. If

one is sending, via SMTP, HTTP, or any other protocol using Content-

Types, keying material or other things typed by the URI format type

labels specified in [RFC3275] or [XMLENC] it is convenient to be

able to express such URI type labels as a Content-Type header. In

the SMIL 2.0 case of the systemComponent attribute, there is a

¶

¶

Concerning Content-Types, please note the following:

specific URI format attribute intended to contain Content-Type

information [SMIL]. These are just a few specific examples that need

a way to convert between URI and Content-Type syntaxes.

This document specifies how to map any Content-Type into a URI and

vice versa.

1.1. Introduction to URIs and MIME Type/Content-Type

The IETF Multipurpose Internet Mail Extensions (MIME) message body

standards developed into a general tagging and bagging mechanism.

This mechanism spread from SMTP mail to HTTP, USENET, and other

protocols. In MIME, the type of an object is given in a "Content-

Type" header line. [RFC2045] [RFC2046] [RFC6838] Such a line

consists of a MIME type and, optionally, additional parameters. A

MIME type consists of a MIME top level type, a slash, and a MIME

subtype.

The original Uniform Resource Locator (URL [RFC1738]), used to point

to World Wide Web (WWW) resources, grew into the more general

Uniform Resource Identifier (URI [RFC3986]). Increasingly URIs are

used as general labels for algorithms [RFC3275], XML namespaces

[XML-NAME], web based protocol data types, etc. (In some of these

label uses, URIs are considered opaque while in other cases they are

assumed to be de-referencable into something which explicates their

meaning.)

1.2. Definitions and Conventions

Concerning URIs, please note the following:

In this document, the term URI is used to include URI

Reference. That is, it includes the case where an octothorp

("#") followed by a fragment identifier is suffixed to a pure

URI.

Only absolute URIs are mappable. Relative URIs, with just a

hierarchical part, are not included in URI as used in this

document. They must first be converted to absolute URIs as

described in [RFC3986].

For presentation purposes, URIs are shown inside angle brackets

("<...>") but these angle brackets are not actually a part of

the URI.

Content-Type

values are shown preceded by "Content-Type: " and, when long,

they are line folded as per [RFC5322]. This prefix and line

folding are for presentation purposes and are not actually a part

of the Content-Type.

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

Concerning "URL encoding/decoding", please note the following:

These are operations on character strings represented by octet

sequences. "URL encoding" is the process of replacing certain

octets with the three octets for the character percent sign ("%")

followed by two hex digits for the value of the octet replaced.

"URL decoding" is the inverse process, i.e. replacing all three

octet sequences that start with the octet for percent sign and

the remainder of which consist of two hex digits (0-9, A-F, or a-

f) with a single octet whose value is represented by the two hex

digit sequence. The characters that are replaced by URL encoding

for the purposes of this draft are listed in Section 4.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Additional Features

Note that a URI or Content-Type could get converted back and forth

multiple times between these two syntaxes. To stop such multiple

conversions from resulting in ever longer and more complex tags, a

check is mandated so that if a conversion is of a previously

converted syntax, the previous conversion is reversed, in so far as

practical.

To improve the repeatability of the results from single or multiple

steps of syntax conversion, capitalization and punctuation

recommendations are made where tokens are case insensitive or

variable punctuation is allowed.

Finally, in cases where the default conversion does not provide for

sufficient control, optional elements are defined for inclusion in

URIs and Content-Types that provide substantial control over the

mapping output.

1.4. Overview of Remaining Sections

Sections 2 and 3 below give an explanation of the mapping specified,

more or less in English. The material is organized to start with the

simplest and most common rules and then add exceptions for special

cases and additional user control.

Section 4 lists characters that must be URI ("%") encoded when

mapping from a URI to a Content-Type.

Section 5 covers IANA Considerations and potential conflicts.

Section 6 give Security Considerations.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note:

Note:

The Appendix presents some sample code in Perl.

2. Mapping of Content-Type to URI

This section starts with how to map a simple MIME type to a URI, in

Section 2.1. In 2.2, this is expanded to mapping a full Content-Type

with parameters. Section 2.3 adds the special check for the mapping

of a Content-Type which appears to have originally come from a URI.

And Section 2.4 describes how to control the mapping to a URI by

means of a special Content-Type parameter.

2.1. Simple Mapping of MIME Type to URI

For the simplest case of a Content-Type consisting of just a MIME

type, create a URI with scheme "ContentType" and a scheme dependent

part consisting of the MIME type. For example

simply converts to

White space is not allowed in URIs so it must be removed. Scheme

names (the part before the first ":" in a URI) are case insensitive

but for readability and repeatability, the capitalization

"ContentType" SHOULD be used. Similarly, MIME top level types and

subtypes (the fields before and after the "/" in a MIME type field,

respectively) are case insensitive but SHOULD be all lower cased

when mapped to the URI form. For example

converts to

There is no "//" after the "ContentType:" scheme as used

herein. Such a "//" would imply a specific structuring of the

scheme dependent part appearing in the URI after the

"ContentType:" as defined in [RFC3986]. Since that full

structuring is not used, "//" is not used. The meaning of URIs

starting with "ContentType://" is reserved for future definition.

"Content-Type", with hyphen, is syntactically allowed as a

scheme name. However, [RFC7595] reserves embedded hyphens in

scheme names to indicate the prefix of an alternate tree of

scheme names. Therefore, the un-hyphenated ContentType is used.

¶

¶

¶

 Content-Type: image/JPEG¶

¶

 <ContentType:image/jpeg>¶

¶

 Content-type: x-FOO?bar/biZZare#sUb#tYpe¶

¶

 <ContentType:x-foo%3Fbar/bizzare%23sub%23type>¶

¶

¶

Note:

2.2. Mapping of Content-Type to URI

A Content-Type header frequently includes more than just the

mandatory MIME type. It can also have type dependent parameters,

including private parameters, such as

Content-Type parameters are mapped into a "query portion" suffix of

the URI in much the same way that HTML form fields [HTML] are. That

is, they are concatenated to the MIME type after a "?" and, if there

is more than one parameter, separated by "&". Thus the above

Content-Types would be mapped into the following URIs:

Parameter values in the mapped URI MUST always be enclosed in double

quotes ('"'). If the Content-Type has a trailing ";" but no

parameters, then "?" SHOULD NOT be added to the URI.

Any occurrences of the "&" separator will have to be encoded

as "&" or other appropriate character reference if the URI is

used in XML outside a CDATA construct, or most other SGML derived

languages. However, "&" is the standard separator used in CGI

(Common Gateway Interface) parsing of query section parameters

for "mailto:" [RFC6068], "http:", etc., schemes. On balance, the

continued use of "&" has been chosen.

2.3. Content-Type Mapping Special Case for Closure

A URI may have been converted to a Content-Type and get converted

back. To stop this from resulting in an ever more complex syntax, a

check MUST be made to see if the MIME subtype of a Content-Type

being converted is in the "uri." subtype tree (see section 3.2

below). If so, the URI is computed from the subtype by stripping the

"uri." prefix and undoing one level of URI encoding. The top level

MIME type is ignored in this case. In addition, Content-Type

parameters, if any, are added as a "query portion" and any "URI-

fragment" parameter is added as a fragment.

For example:

¶

 Content-Type: text/plain; charset="us-ascii";

 x-mac-type="54455854"; x-mac-creator="4D4F5353"

 Content-Type: image/tiff; application=faxbw

¶

¶

 <ContentType:text/plain?charset="us-ascii"&x-mac-type="54455854"&

 x-mac-creator="4D4F5353">

 <ContentType:image/tiff?application="faxbw">

¶

¶

¶

¶

¶

Note:

are mapped to

If a Content-Type or MIME Type is being written by a user and

they know that there is a URI which is a more natural expression

of the labeling desired, they can simply use an ".../uri." MIME

Type to start with.

2.4. Controlled Mapping of a Content-Type to a URI

There will be cases where greater control over the mapping is

desired. These are cases where a more natural URI exists rather than

the automatic "ContentType" URI scheme.

To accomplish this controlled mapping starting with a Content-Type,

a special Content-Type parameter "URI-body" is defined. If a

Content-Type does not have a MIME subtype in the "uri." tree and

this parameter is present, it is URL decoded to produce the non-

query portion of the URI mapped to and the original MIME top level

and sub types is preserved in a URI query parameter called "MIME-

type".

For example

would map to

3. Mapping of URI to Content-Type

Section 3.1 below describes the basic mapping of a URI into a

Content-Type. Section 3.2 specifies the exceptional processing when

a URI being converted to a Content-Type appears to have previously

 Content-Type: application/uri.mailto%3Auser%40host.example

 Content-Type: application/uri.http%3A%2F%2Fx.test; foo="123";

 bar="abcd"

 Content-Type:

 application/uri.http%3A%2F%2Fa%3Ab%40c.text%2Fx%2Fy;

 URI-fragment="z%25z"

¶

¶

 <mailto:user@host.example>

 <http://x.test?foo="123"&bar="abcd">

 <http://a:b@c.text/x/y#z%z>

¶

¶

¶

¶

¶

 Content-Type: application/xml; URI-body="http://xml.example/foo"¶

¶

 <http://xml.example/foo?MIME-type="application/xml">¶

Note:

been converted from a Content-Type. And Section 3.3 provides for

greater control over the mapping when needed.

3.1. Simple Mapping of URI to Content-Type

In the basic case, a URI maps to a Content-Type with a top level

MIME type of "application" and a MIME sub-type in the "uri." tree.

The "uri." is followed by the URL encoding of the URI excluding the

query and fragment parts. Any "query" parameters in the URI are

mapped to Content-Type parameters and, if the URI ends with a

fragment identifier, it is mapped to the special Content-Type

parameter "URI-fragment".

Current URI syntax permits scheme dependent parts in which

"?" does not indicate a query section; however, no such syntaxes

have been publicly defined.

Some examples of the basic case follow:

convert to

Content-Type parameters values extracted from the query portion of a

URI MUST be surrounded with double quotes ('"'). When URI encoding,

if the hex value contains any letters (a-f), they SHOULD be upper

cased.

3.2. URI Mapping Special Case for Basic Closure

It is desirable that an arbitrary Content-Type be recovered

semantically intact when mapped to a URI and then that URI is mapped

back to a Content-Type. To approximate this as closely as practical,

the following special case is added to the simple case described in

section 3.1 above.

If the URI scheme is "ContentType:", then the Content-Type is

computed from the remaining part of the URI (the scheme specific

¶

¶

¶

¶

 <http://example.com/tag42>

 <mailto:U@example.net?subject="misc"&body="line1%0D%0Aline2">

 <xyz://abc.test/def?h=ijk#lmn>

¶

¶

 Content-Type: application/uri.http%3A%2F%2Fexample.com%2Ftag42

 Content-Type: application/uri.mailto%3AU%40example.net;

 subject="misc"; body="line1%250D%250Aline2"

 Content-Type: application/uri.xyz%3A%2F%2Fabc.test%2Fdef;

 h="ijk"; URI-fragment="lmn"

¶

¶

¶

Note:

Note:

part), by replacing the first question mark ("?") and all subsequent

ampersands ("&") with the two character sequence semi-colon space

("; "), and then undoing one level of URI encoding, i.e., replacing

percent sign ("%") followed by two hex digits with the octet having

that hex value.

For example

are mapped to

A URI produced by simple mapping from a normal Content-Type

will never have a fragment suffix. If one appears, it should be

mapped into a URI-fragment parameter, as specified in Section 3.1

above.

If a type label URI is being written by a user and they know

that there is a Content-Type which is a more natural expression

of the labeling desired, they can simply use a "ContentType:"

scheme to start with.

3.3. Controlled Mapping of a URI to a Content-Type

There will be cases where greater control over the mapping is

desired. These are cases where a more natural Content-Type exists

than the "uri." subtree MIME subtype under the "application" type.

To accomplish this controlled mapping starting with a URI, a special

query part parameter "MIME-type" is defined. If a URI is not of

scheme ContentType and this special parameter is found, then the

MIME type is set to the parameter value after URL decoding and the

URI body (all of the URI except "query" parameters and any fragment

identifier) is preserved in a URL encoded "URI-body" Content-Type

parameter.

For example

would map to

¶

¶

 <ContentType:model/vnd.example.longish.sub%23type.name>

 <ContentType:text/plain?charset="US-ASCII"&x-obscure="value">

¶

¶

 Content-Type: model/vnd.example.longish.sub#type.name

 Content-Type: text/plain; charset="US-ASCII"; x-obscure="value"

¶

¶

¶

¶

¶

¶

 <mailto:joe@blow.test?MIME-type="message%2Frfc822"#123>¶

¶

 Content-Type: message/rfc822;

 URI-body="mailto:joe@blow.text"; URI-fragment="123"

¶

4. Troublesome Characters

Troublesome characters are defined as those not permitted in a token

in [RFC2045] with the addition of percent sign and octothorp. That

is, any character code from 0 through 32 inclusive and character

code 127 and any of "(", ")", "<", ">", "@", ",", ";", ":", "\",

"/", "[", "]", "?", "%", "#", and "=" are troublesome characters.

5. IANA Considerations and Potential Conflicts

5.1. IANA Considerations

IANA is requested to assign the following:

The "ContentType" URI scheme.

The "uri." MIME subtype tree. Since this subtree is totally

delegated to the URI specification, there are no independent

publication or review requirements for it. Any valid URI can be

used after the "uri." in any MIME top level type, after

troublesome characters (see section 4) in the URI are URL

encoded.

In the context of URI to Content-Type mapping, a meaning is

specified for the "MIME-type" URI query section parameter.

In the context of Content-Type to URI mapping, a meaning is

specified for the "URI-body" and "URI-fragment" Content-Type

parameters.

5.2. Potential Conflicts

This is the first specification of a Content-Type parameters valid

across all MIME types, namely URI-body and URI-fragment. This is the

first specification of a universal URI query parameter, namely MIME-

type. The probability that any different use is currently being

made, or will in the foreseeable future have to be made, of these

names is low enough that it can be ignored.

It is possible that some processing systems are sensitive to the

presence of parameters they do not understand and will indicate

errors when presented with controlled mapping URIs or Content-Types.

However, Content-Type parameters and URI query parameters are

usually handled on receipt by such mechanisms as storing the name-

value pair in an associative array or as "environment variables" and

ignoring extra parameters. In fact, Content-Type processors are

required by [RFC2046] to ignore any parameters they do not

understand and to ignore parameter order.

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

¶

¶

[RFC2046]

[RFC2119]

[RFC3986]

[RFC8174]

[HTML]

Because this document specifies the "ContentType" URI scheme and the

"uri." MIME subtype tree, no conflict can arise due to other uses of

them.

6. Security Considerations

In some sense, the security considerations for MIME and content

types [RFC2046], URIs [RFC3986], and for every individual MIME type

and URI scheme can apply.

In addition, the deployment of mapping aware software may enable the

introduction into or transmission through MIME or Content-Type

contexts of URI semantics, including possibly dangerous action

schemes such as "mailto", and the introduction into or transmission

through URI contexts of MIME and content type semantics, including

possibly dangerous executable data types or the like.

Finally, implementation of controlled mapping may enable a malicious

user, by adding one of the special parameters specified herein, to

cause a surprising change in the semantics of a URI or Content-Type

produced by the mapping from an apparently innocuous Content-Type or

URI. Particular care should be given to screening the characters

resulting from URL decoding into character code sensitive fields.

7. Normative References

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8. Informative References

Raggett, D., Le Hors, A., and I. Jacobs, "HTML 4.01

Specification", December 1999, <http://www.w3.org/TR/

html4>.

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc8174
http://www.w3.org/TR/html4
http://www.w3.org/TR/html4

[RDF]

[RFC1738]

[RFC2045]

[RFC3275]

[RFC5322]

[RFC6068]

[RFC6838]

[RFC7595]

[SMIL]

[XML-NAME]

[XMLENC]

Lassila, O. and R. Swick, "Resource Description Framework

(RDF) Model and Syntax Specification", 22 February 1999,

<http://www.w3.org/TR/REC-rdf-syntax>.

Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform

Resource Locators (URL)", RFC 1738, DOI 10.17487/RFC1738,

December 1994, <https://www.rfc-editor.org/info/rfc1738>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message

Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,

<https://www.rfc-editor.org/info/rfc2045>.

Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible

Markup Language) XML-Signature Syntax and Processing",

RFC 3275, DOI 10.17487/RFC3275, March 2002, <https://

www.rfc-editor.org/info/rfc3275>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto'

URI Scheme", RFC 6068, DOI 10.17487/RFC6068, October

2010, <https://www.rfc-editor.org/info/rfc6068>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

and Registration Procedures for URI Schemes", BCP 35, RFC

7595, DOI 10.17487/RFC7595, June 2015, <https://www.rfc-

editor.org/info/rfc7595>.

W3C, "Synchronized Multimedia Integration Language (SMIL

2.0)", 7 August 2001, <http://www.w3.org/TR/2001/REC-

smil20-20010807/>.

Bray, T., Hollander, D., and A. Layman, "Namespaces in

XML", 14 January 1999, <http://www.w3.org/TR/REC-xml-

names>.

Eastlake, D. and J. Reagle, "XML Encryption Syntax and

Processing", 18 October 2001, <http://www.w3.org/TR/2001/

WD-xmlenc-core-20011018/>.

http://www.w3.org/TR/REC-rdf-syntax
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc3275
https://www.rfc-editor.org/info/rfc3275
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc6068
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7595
http://www.w3.org/TR/2001/REC-smil20-20010807/
http://www.w3.org/TR/2001/REC-smil20-20010807/
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2001/WD-xmlenc-core-20011018/
http://www.w3.org/TR/2001/WD-xmlenc-core-20011018/

Appendix A. Code

The following Perl code implements much of the mapping given in

Sections 2 and 3 above:¶

<CODE BEGINS>

Content-Type and URI inter-mapping example code

Donald E. Eastlake 3rd, November 2001

test driver

use strict;

print "Type a Content-Type, a URI, or 'Quit'. Do NOT include\n";

print

 "angle brackets around the URI or a 'Content-Type:' prefix.\n\n";

while (<STDIN>) # get test input

{

my $test;

chomp ($_);

if (/^\s*([-\w\.+]+:[^\s]*)/) #test for URI

 {

 print "<$1>\n"; # echo

 $test = uri2ct ($1);

 print " Content-Type: ", $test, "\n";

 $test = ct2uri ($test);

 print "<$test>\n"; # converted back

 }

elsif #test for Content-Type

 (m=^\s*([-_\w\.+#\$%!\?]+/[-_\w\.+#\$%!\?]+.*)=)

(note: RFC 2405 allows other characters in type and subtype)

 {

 print "Content-Type: $1\n"; # echo

 $test = ct2uri ($1);

 print " <", $test, ">\n";

 $test = uri2ct ($test);

 print "Content-Type: $test\n"; # converted back

 }

elsif (/^\s*$/)

elsif (/exit|quit|halt|stop|end/i)

 { last; }

else { print "BAD INPUT: $_\n"; }

print "\n";

}

print "EXIT\n";

sleep 1;

exit;

convert URI to Content-Type

sub uri2ct ($) {

my $result; my $item;

my %paramh; my @paraml;

@_[0] =~ m=\s*([^:/?#]+)?:([^?#]*)(\?([^#]*))?(#([^\s]*))?=;

1 2 3 4 5 6

my $scheme = lc ($1);

my $main = $2;

@paraml = split (/&/, $4);

foreach $item (@paraml)

 {

 $item =~ /([^=]+)=(.*)/;

 $paramh{ lc ($1) } = $2;

 }

if ($scheme eq "contenttype")

 { $result = yestrouble ($main); }

elsif ($result = $paramh{"mime-type"})

 {

 delete ($paramh{"mime-type"});

 $result =~ s/^"(.*)"$/$1/;

 $result = yestrouble ($result) . '; URI-body="' .

 notrouble ($scheme . ":" . $main) . '"';

 }

else

 {

 $result = "application/uri." .

 notrouble ($scheme . ":" . $main);

 }

if (%paramh)

 {

 my $key; my $value;

 while (($key, $value) = each (%paramh))

 { $result .= "; $key=" . dquote ($value); }

 }

if ($5)

 { $result .= '; URI-fragment="' . notrouble ($6) . '"'; }

return $result;

} # end uri2ct

convert Content-Type to URI

sub ct2uri ($) {

my %paramh; my @paraml;

my $result; my $item; my $fragment;

@_[0] =~

m&^\s*([-_\w\.+#\$%!\?]+)/([-_\w\.+#\$%!\?]+)\s*(;\s*(.*))?&;

1 2 3 4

my $type = lc (notrouble ($1) . "/" . notrouble ($2));

my $minor = lc ($2);

@paraml = split (/\s*;\s*/, $4);

foreach $item (@paraml)

 {

 $item =~ /([^=\s]+)\s*=\s*(.*)/;

 $paramh{ lc ($1) } = $2;

 }

if ($minor =~ /^uri\.(.*)/i)

 { $result = yestrouble ($1); }

elsif ($result = $paramh{"uri-body"})

 {

 delete ($paramh{"uri-body"});

 $result = yestrouble ($result);

 $result =~ s/^"(.*)"$/$1/ ;

 $paramh{"MIME-type"} = $type;

 }

else

 {

 $result = "ContentType:" . $type;

 }

if ($fragment = $paramh{"uri-fragment"})

 {

 delete ($paramh{"uri-fragment"});

 $fragment =~ s/^"(.*)"$/$1/;

 }

if (%paramh)

 {

 my $key; my $value;

 $result .= "?";

 while (($key, $value) = each (%paramh))

 {

 $result .= $key . '=' . dquote ($value) . "&";

 }

 chop ($result); # get rid of trailing &

 }

if ($fragment)

 { $result .= '#' . yestrouble ($fragment) }

return $result;

} # end ct2uri

support subroutines

double quote string if not already double quoted

--

sub dquote ($) {

my $string = @_[0];

if ($string =~ /^".*"$/)

 { return $string; }

return '"' . $string . '"';

}

URL encode troublesome characters

sub notrouble ($) {

my $string = @_[0];

my $result;

while ($string =~

m{([^%\?\(\)<>@,;:\\/\[\]="#]*)([%\?\(\)<>@,;:\\/\[\]="#])(.*)}

1 2 3

)

 {

 $result .= "$1%" . sprintf ("%02X", ord ($2));

 $string = $3;

 }

return $result . $string;

} # end no trouble

decode URL encoded string

sub yestrouble ($) {

my $string = @_[0];

my $result;

while ($string =~ /([^%]*)%([0-9a-fA-F]{2})(.*)/)

 {

 $result .= $1 .

 chr (unhexify (substr ($2, 0, 1)) * 16

 + unhexify (substr ($2, 1, 1)));

 $string = $3;

 }

return $result . $string;

} # end yestrouble

convert hex digit to corresponding integer

--

sub unhexify ($) {

my $num = ord (@_[0]);

if ($num >= ord ("0") && $num <= ord ("9"))

 { return ($num - ord ("0")); }

if ($num >= ord ("A") && $num <= ord ("F"))

 { return ($num - ord ("A") + 10); }

return ($num - ord ("a") + 10);

}

<CODE ENDS>

¶

Author's Address

Donald E. Eastlake 3rd

Futurewei Technologies

2386 Panoramic Circle

Apopka, Florida 32703

United States of America

Phone: +1-508-333-2270

Email: d3e3e3@gmail.com

tel:+1-508-333-2270
mailto:d3e3e3@gmail.com

	Mapping Between MIME Types, Content-Types, and URIs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Introduction to URIs and MIME Type/Content-Type
	1.2. Definitions and Conventions
	1.3. Additional Features
	1.4. Overview of Remaining Sections

	2. Mapping of Content-Type to URI
	2.1. Simple Mapping of MIME Type to URI
	2.2. Mapping of Content-Type to URI
	2.3. Content-Type Mapping Special Case for Closure
	2.4. Controlled Mapping of a Content-Type to a URI

	3. Mapping of URI to Content-Type
	3.1. Simple Mapping of URI to Content-Type
	3.2. URI Mapping Special Case for Basic Closure
	3.3. Controlled Mapping of a URI to a Content-Type

	4. Troublesome Characters
	5. IANA Considerations and Potential Conflicts
	5.1. IANA Considerations
	5.2. Potential Conflicts

	6. Security Considerations
	7. Normative References
	8. Informative References
	Appendix A. Code
	Author's Address

