
Network Working Group Glenn Fowler
INTERNET-DRAFT AT&T Labs Research
Intended Status: Informational Landon Curt Noll
 Cisco Systems
 Kiem-Phong Vo
 AT&T Labs Research
 Donald Eastlake
 Huawei Technologies
Expires: September 25, 2012 March 26, 2012

The FNV Non-Cryptographic Hash Algorithm
<draft-eastlake-fnv-03.txt>

Abstract

 FNV (Fowler/Noll/Vo) is a fast, non-cryptographic hash algorithm with
 good dispersion. The purpose of this document is to make information
 on FNV and open source code performing FNV conveniently available to
 the Internet community.

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Distribution of this document is unlimited. Comments should be sent
 to the authors.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-03.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 1]

INTERNET-DRAFT FNV

Table of Contents

1. Introduction..3

2. FNV Basics..4
2.1 FNV Primes...4
2.2 FNV offset_basis.......................................5
2.3 FNV Endianism..5

3. Other Hash Sizes and XOR Folding........................6
4. FNV Constants...7

5. The Source Code...9
5.1 FNV C Header...9
5.2 FNV C Code...9
5.3 FNV Test Code..9

6. Security Considerations................................10
6.1 Why is FNV Non-Cryptographic?.........................10

7. IANA Considerations....................................11
8. Acknowledgements.......................................11

9. References...12
9.1 Normative References..................................12
9.2 Informative References................................12

Appendix A: Work Comparison with SHA-1....................13
Appendix B: Previous IETF Reference to FNV................14
Appendix C: A Few Test Vectors............................15

Appendix Z: Change Summary................................16
 From -00 to -01...16
 From -01 to -02...16
 From -02 to -03...16

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 2]

INTERNET-DRAFT FNV

1. Introduction

 The FNV hash algorithm is based on an idea sent as reviewer comments
 to the [IEEE] POSIX P1003.2 committee by Glenn Fowler and Phong Vo in
 1991. In a subsequent ballot round Landon Curt Noll suggested an
 improvement on their algorithm. Some people tried this hash and found
 that it worked rather well. In an EMail message to Landon, they named
 it the "Fowler/Noll/Vo" or FNV hash. [FNV]

 FNV hashes are designed to be fast while maintaining a low collision
 rate. The high dispersion of the FNV hashes makes them well suited
 for hashing nearly identical strings such as URLs, hostnames,
 filenames, text, IP addresses, etc. Their speed allows one to quickly
 hash lots of data while maintaining a reasonably low collision rate.
 However, they are generally not suitable for cryptographic use. (See

Section 6.1.)

 The FNV hash is widely used, for example in DNS servers, database
 indexing hashes, major web search / indexing engines, netnews history
 file Message-ID lookup functions, anti-spam filters, a spellchecker
 programmed in Ada 95, flatassembler's open source x86 assembler -
 user-defined symbol hashtree, non-cryptographic file fingerprints,
 computing Unique IDs in DASM (DTN Applications for Symbian Mobile-
 phones), Microsoft's hash_map implementation for VC++ 2005, the
 realpath cache in PHP 5.x (php-5.2.3/TSRM/tsrm_virtual_cwd.c), and
 many other uses.

 FNV hash algorithms and source code have been released into the
 public domain. The authors of the FNV algorithm took deliberate steps
 to disclose the algorithm in a public forum soon after it was
 invented. More than a year passed after this public disclosure and
 the authors deliberately took no steps to patent the FNV algorithm.
 Therefore, it is safe to say that the FNV authors have no patent
 claims on the FNV algorithm as published.

 If you use an FNV function in an application, you are kindly
 requested to send an EMail about it to: fnv-mail@asthe.com

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 3]

INTERNET-DRAFT FNV

2. FNV Basics

 This document focuses on the FNV-1a function whose pseudo-code is as
 follows:

 hash = offset_basis
 for each octet_of_data to be hashed
 hash = hash xor octet_of_data
 hash = hash * FNV_Prime
 return hash

 In the pseudo-code above, hash is a power-of-two number of bits (32,
 64, ... 1024) and offset_basis and FNV_Prime depend on the size of
 hash.

 The FNV-1 algorithm is the same, including the values of offset_basis
 and FNV_Prime, except that the order of the two lines with the "xor"
 and multiply operations are reversed. Operational experience
 indicates better hash dispersion for small amounts of data with
 FNV-1a. FNV-0 is the same as FNV-1 but with offset_basis set to zero.
 FNV-1a is suggested for general use.

2.1 FNV Primes

 The theory behind FNV_Prime's is beyond the scope of this document
 but the basic property to look for is how an FNV_Prime would impact
 dispersion. Now, consider any n-bit FNV hash where n is >= 32 and
 also a power of 2. For each such an n-bit FNV hash, an FNV_Prime p is
 defined as:

 When s is an integer and 4 < s < 11, then FNV_Prime is the
 smallest prime p of the form:

 256**int((5 + 2^s)/12) + 2**8 + b

 where b is an integer such that:

 0 < b < 2**8
 The number of one-bits in b is 4 or 5

 and where p mod (2**40 - 2**24 - 1) > (2**24 + 2**8 + 2**7).

 Experimentally, FNV_Primes matching the above constraints tend to
 have better dispersion properties. They improve the polynomial
 feedback characteristic when an FNV_Prime multiplies an intermediate
 hash value. As such, the hash values produced are more scattered
 throughout the n-bit hash space.

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 4]

INTERNET-DRAFT FNV

 The case where s < 5 is not considered because the resulting hash
 quality is too low. Such small hashes can, if desired, be derived
 from a 32 bit FNV hash by XOR folding (see Section 3). The case where
 s > 10 is not considered because of the doubtful utility of such
 large FNV hashes and because the criteria for such large FNV_Primes
 is more complex, due to the sparsity of such large primes, and would
 needlessly clutter the criteria given above.

 Per the above constraints, an FNV_Prime should have only 6 or 7 one-
 bits in it. Therefore, some compilers may seek to improve the
 performance of a multiplication with an FNV_Prime by replacing the
 multiplication with shifts and adds. However, note that the
 performance of this substitution is highly hardware-dependent and
 should be done with care. FNV_Primes were selected primarily for the
 quality of resulting hash function, not for compiler optimization.

2.2 FNV offset_basis

 The offset_basis values for the n-bit FNV-1a algorithms are computed
 by applying the n-bit FNV-0 algorithm to the 32 octets representing
 the following character string in [RFC20]:

 chongo <Landon Curt Noll> /\../\

 The \'s in the above string are not C-style escape characters. In C-
 string notation, these 32 octets are:

 "chongo <Landon Curt Noll> /\\../\\"

2.3 FNV Endianism

 For persistent storage or interoperability between different hardware
 platforms, an FNV hash shall be represented in the little endian
 format. That is, the FNV hash will be stored in an array hash[N] with
 N bytes such that its integer value can be retrieved as follows:

 unsigned char hash[N];
 for (i = N-1, value = 0; i >= 0; --i)
 value = value << 8 + hash[i];

 Of course, when FNV hashes are used in a single process or a group of
 processes sharing memory on processors with compatible endian-ness,
 the natural endianness of those processors can be used regardless of
 its type, little, big, or some other exotic form.

https://datatracker.ietf.org/doc/html/rfc20

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 5]

INTERNET-DRAFT FNV

3. Other Hash Sizes and XOR Folding

 Many hash uses require a hash that is not one of the FNV sizes for
 which constants are provided in Section 4. If a larger hash size is
 needed, please contact the authors of this document.

 Most hash applications make use of a hash that is a fixed size binary
 field. Assume that k bits of hash are desired and k is less than 1024
 but not one of the sizes for which constants are provided in Section

4. The recommended technique is to take the smallest FNV hash of size
 S, where S is larger than k, and calculate the desired hash using xor
 folding as shown below. The final bit masking operation is logically
 unnecessarily if the size of hash is exactly the number of desired
 bits.

 temp = FNV_S (data-to-be-hashed)
 hash = (temp xor temp>>k) bitwise-and (2**k - 1)

 Hash functions are a trade-off between speed and strength. For
 example, a somewhat stronger hash may be obtained for exact FNV sizes
 by calculating an FNV twice as long as the desired output (S = 2*k)
 and performing such data folding using a k equal to the size of the
 desired output. However, if a much stronger hash, for example one
 suitable for cryptographic applications, is wanted, algorithms
 designed for that purpose, such as those in [RFC6234], should be
 used.

 If it is desired to obtain a hash result that is a value between 0
 and max, where max is a not a power of two, simply choose an FNV hash
 size S such that 2**S > max. Then calculate the following:

 FNV_S mod (max+1)

 The resulting remainder will be in the range desired but will suffer
 from a bias against large values with the bias being larger if 2**S
 is only a little bigger than max. If this bias is acceptable, no
 further processing is needed. If this bias is unacceptable, it can be
 avoided by retrying for certain high values of hash, as follows,
 before applying the mod operation above:

 X = (int((2**S - 1) / (max+1))) * (max+1)
 while (hash >= X)
 hash = (hash * FNV_Prime) + offset_basis

https://datatracker.ietf.org/doc/html/rfc6234

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 6]

INTERNET-DRAFT FNV

4. FNV Constants

 The FNV Primes are as follows:

 32 bit FNV_Prime = 2**24 + 2**8 + 0x93 = 16,777,619
 = 0x01000193

 64 bit FNV_Prime = 2**40 + 2**8 + 0xB3 = 1,099,511,628,211
 = 0x00000100 000001B3

 128 bit FNV_Prime = 2**88 + 2**8 + 0x3B =
 309,485,009,821,345,068,724,781,371
 = 0x00000000 01000000 00000000 0000013B

 256 bit FNV_Prime = 2**168 + 2**8 + 0x63 =
 374,144,419,156,711,147,060,143,317,175,368,453,031,918,731,002,211 =
 0x0000000000000000 0000010000000000 0000000000000000 0000000000000163

 512 bit FNV_Prime = 2**344 + 2**8 + 0x57 = 35,
 835,915,874,844,867,368,919,076,489,095,108,449,946,327,955,754,392,
 558,399,825,615,420,669,938,882,575,126,094,039,892,345,713,852,759 =
 0x0000000000000000 0000000000000000 0000000001000000 0000000000000000
 0000000000000000 0000000000000000 0000000000000000 0000000000000157

 1024 bit FNV_Prime = 2**680 + 2**8 + 0x8D = 5,
 016,456,510,113,118,655,434,598,811,035,278,955,030,765,345,404,790,
 744,303,017,523,831,112,055,108,147,451,509,157,692,220,295,382,716,
 162,651,878,526,895,249,385,292,291,816,524,375,083,746,691,371,804,
 094,271,873,160,484,737,966,720,260,389,217,684,476,157,468,082,573 =
 0x0000000000000000 0000000000000000 0000000000000000 0000000000000000
 0000000000000000 0000010000000000 0000000000000000 0000000000000000
 0000000000000000 0000000000000000 0000000000000000 0000000000000000
 0000000000000000 0000000000000000 0000000000000000 000000000000018D

 The FNV offset_basis values are as follows:

 32 bit offset_basis = 2,166,136,261 = 0x811C9DC5

 64 bit offset_basis = 14695981039346656037 = 0xCBF29CE4 84222325

 128 bit offset_basis = 144066263297769815596495629667062367629 =
 0x6C62272E 07BB0142 62B82175 6295C58D

 256 bit offset_basis = 100,029,257,958,052,580,907,070,968,
 620,625,704,837,092,796,014,241,193,945,225,284,501,741,471,925,557 =
 0xDD268DBCAAC55036 2D98C384C4E576CC C8B1536847B6BBB3 1023B4C8CAEE0535

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 7]

INTERNET-DRAFT FNV

 512 bit offset_basis = 9,
 659,303,129,496,669,498,009,435,400,716,310,466,090,418,745,672,637,
 896,108,374,329,434,462,657,994,582,932,197,716,438,449,813,051,892,
 206,539,805,784,495,328,239,340,083,876,191,928,701,583,869,517,785 =
 0xB86DB0B1171F4416 DCA1E50F309990AC AC87D059C9000000 0000000000000D21
 E948F68A34C192F6 2EA79BC942DBE7CE 182036415F56E34B AC982AAC4AFE9FD9

 1024 bit offset_basis = 14,197,795,064,947,621,068,722,070,641,403,
 218,320,880,622,795,441,933,960,878,474,914,617,582,723,252,296,732,
 303,717,722,150,864,096,521,202,355,549,365,628,174,669,108,571,814,
 760,471,015,076,148,029,755,969,804,077,320,157,692,458,563,003,215,
 304,957,150,157,403,644,460,363,550,505,412,711,285,966,361,610,267,
 868,082,893,823,963,790,439,336,411,086,884,584,107,735,010,676,915 =
 0x0000000000000000 005F7A76758ECC4D 32E56D5A591028B7 4B29FC4223FDADA1
 6C3BF34EDA3674DA 9A21D90000000000 0000000000000000 0000000000000000
 0000000000000000 0000000000000000 0000000000000000 000000000004C6D7
 EB6E73802734510A 555F256CC005AE55 6BDE8CC9C6A93B21 AFF4B16C71EE90B3

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 8]

INTERNET-DRAFT FNV

5. The Source Code

 The following sub-sections are intended, in later versions, to
 include reference C source code and a test driver for FNV-1a.

5.1 FNV C Header

 TBD

5.2 FNV C Code

 TBD

5.3 FNV Test Code

 TBD

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 9]

INTERNET-DRAFT FNV

6. Security Considerations

 This document is intended to provide convenient open source access by
 the Internet community to the FNV non-cryptographic hash. No
 assertion of suitability for cryptographic applications is made for
 the FNV hash algorithms.

6.1 Why is FNV Non-Cryptographic?

 A full discussion of cryptographic hash requirements and strength is
 beyond the scope of this document. However, here are three
 characteristics of FNV that would generally be considered to make it
 non-cryptographic:

 1. Work Factor - To make brute force inversion hard, a cryptographic
 hash should be computationally expensive, especially for a general
 purpose processor. But FNV is designed to be very inexpensive on a
 general-purpose processor. (See Appendix A.)

 2. Sticky State - A cryptographic hash should not have a state in
 which it can stick for a plausible input pattern. But, in the very
 unlikely event that the FNV hash variable becomes zero and the
 input is a sequence of zeros, the hash variable will remain at
 zero until there is a non-zero input byte and the final hash value
 will be unaffected by the length of that sequence of zero input
 bytes. Of course, for the common case of fixed length input, this
 would not be significant because the number of non-zero bytes
 would vary inversely with the number of zero bytes and for some
 types of input runs of zeros do not occur. Furthermore, the
 inclusion of even a little unpredictable input may be sufficient
 to stop an adversary from inducing a zero hash variable.

 3. Diffusion - Every output bit of a cryptographic hash should be an
 equally complex function of every input bit. But it is easy to see
 that the least significant bit of a direct FNV hash is the XOR of
 the least significant bits of every input byte and does not depend
 on any other input bit. If this is considered a problem, it can be
 easily fixed by XOR folding (see Section 3).

 Nevertheless, none of the above have proven to be a problem in actual
 practice for the many applications of FNV.

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 10]

INTERNET-DRAFT FNV

7. IANA Considerations

 This document requires no IANA Actions. RFC Editor Note: please
 delete this section before publication.

8. Acknowledgements

 The contributions of the following are gratefully acknowledged:

 Frank Ellermann, Bob Moskowitz, and Stefan Santesson.

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 11]

INTERNET-DRAFT FNV

9. References

 Below are the normative and informative references for this document.

9.1 Normative References

 [RFC20] - Cerf, V., "ASCII format for network interchange", RFC 20,
 October 1969.

9.2 Informative References

 [FNV] - FNV web site:
http://www.isthe.com/chongo/tech/comp/fnv/index.html

 [IEEE] - http://www.ieee.org

 [RFC3174] - Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm
 1 (SHA1)", RFC 3174, September 2001.

 [RFC6194] - Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, March 2011.

 [RFC6234] - Eastlake 3rd, D. and T. Hansen, "US Secure Hash
 Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, May
 2011.

https://datatracker.ietf.org/doc/html/rfc20
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.ieee.org
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc6194
https://datatracker.ietf.org/doc/html/rfc6234

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 12]

INTERNET-DRAFT FNV

Appendix A: Work Comparison with SHA-1

 This section provides a simplistic rough comparison of the level of
 effort required per input byte to compute FNV-1a and SHA-1 [RFC3174].

 Ignoring transfer of control and conditional tests and equating all
 logical and arithmetic operations, FNV requires 2 operations per
 byte, an XOR and a multiply.

 SHA-1 is a relatively weak cryptographic hash producing a 160-bit
 hash. It that has been partially broken [RFC6194]. It is actually
 designed to accept a bit vector input although almost all computer
 uses apply it to an integer number of bytes. It processes blocks of
 512 bits (64 bytes) and we estimate the effort involved in SHA-1
 processing a full block. Ignoring SHA-1 initial set up, transfer of
 control, and conditional tests, but counting all logical and
 arithmetic operations, including counting indexing as an addition,
 SHA-1 requires 1,744 operations per 64 bytes block or 27.25
 operations per byte. So by this rough measure, it is a little over 13
 times the effort of FNV for large amounts of data. However, FNV is
 commonly used for small inputs. Using the above method, for inputs of
 N bytes, where N is <= 55 so SHA-1 will take one block (SHA-1
 includes padding and an 8-byte length at the end of the data in the
 last block), the ratio of the effort for SHA-1 to the effort for FNV
 will be 872/N. For example, with an 8 byte input, SHA-1 will take 109
 times as much effort as FNV.

 Stronger cryptographic functions than SHA-1 generally have an even
 high work factor.

https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc6194

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 13]

INTERNET-DRAFT FNV

Appendix B: Previous IETF Reference to FNV

 FNV-1a was referenced in draft-ietf-tls-cached-info-08.txt that has
 since expired. It was later decided that it would be better to use a
 cryptographic hash for that application.

 Below is the Jave code for FNV64 from that TLS draft include by the
 kind permission of the author:

 /**
 * Java code sample, implementing 64 bit FNV-1a
 * By Stefan Santesson
 */

 import java.math.BigInteger;

 public class FNV {

 static public BigInteger getFNV1aToByte(byte[] inp) {

 BigInteger m = new BigInteger("2").pow(64);
 BigInteger fnvPrime = new BigInteger("1099511628211");
 BigInteger fnvOffsetBasis =
 new BigInteger("14695981039346656037");

 BigInteger digest = fnvOffsetBasis;

 for (byte b : inp) {
 digest = digest.xor(BigInteger.valueOf((int) b & 255));
 digest = digest.multiply(fnvPrime).mod(m);
 }
 return digest;

 }
 }

https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-08.txt

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 14]

INTERNET-DRAFT FNV

Appendix C: A Few Test Vectors

 Below are a few test vectors in the form of ASCII strings and their
 FNV32 and FNV64 hashes using the FNV-1a algorithm.

 Strings without null (zero byte) termination:

 String FNV32 FNV64
 "" 0x811c9dc5 0xcbf29ce484222325
 "a" 0xe40c292c 0xaf63dc4c8601ec8c
 "foobar" 0xbf9cf968 0x85944171f73967e8

 Strings including null (zero byte) termination:

 String FNV32 FNV64
 "" 0x050c5d1f 0xaf63bd4c8601b7df
 "a" 0x2b24d044 0x089be207b544f1e4
 "foobar" 0x0c1c9eb8 0x34531ca7168b8f38

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 15]

INTERNET-DRAFT FNV

Appendix Z: Change Summary

 RFC Editor Note: Please delete this appendix on publication.

From -00 to -01

 1. Add Security Considerations section on why FNV is non-
 cryptographic.

 2. Add Appendix A on a work factor comparison with SHA-1.

 3. Add Appendix B concerning previous IETF draft referenced to FNV.

 4. Minor editorial changes.

From -01 to -02

 1. Correct FNV_Prime determination criteria and add note as to why s
 < 5 and s > 10 are not considered.

 2. Add acknowledgements list.

 3. Add a couple of references.

 4. Minor editorial changes.

From -02 to -03

 1. Replace direct reference to US-ASCII standard with reference to
RFC 20.

 2. Update dates and verion number.

 3. Minor editing change.

https://datatracker.ietf.org/doc/html/rfc20

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 16]

INTERNET-DRAFT FNV

Author's Address

 Glenn Fowler
 AT&T Labs Research
 180 Park Avenue
 Florham Park, NJ 07932 USA

 Email: gsf@research.att.com
 URL: http://www.research.att.com/~gsf/

 Landon Curt Noll
 Cisco Systems
 170 West Tasman Drive
 San Jose, CA 95134 USA

 Telephone: +1-408-424-1102
 Email: fnv-rfc-mail@asthe.com
 URL: http://www.isthe.com/chongo/index.html

 Kiem-Phong Vo
 AT&T Labs Research
 180 Park Avenue
 Florham Park, NJ 07932 USA

 Email: kpv@research.att.com
 URL: http://www.research.att.com/info/kpv/

 Donald Eastlake
 Huawei Technologies
 155 Beaver Street
 Milford, MA 01757 USA

 Telephone: +1-508-333-2270
 EMail: d3e3e3@gmail.com

http://www.research.att.com/~gsf/
http://www.isthe.com/chongo/index.html
http://www.research.att.com/info/kpv/

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 17]

INTERNET-DRAFT FNV

Copyright, Disclaimer, and Additional IPR Provisions

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License. This Internet-Draft is
 submitted to IETF in full conformance with the provisions of BCP 78
 and BCP 79.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

G. Fowler, L. Noll, K. Vo & D. Eastlake [Page 18]

