
Workgroup: BIER

Internet-Draft: draft-eckert-bier-cgm2-rbs-01

Published: 9 February 2022

Intended Status: Experimental

Expires: 13 August 2022

Authors: T. Eckert

Futurewei Technologies USA

B. Xu

Huawei Technologies (2012Lab)

Carrier Grade Minimalist Multicast (CGM2) using Bit Index Explicit

Replication (BIER) with Recursive BitString Structure (RBS) Addresses

Abstract

This memo introduces the architecture of a multicast architecture

derived from BIER-TE, which this memo calls Carrier Grade Minimalist

Multicast (CGM2). It reduces limitations and complexities of BIER-TE

by replacing the representation of the in-packet-header delivery

tree of packets through a "flat" BitString of adjacencies with a

hierarchical structure of BFR-local BitStrings called the Recursive

BitString Structure (RBS) Address.

Benefits of CGM2 with RBS addresses include smaller/fewer BIFT in

BFR, less complexity for the network architect and in the CGM2

controller (compared to a BIER-TE controller) and fewer packet

copies to reach a larger set of BFER.

The additional cost of forwarding with RBS addresses is a slightly

more complex processing of the RBS address in BFR compared to a flat

BitString and the novel per-hop rewrite of the RBS address as

opposed to bit-reset rewrite in BIER/BIER-TE.

CGM2 can support the traditional deployment model of BIER/BIER-TE

with the BIER/BIER-TE domain terminating at service provider PE

routers as BFIR/BFER, but it is also the intention of this document

to expand CGM2 domains all the way into hosts, and therefore

eliminating the need for an IP Multicast flow overlay, further

reducing the complexity of Multicast services using CGM2. Note that

this is not fully detailed in this version of the document.

This document does not specify an encapsulation for CGM2/RBS

addresses. It could use existing encapsulations such as [RFC8296],

but also other encapsulations such as IPv6 extension headers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Overview

1.1. Introduction

1.2. Encapsulation Considerations

2. CGM2/RBS Architecture

3. CGM2/RBS forwarding plane

3.1. RBS BIFT

3.2. Reference encoding of RBS addresses

3.3. RBS Address

3.3.1. RecursiveUnit

3.3.2. AddressingField

4. BIER-RBS Example

4.1. BFR B

4.2. BFR R

4.3. BFR S

4.4. BFR C

4.5. BFR D

4.6. BFR E

5. RBS forwarding Pseudocode

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

6. Operational and design considerations (informational)

6.1. Comparison with BIER-TE / BIER

6.1.1. Eliminating the need for large BIFT

6.1.2. Reducing number of duplicate packet copies across BFR

6.1.3. BIER-TE forwarding plane complexities

6.1.4. BIER-TE controller complexities

6.1.5. BIER-TE specification complexities

6.1.6. Forwarding plane complexity

6.2. CGM2 / RBS controller considerations

6.3. Analysis of performance gain with CGM2

6.3.1. Reference topology

6.3.2. Comparison BIER and CGM2/RBS

6.4. Example use case scenarios

7. Acknowledgements

8. Security considerations

9. Changelog

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Overview

1.1. Introduction

Carrier Grade Minimalist Multicast (CGM2) is an architecture derived

from the BIER-TE architecture [I-D.ietf-bier-te-arch] with the

following changes/improvements.

CGM2 forwarding is based on the principles of BIER-TE forwarding: It

is based on an explicit, in-packet, "source routed" tree indicated

through bits for each adjacency that the packet has to traverse.

Like in BIER-TE, adjacencies can be L2 to a subnet local neighbor in

support of "native" deployment of CGM2 and/or L3, so-called "routed"

adjacencies to support incremental or partial deployment of CGM2 as

needed.

The address used to replicate packets in the network is not a flat

network wide BitString as in BIER-TE, but a hierarchical structure

of BitStrings called a Recursive BitString Structure (RBS) Address.

The significance of the BitPositions (BP) in each BitString is only

local to the BIFT of the router/BFR that is processing this specific

BitString.

RBS addressing allows for a more compact representation of a large

set of adjacencies especially in the common case of sparse set of

receivers in large Service Provider Networks (SP).

¶

¶

¶

¶

CGM2 thereby eliminates the challenges in BIER [RFC8279] and BIER-TE

having to send multiple copies of the same packet in large SP

networks and the complexities especially for BIER-TE (but also BIER)

to engineer multiple set identifier (SI) and/or sub-domains (SD)

BIER-TE topologies for limited size BitStrings (e.g.: 265) to cover

large network topologies.

Like BIER-TE, CGM2 is intended to leverage a Controller to minimize

the control plane complexity in the network to only a simple unicast

routing underlay required only for routed adjacencies.

The controller centric architecture provides most easily any type of

required traffic optimization for its multicast traffic due to their

need to perform often NP-complete calculations across the whole

topology: reservation of bandwidth to support CIR/PIR traffic

buffer/latency to support Deterministic Network (DetNet) traffic,

cost optimized Steiner trees, failure point disjoint trees for

higher resilience including DetNet deterministic services.

CGM2 can be deployed as BIER/BIER-TE are specified today, by

encapsulating IP Multicast traffic at Provider Edge (PE) routers,

but it is also considered to be highly desirable to extend CGM2 all

the way into Multicast Sender/Receivers to eliminate the overhead of

an Overlay Control plane for that (legacy) IP Multicast layer and

the need to deal with yet another IP multicast group addressing

space. In this deployment option Controller signaling extends

directly (or indirectly via BFIR) into senders.

1.2. Encapsulation Considerations

This document does not define a specific BIER-RBS encapsulation nor

does it preclude that multiple different encapsulations may be

beneficial to better support different use-cases or operator/user

technology preferences. Instead, it discusses considerations for

specific choices.

BIER-RBS can easily re-use [RFC8296] encapsulation. The RBS address

is inserted into the [RFC8296] BitString field. The BFR forwarding

plane needs to be configured (from Controller or control plane) that

the BIFT-id(s) used with RBS addresses are mapped to BIFT and

forwarding rules with RBS semantic.

SI/SD fields of [RFC8296] may be used as in BIER-TE, but given that

CGM2 is designed (as described in the Overview section) to simplify

multicast services, a likely and desirable configuration would be to

only use a single BIFT in each BFR for RBS addresses, and mapping

these to a single SD and SI 0.

IP Multicast [RFC1112] was defined as an extension of IP [RFC791],

reusing the same network header, and IPv6 multicast inherits the

¶

¶

¶

¶

¶

¶

¶

same approach. In comparison, [RFC8296] defines BIER encapsulation

as a completely separate (from IP) layer 3 protocol, and duplicates

both IP and MPLS header elements into the [RFC8296] header. This not

only results in always unused, duplicate header parameters (such as

TC vs. DSCP), but it also foregoes the option to use any non-

considered IPv6 extension headers with BIER and would require the

introduction of a whole new BIER specific socket API into host

operating systems if it was to be supported natively in hosts.

Therefore an encapsulation of RBS addresses using an IP and/or IPv6

extension header may be more desirable in otherwise IP and/or IPv6

only deployments, for example when CGM2 is extended into hosts,

because it would allow to support CGM2 via existing IP/IPv6 socket

APIs as long as they support extension headers, which the most

important host stacks do today.

2. CGM2/RBS Architecture

This section describes the basic CGM2 architecture via Figure 1

through its key differences over the BIER-TE architecture.

Figure 1: CGM2/RBS Architecture

In the "traditional" option, when deployed with a domain spanning

from BFIR to BFER, the CGM2 architecture is very much like the BIER-

TE architecture, in which the BIER-TE forwarding rules for

(BitString,SI,SD) addresses are replaced by the RBS address

forwarding rules.

¶

¶

¶

 Optional

 |<-IGMP/PIM-> multicast flow <-PIM/IGMP->|

 overlay

 CGM2 [CGM2 Controller]

control plane . ^ ^ ^

 . / | \ BIFT configuration

 | | | per-flow RBS setup

 . | | |

 . v v v

Src (-> ...) -> BFIR-----BFR-----BFER -> (... ->) Rcvr

 |<----------------->|

 CGM2 with RBS-address forwarding plane

 |<.............. <- CGM domain --->|

 |<--------------------->|

 Routing underlay (optional)

¶

The CGM2 Controller replaces the BIER-TE controller, populating

during network configuration the BIFT, which are very much like

BIER-TE BIFT, except that they do not cover a network-wide BP

address space, but instead each BFR BIFT only needs as many BP in

its BIFT as it has link-local adjacencies, and in partial

deployments also additional L3 adjacencies to tunnel across non-CGM

capable routers.

Per-flow operations in this "traditional" option is very much as in

BIER/BIER-TE, with the CGM2 controller determining the RBS address

(instead of the BIER-TE (BitString,SI,SD)) to be imposed as part of

the RBS address header (compared to the BIER encapsulation

[RFC8296]) on the BFIR.

To eliminate the need for an IP Multicast flow overlays, a CGM2

domain may extend all the way into Sender/Receiver hosts. This is

called "end-to-end" deployment model. In that case, the sender host

and CGM2 controller collaborate to determine the desired receivers

for a packet as well as desired path policy/requirements, the

controller indicates to the sender of the packet the necessary RBS

address and address of the BFIR, and the Sender imposes an

appropriate RBS address header together with a unicast encapsulation

towards the BFIR.

CGM2 is also intended so especially simplify controller operations

that also instantiate QoS policies for multicast traffic flows, such

as bandwidth and latency reservations (e.g.: DetNet). As in BIER-TE,

this is orthogonal to the operations of the CGM2/RBS address

forwarding operations and will be covered in separate documents.

3. CGM2/RBS forwarding plane

Instead of a (flat) BitString as in BIER-TE that use a network wide

shared BP address space for adjacencies across multiple BFR, CGM2

uses a structured address built from so-called RecursiveUnits (RU)

that contain BitStrings, each of which is to be parsed by exactly

one BFR along the delivery tree of the packet.

The equivalent to a BIER/BIER-TE BitString is therefore called the

RecursiveUnit BitString Structure (RBS) Address. Forwarding for

CGMP2 is therefore also called RBS forwarding.

3.1. RBS BIFT

RBS BIFT as shown in Figure 2 are, like BIER-TE BIFT, tables that

are indexed by BP, containing for each BP an adjacency. The core

difference over BIER-TE BIFT is that the BP of the BIFT are all

local to the BFR, whereas in BIER-TE, the BP are shared across a

BIER-TE domain, each BFR can only use a subset the BP for its own

adjacencies, and only in some cases can BP be shared for adjacencies

¶

¶

¶

¶

¶

¶

across two (or more) BFR. Because of this difference, most of the

complexities of BIER-TE BIFT are not required with BIER-RBS BIFT,

see Section 6.1.3.

Figure 2: RBS BIFT

An RBS BIFT has a configured number of N addressable BP entries.

When a BFR receives a packet with an RBS address, it expects that

the BitString inside the RBS address that needs to be parsed by the

BFR (see Section 3.3 has a length that matches N according to the

encapsulation used for the RBS address. Therefore, N MUST support

configuration in increments of the supported size of the BitString

in the encapsulation of the RBS Address. In the reference encoding

(see Section 3.3), the increment for N is 1 (bit). If an

encapsulation would call for a byte accurate encoding of the

BitString, N would have to be configurable in increments of 8.

BFR MUST support a value of N larger than the maximum number of

adjacencies through which RBS forwarding/replication of a single

packet is required, such as the number of physical interfaces on BFR

that are intended to be deployed as a Provider Core (P) routers.

RBS BIFT introduce a new "Recursive" flag for each BP. These are

used for adjacencies to other BFR to indicate that the BFR

processing the packet RBS address BitString also has to expect for

every BP with the recursive flag set another RU inside the RBS

address.

3.2. Reference encoding of RBS addresses

Structure elements of the RBS Address and its components are

parameterized according to a specific encapsulation for RBS

addresses, such as the total size of the TotalLen field and the unit

in which it is counted (see Section 3.3). These parameters are

outside the scope of this document. Instead, this document defines

example parameters that together form the so called "Reference

¶

+--+---------+-------------+

|BP|Recursive| Adjacency|

+--+---------+-------------+

| 1| 1|adjacenct BFR|

+--+---------+-------------+

| 2| 0| punt/host|

+--+---------+-------------+

| |

+--+---------+-------------+

| N| ...| ... |

+--+---------+-------------+

¶

¶

¶

encoding of RBS addresses". This encoding may or may not be adopted

for any particular encapsulation of RBS addresses.

3.3. RBS Address

An RBS address is structured as shown in Figure 3.

Figure 3: RBS Address

TotalLen counts in some unit, such as bits, nibbles or bytes the

length of the RBS Address excluding itself and Padding. For the

reference encoding, TotalLen is an 8-bit field that counts the size

of the RBS address in bits, permitting for up to 256 bit long RBS

addresses.

In case additional, non-recursive flags/fields are determined to be

required in the RBS Address, they should be encoded in a field

between TotalLen and RecursiveUnit, which is called Rsv. In the

reference encoding, this field has a length of 0.

Padding is used to align the RBS address as required by the

encapsulation. In the reference encoding, this alignment is to 8

bits (byte boundaries). Therefore, Padding (bits) = (8 - TotalLen %

8).

3.3.1. RecursiveUnit

The RecursiveUnit field is structured as shown in Figure 4.

Figure 4: RBS RecursiveUnit

The BitString field indicates the bit positions (BPs) to which the

packet is to be replicated using the BIFT of the BFR that is

processing the Recursive unit.

For each of M BP set in the BitString of the RecursiveUnit for which

the Recursive flag is set in the BIFT of the BFR, the RecursiveUnit

¶

¶

+----------+-----+---------------+---------+

| TotalLen | Rsv | RecursiveUnit | Padding |

+----------+-----+---------------+---------+

 . .

 TotalLen

¶

¶

¶

¶

+-+-+-+-+-+ -+-+-+-+-+-+-+-+-+ -+-+-+-+-+-+-+-+ -+

| BitString...| AddressingField...| RecursiveUnit 1...M|

+-+-+-+-+-+ -+-+-+-+-+-+-+-+-+ -+-+-+-+-+-+-+-+- -+

¶

contains a RecursiveUnit i, i=1...M, in order of increasing BP

index.

If adjacencies between BFR are not configured as recursive in the

BIFT, this recursive extraction does not happen for an adjacency, no

RecursiveUnit i has to be encoded for the BP, and BFRs across such

adjacencies would have to share the BP of a common BIFT as in BIER-

TE. This option is not further discussed in this version of the

document.

3.3.2. AddressingField

The AddressingField of an RBS address is structured as shown in

Figure 5.

Figure 5: RBS AddressingField

The AddressingField consists of one or more fields Li, i=1...(M-1).

Li is the length of RecursiveUnit i for the i'th recursive bit set

in the BitString preceding it.

In the reference encoding, the lengths are 8-bit fields indicating

the length of RecursiveUnits in bits.

The length of the M'th RecursiveUnit is not explicitly encoded but

has to be calculated from TotalLen.

4. BIER-RBS Example

Figure 6 shows an example for RBS forwarding.

¶

¶

¶

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

| L1 | L2 |...| L(M-1) |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

¶

¶

¶

¶

 +-+ +-+ +-+

 | |-----| |------|C|-=> Client2

 +-+ +-+ +-+

 / \ \ /=>/ \

 / \ \ / |

 +-+ +-+ +-+ +-+

 Client1 =>-|B|-=>-|R|-=>-|S|-=>-|D|-=> Client3

 +-+ +-+ +-+ +-+

 \ /

 \ +-+

 \-=>-|E|-=> Client4

 +-+

Figure 6: Example Network Topology

A packet from Client1 connected to BFIR B is intended to be

replicated to Client2,3,4. The example initially assumes the

traditional option of the architecture, in which the imposition of

the header for the RBS address happens on BFIR B, for example based

on functions of an IP multicast flow overlay.

A controller determines that the packet should be forwarded hop-by-

hop across the network as shown in Figure 7.

Figure 7: Desired example forwarding tree

4.1. BFR B

The 34 bit long (without padding) RBS address shown in Figure 8 is

constructed to represent the desired tree from Figure 7 and is

imposed at B onto the packet through an appropriate header

supporting the reference encoding of RBS addresses.

Figure 8: RBS Address imposed at BFIR-B

In Figure 8 and further the illustrations of RBS addresses,

BitStrings are preceded by the name of the BFR for whom they are

destined and their values are shown as binary with the lowest BP 1

starting on the left. TotalLength (Tlen:), AddressingField (L1:) and

Padding (Pad:) fields are shown with decimal values.

¶

¶

Client 1 ->B(impose BIER-RBS)

 =>R(

 => E (dispose BIER-RBS)

 => Client4

 => S(

 =>C (dispose BIER-RBS)

 => Client2

 =>D (dispose BIER-RBS)

 => Client3

)

)

¶

 RecursiveUnit

 . .

+-------+----+-----+-----+-----+----+-----+------+-----+-----+

|Tlen:34|B:01|R:011|L1:10|S:011|L1:3|C:001|D:0001|E:001|Pad:6|

+-------+----+-----+-----+-----+----+-----+------+-----+-----+

 8bit 2bit 3bit 8bit 3bit 8bit 3bit 4bit 3bit 6bit

¶

RBS forwarding on B examines this address based on its RBS BIFT with

N=2 BP entries, which is shown in Figure 9.

Figure 9: BIER-RBS BIFT on B

This results in the parsing of the RBS address as shown in Figure

10, which shows that B does not need (nor can) parse all structural

elements, but only those relevant to its own RBS forwarding

procedure.

Figure 10: RBS Address as processed by BFIR-B

There is only one BP towards BFR R set in the BitString B:01, so the

RecursiveUnit 1 follows directly after the end of the BitString B:01

and it covers the whole Tlen - length of BitString (34 - 2 = 32

bit).

B rewrites the RBS address by replacing the RecursiveUnit with

RecursiveUnit 1 and adjusts the Padding to zero bits. The resulting

RBS address is shown in Figure 11. It then sends the packet copy

with that rewritten RBS address to BFR R.

4.2. BFR R

BFR R receives from BFR B the packet with that RBS address shown in

Figure 11.

¶

+--+---------+---------+

|BP|Recursive|Adjacency|

+--+---------+---------+

| 1| 0| client1 |

+--+---------+---------+

| 2| 1| R |

+--+---------+---------+

¶

 RecursiveUnit

 . .

 ,.. RecursiveUnit 1

 . . .

+-------+----+----------------------------------+-----+

|Tlen:34|B:01|R:01100001010011000000110010001001|Pad:6|

+-------+----+----------------------------------+-----+

 8bit 2bit 32bit 6bit

¶

¶

¶

Figure 11: RBS Address processed by BFR-R

BFR R parses the RBS Address as shown in Figure 12 using its RBS

BIFT of N=3 BP entries shown in Figure 13.

Figure 12: RBS Address processed by BFR-R

Because there are two recursive BP set in the BitString for R, one

for BFR S and one for BFR E, one Length field L1 is required in the

AddressingField, indicating the length of the RecursiveUnit 1 for

BFR S, followed by the remainder of the RBS address being the

RecursiveUnit 2 for BFR E.

Figure 13: RBS BIFT on BFR R

 RecursiveUnit

 . .

+-------+-----+-----+-----+----+-----+------+-----+

|Tlen:32|R:011|L1:18|S:011|L1:3|C:001|D:0001|E:001|

+-------+-----+-----+-----+----+-----+------+-----+

 8bit 3bit 8bit 3bit 8bit 3bit 4bit 3bit

 . . .

 . RecursiveUnit 1......

 .

 RecursiveUnit 2 ...

¶

 RecursiveUnit

 . .

+-------+-----+-----+--------------------+-----+

|Tlen:32|R:011|L1:18|S:011000000110010001|E:001|

+-------+-----+-----+--------------------+-----+

 8bit 3bit 8bit 18bit 3bit

 . . .

 . RecursiveUnit 1...

 .

 RecursiveUnit 2 ...

¶

+--+---------+---------+

|BP|Recursive|Adjacency|

+--+---------+---------+

| 1| 1| B |

+--+---------+---------+

| 2| 1| S |

+--+---------+---------+

| 3| 1| E |

+--+---------+---------+

BFR R accordingly creates one copy for BFR S using RecursiveUnit 1,

and only copy for BFR E using RecursiveUnit 2, updating Padding

accordingly for each copy.

4.3. BFR S

BFR S receives from BFR B the packet and parses the RBS address as

shown in Figure 14 using its RBS BIFT of N=3 BP shown in Figure 15.

Figure 14: RBS Address processed by BFR-S

Figure 15: RBS BIFT on BFR-S

BFR S accordingly sends one packet copy with RecursiveUnit 1 in the

RBS address to BFR C and a second packet copy with RecursiveUnit 2

to BFR D.

4.4. BFR C

BFR C receives from BFR S the packet and parses the RBS address

according to its N=3 BP entries BIFT (shown in Figure 17) as shown

in Figure 16.

¶

¶

 RecursiveUnit

 . .

+-------+-----+----+-----+------+-----+

|Tlen:18|S:011|L1:3|C:001|D:0001|Pad:6|

+-------+-----+----+-----+------+-----+

 8bit 3bit 8bit 3bit 4bit 3bit

 RecursiveUnit 1 . .

 .

 RecursiveUnit 2

+--+---------+---------+

|BP|Recursive|Adjacency|

+--+---------+---------+

| 1| 1| R |

+--+---------+---------+

| 2| 1| C |

+--+---------+---------+

| 3| 1| D |

+--+---------+---------+

¶

¶

Figure 16: RBS Address processed by BFR-C

Figure 17: RBS BIFT on BFR-C

BFR S accordingly creates one packet copy for BP 3 where the RBS

address encapsulation is disposed of, and the packet is ultimately

forwarded to Client 2, for example because of an IP multicast

payload for which the multicast flow overlay identifies Client 2 as

an interested receiver, as in BIER/BIER-TE.

To avoid having to use an IP flow overlay, the BIFT could instead

have one BP allocated for every non-RBS destination, in this example

BP 3 would then explicitly be allocated for Client 2, and instead of

disposing of the RBS address encapsulation, BFR C would impose or

rewrite a unicast encapsulation to make the packet become a unicast

packet directed to Client 2. This option is not further detailed in

this version of the document.

4.5. BFR D

The procedures for processing of the packet on BFR D are very much

the same as on BFR C. Figure 18 shows the RBS address at BFR D,

Figure 19 shows the N=4 bit RBS BIFT of BFR D.

Figure 18: RBS Address processed by BFR-D

+-------+-----+-----+

|Tlen:3 |C:001|Pad:5|

+-------+-----+-----+

 8bit 3bit 5bi

+--+---------+-------------+

|BP|Recursive| Adjacency|

+--+---------+-------------+

| 1| 1| S |

+--+---------+-------------+

| 2| 1| D |

+--+---------+-------------+

| 3| 0| local_decap|

+--+---------+-------------+

¶

¶

¶

+-------+------+-----+

|Tlen:4 |D:0001|Pad:4|

+-------+------+-----+

 8bit 4bit 4bit

Figure 19: RBS BIFT on BFR-D

4.6. BFR E

The procedures for processing of the packet on BFR E are very much

the same as on BFR C and D. Figure 20 shows the RBS address at BFR

D, Figure 21 shows the N=E bit RBS BIFT of BFR E.

Figure 20: RBS Address processed by BFR-E

Figure 21: RBS BIFT on BFR-E

5. RBS forwarding Pseudocode

The following example RBS forwarding Pseudocode assumes the

reference encoding of bit-accurate length of BitStrings and

RecursiveUnits as well as 8-bit long TotalLen and AddressingField

Lengths. All packet field addressing and address/offset calculations

is therefore bit-accurate instead of byte accurate (which is what

most CPU memory access today is).

+--+---------+-------------+

|BP|Recursive| Adjacency|

+--+---------+-------------+

| 1| 1| S |

+--+---------+-------------+

| 2| 1| C |

+--+---------+-------------+

| 3| 1| E |

+--+---------+-------------+

| 4| 0| local_decap|

+--+---------+-------------+

¶

+-------+-----+-----+

|Tlen:3 |E:001|Pad:5|

+-------+-----+-----+

 8bit 3bit 5bit

+--+---------+-------------+

|BP|Recursive| Adjacency|

+--+---------+-------------+

| 1| 1| R |

+--+---------+-------------+

| 2| 1| D |

+--+---------+-------------+

| 3| 0| local_decap|

+--+---------+-------------+

¶

Figure 22: RBS address forwarding Pseudocode

Explanations for Figure 22.

void ForwardRBSPacket (Packet)

{

 RBS = GetPacketMulticastAddr(Packet);

 Total_len = RBS;

 Rsv = Total_len + length(Total_Len);

 BitStringA = Rsv + length(Rsv);

 AddressingField = BitStringA + BIFT.entries;

 // [1] calculate number of recursive bits set in BitString

 CopyBitString(*BitStringA, *RecursiveBits, BIFT.entries);

 And(*RecursiveBits,*BIFTRecursiveBits, BIFT.entries);

 N = CountBits(*RecursiveBits, BIFT.entries);

 // Start of first RecursiveUnit in RBS address

 // After AddressingField array with 8-bit length fields

 RecursiveUnit = AddressingField + (N - 1) * 8;

 RemainLength = *Total_len - length(Rsv)

 - BIFT.entries;

 Index = GetFirstBitPosition(*BitStringA);

 while (Index) {

 PacketCopy = Copy(Packet);

 if (BIFT.BP[Index].recursive) {

 if(N == 1) {

 RecursiveUnitLength = RemainLength;

 } else {

 RecursiveUnitLength = *AddressingField;

 N--;

 AddressingField += 8;

 RemainLength -= RecursiveUnitLength;

 RemainLength -= 8; // 8 bit of AddressingField

 }

 RewriteRBS(PacketCopy, RecursiveUnit, RecursiveUnitLength);

 SendTo(PacketCopy, BIFT.BP[Index].adjacency);

 RecursiveUnit += RecursiveUnitLength;

 } else {

 DisposeRBSheader(PacketCopy);

 SendTo(PacketCopy, BIFT.BP[Index].adjacency);

 }

 Index = GetNextBitPosition(*BitStringA, Index);

 }

¶

RBS is the (bit accurate) address of the RBS address in packet

header memory. BitStringA is the address of the RBS address

BitString in memory. length(Total_Len) and length(Rsv) are the bit

length of the two RBS address fields, e.g.: 8 bit and 0 bit for the

reference encoding.

The BFR local BIFT has a total number of BIFT.entries addressable BP

1...BIFTentries. The BitString therefore has BIFT.entries bits.

BIFT.RecursiveBits is a BitString pre-filled by the control plane

with all the BP with the recursive flag set. This is constructed

from the Recursive flag setting of the BP of the BIFT. The code

starting at [1] therefore counts the number of recursive BP in the

packets BitString.

Because the AddressingField does not have an entry for the last (or

only) RecursiveUnit, its length has to be calculated by taking

TotalLen into account.

RewriteRBS needs to replace RBS address with the RecursiveUnit

address, keeping only Rsv, recalculating TotalLen and adding

appropriate Padding.

For non-recursive BP, the Pseudocode assumes disposition of the

RBSheader. This is not strictly necessary but non-disposing cases

are outside of scope of this version of the document.

6. Operational and design considerations (informational)

6.1. Comparison with BIER-TE / BIER

This section discusses informationally, how and where CGM2 can avoid

different complexities of BIER/BIER-TE, and where it introduces new

complexities.

6.1.1. Eliminating the need for large BIFT

In a BIER domain with M BFER, every BFR requires M BIFT entries. If

the supported BSL is N and M > 2 ^ N, then S = (M / 2 ^ N) set

indices (SI) are required, and S copies of the packet have to be

sent by the BFIR to reach all targeted BFER.

In CGM2, the number of BIFT entries does not need to scale with the

number of BFER or paths through the network, but can be limited to

only the number of L2 adjacencies of the BFR. Therefore CGM2

requires minimum state maintenance on each BFR, and multiple SI are

not required.

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.1.2. Reducing number of duplicate packet copies across BFR

If the total size of an RBS encoded delivery tree is larger than a

supported maximum RBS header size, then the CGM2 controller simply

needs to divide the tree into multiple subtrees, each only

addressing a part of the BFER (leaves) of the target tree and

pruning any unnecessary branches.

Figure 23: Simple Topology Example

Consider the simple topology in Figure 23 and a multicast packet

that needs to reach all BFER B7...B300. Assume that the desired

maximum RBM header size is such that a RBS address size of <= 256

bits is desired. The CGM2 controller could create an RBS address

B1=>B2=>B4=>(B7..B99), for a first packet, an RBS address

B1=>B3=>B5=>(B100..B200) for a second packet and a third RBS address

B1=>B3=>B6=>B201...B300.

The elimination of larger BIFT state in BFR through multiple SI in

BIER/BIER-TE does come at the expense of replicating initial hops of

a tree in RBS addresses, such as in the example the encoding of

B1=>B3 in the example.

Consider that the assignment of BFIR-ids with BIER in the above

example is not carefully engineered. It is then easily possible that

the BFR-ids for B7..B99 are not sequentially, but split over a

larger BFIR-id space. If the same is true for all BFER, then it is

possible that each of the three BFR B4,B5 and B6 has attached BFER

from three different SI and one may need to send for example three

multiple packets to B7 to address all BFER B7..B99 or to B5 to

address all B100..B200 or B6 to address all B201...B300. These

unnecessary duplicate packets across B4, B5 or B6 are because of the

addressing principle in BIER and are not necessary in CGM2, as long

as the total length of an RBS address does not require it.

For more analysis, see Section 6.3.

¶

 B1

 / \

 B2 B3

 / \ / \

 / \/ \

 B4 B5 B6

 /..| / \ |..\

B7..B99 B100..B200 B201...B300

¶

¶

¶

¶

6.1.3. BIER-TE forwarding plane complexities

BIER-TE introduces forwarding plane complexities to allow reducing

the BSL required. While all of these could be supported /

implemented with CGM2, this document contends that they are not

necessary, therefore providing significant overall simplifications.

BIER-TE supports multiple adjacencies in a single BIFT Index to

allow compressing multiple adjacencies into a single Index for

traffic that is known to always require replications to all those

adjacencies (such as when flooding TV traffic).

BIER-TE support ECMP adjacencies which have to calculate which

out of 2 or more possible adjacencies a packet should be

forwarded to.

BIER-TE supports special Do-Not-Clear (DNC) behavior of

adjacencies to permit reuse of such a bit for adjacencies on

multiple consecutive BFR. This behavior specifically also raises

the risk of looping packets.

6.1.4. BIER-TE controller complexities

BIER-TE introduces BIER-TE controller plane mechanisms that allow to

reuse bits of the flat BIER-TE BitStrings across multiple BFR solely

to reduce the number of BP required but without introducing

additional complexities for the BIER-TE forwarding plane.

Shared BP for all Leaf BFR.

Shared BP for both Interfaces of p2p links.

Shared bits for multi-access subnets (LANs).

These bit-sharing mechanisms are unnecessary and inapplicable to

CGM2 because there is no need to share BP across the BIFT of

multiple BFR.

6.1.5. BIER-TE specification complexities

The BIER-TE specification distinguishes between forward (link scope)

and routed (underlay routed) adjacencies to highlight, explain and

emphasize on the ability of BIER-TE to be deployed in an overlay

fashion especially also to reduce the necessary BSL, even when all

routers in the domain could or do support BIER-TE.

In CGM2, routed adjacencies are considered to be only required in

partial deployments to forward across non-CGM2 enabled routers. This

specification does therefore not highlight link scope vs. routed

adjacencies as core distinct features.

¶

*

¶

*

¶

*

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

6.1.6. Forwarding plane complexity

CGM2 introduces some more processing calculation steps to extract

the BitString that needs to be examined by a BFR from the RBS

address. These additional steps are considered to be non-problematic

for todays programmable forwarding planes such as P4.

Whereas BIER-TE clears bit on each hops processing, CGM2 rewrites

the address on every hop by extracting the recursive unit for the

next hop and make it become the packet copies address. This rewrite

shortens the RBS address. This hopefully has only the same

complexity as (tunnel) encapsulations/decapsulations in existing

forwarding planes.

6.2. CGM2 / RBS controller considerations

TBD. Any aspects not covered in Section 6.1.

6.3. Analysis of performance gain with CGM2

TBD: Comparison of number of packets/header sizes required in large

real-world operator topology between BIER/BIER-TE and CGM2.

Analysis: Gain in dense topology.

6.3.1. Reference topology

Reference topology description:

Typical topology of Beijing Mobile in China.

All zones dual homing access to backbone.

Core layer: 4 nodes full mesh connected

Aggregation layer: 8 nodes are divided into two layers, with

full interconnection between the layers and dual homing access

to the core layer on the upper layer.

Aggregation rings: 8 rings, 6 nodes per ring

Access rings: 3600 nodes, 18 nodes per ring.

¶

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4.

¶

5. ¶

6. ¶

 ┌──────┐ ┌──────┐

 │ ├──────────┤ │

 /└──────┘\ /└──────┘\ Interconnected

 / / | \ \ / / | \ \ BackBone

 ┌──────┐/ / | \ \ / / | \ \┌──────┐

 │ │ / | \ \ / / | \ │ │

 └───┬──┘ / | \ \/ / | \ └─┬────┘

 │ / | \ /\ / | \ │

 ┌──┴───┐ | / \ | ┌──┴───┐

 │ │------------+ \/ +------------│ │

 └──────┘\ | /\ | /└──────┘

 \ | / \ | /

 \ ┌──────┐/ \┌──────┐ /

 \│ ├──────┤ │/

 └───┬──┘ └───┬──┘

 │ \ / │ Dual Return Access

 │ \ / │

 │ \ / │

 │ / │

 │ / \ │

 ┌─┴───┐/ \┌───┴─┐

 │ ├─────┤ │

 └─┬───┘\ /└───┬─┘

 │ \ / │ Core Layer

 │ / │

 │ / \ │

 ┌─┴───┐/ \┌───┴─┐

 /│ ├─────┤ │\

 / └──┬──┘\ /└──┬──┘ \

 / │\ \ / /│ \ Zone1

 / │ \ \ / │ \

 / │ \ / \ / │ \

 / +----│---+ +---│----+ \

 / / │ \ / │ \ \

 / / │ + │ \ \

 / / │ / \ │ \ \

 ┌───┐/ ┌┴──┐/ \┌──┴┐ \┌───┐

 │ │\ /│ │ │ │\ /│ │

 └─┬─┘ \ / └─┬─┘\ /└─┬─┘ \ / └─┬─┘

 │ \ / │ \ / │ \ / │ Aggregation

 │ \/ │ / │ \/ │ Layer

 │ /\ │ / \ │ /\ │

 ┌─┴─┐ / \ ┌─┴─┐/ \┌─┴─┐ / \ ┌─┴─┐

 │ │-- --│ │ │ │-- --│ │

 └───┘ └───┘\ /└───┘\ └───┘

 / | \ \ / / | \

 / | \ \ / | \

 / | / \/ | \

 / +--|--+ \/+---|---+ \

 / / | /\ | \ \

 ┌───┐ ┌┴──┐/ \┌───┐ ┌───┐ ASBR

 │ │ │ │ │ │ │ │

 └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

 │ │ │ │

 │ │ │ │

 ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐

 │ │ │ │ │ │ │ │

 └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

 │ │ │ │

 │ │ 8Rings │ │

 ┌─┴─┐ ┌─┴─┐ ...┌─┴─┐ ┌─┴─┐

 │ │---│ │ │ │---│ │

 ----└───┘ └───┘ └───┘\ └───┘

 / / \ \ | \ \ \ | \

 / / \ \ | \ \ +---|-+ \

 / / \ +-|---+\ \ | \ \

 / / \ | \\ \ | \ \

 / / \ | \\ \ | \ \

 / / \ | \\ \ | \ \

 ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ ┌───┐ CSBR

 │ │ │ │ │ │ │ │ │ │ │ │

 └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

 │ │ Access │ │ │ │

 │ │ Rings │ │ │ │

 ┌─┴─┐ ┌─┴─┐ ... ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐

 │ │ │ │ │ │ │ │ │ │ │ │

 └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

 │ │ │ │ │ │

 │ │ │ │ │ │

 ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐

 │ │ │ │ │ │ │ │ │ │ │ │

 └───┘...└───┘ └───┘...└───┘ └───┘...└───┘

Figure 24: Reference Topology

6.3.2. Comparison BIER and CGM2/RBS

The following performance comparison is based on Figure 24.

CGM2: We randomly select egress points as group members, with

the total number ranging from 10 to 28800 (for sake of

simplicity, we assume merely one client per egress point). The

egress points are randomly distributed in the topology with 10

runs for each value, showing the average result in our graphs.

The total number of samples is 60

BIER: We divide the overall topology into 160 BIER domains,

each of which includes 180 egress points, providing the total

of 28000 egress points.

Simulation: In order to compare the BIER against the in-packet

tree encoding mechanism, we limit the size of the header to 256

bits (the typical size of a BIER header).

Conclusion: 1. BIER reaches its 160 packet replication limit at

about 500 users, while the in-packet tree encoding reaching its

limit of 125 replications at about 12000 users. And the following

decrease of replications is caused by the use of node-local

broadcast as a further optimization. 2. For the sake of comparison,

the same 256-bit encapsulation limit is imposed on CGM2, but we can

completely break the 256-bit encapsulation limit, thus allowing the

source to send fewer multicast streams. 3. CCGM2 encoding performs

significantly better than BIER in that it requires less packet

replications and there network bandwidth.

6.4. Example use case scenarios

TBD.

7. Acknowledgements

This work is based on the design published by Sheng Jiang, Xu Bing,

Yan Shen, Meng Rui, Wan Junjie and Wang Chuang {jiangsheng|bing.xu|

yanshen|mengrui|wanjunjie2|wangchuang}@huawei.com, see [CGM2Design].

8. Security considerations

TBD.

9. Changelog

[RFC-Editor: please remove this section].

¶

1.

¶

2.

¶

3.

¶

¶

¶

¶

¶

¶

[I-D.ietf-bier-te-arch]

[RFC1112]

[RFC791]

[RFC8279]

[RFC8296]

[CGM2Design]

This document is written in https://github.com/cabo/kramdown-rfc2629

markup language. This documents source is maintained at https://

github.com/toerless/bier-cgm2-rbs, please provide feedback to the

appropriate IETF mailing list and submit an Issue to the GitHub.

01 - Added section 6.3 about performance comparison and co-author

(Robin).

00 - Initial version from [CGM2Design].

10. References

10.1. Normative References

Eckert, T., Menth, M., and G. Cauchie, "Tree

Engineering for Bit Index Explicit Replication (BIER-

TE)", Work in Progress, Internet-Draft, draft-ietf-bier-

te-arch-12, 28 January 2022, <https://www.ietf.org/

archive/id/draft-ietf-bier-te-arch-12.txt>.

Deering, S., "Host extensions for IP multicasting", STD

5, RFC 1112, DOI 10.17487/RFC1112, August 1989, <https://

www.rfc-editor.org/info/rfc1112>.

Postel, J., "Internet Protocol", STD 5, RFC 791, DOI

10.17487/RFC0791, September 1981, <https://www.rfc-

editor.org/info/rfc791>.

Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,

Przygienda, T., and S. Aldrin, "Multicast Using Bit Index

Explicit Replication (BIER)", RFC 8279, DOI 10.17487/

RFC8279, November 2017, <https://www.rfc-editor.org/info/

rfc8279>.

Wijnands, IJ., Ed., Rosen, E., Ed., Dolganow, A.,

Tantsura, J., Aldrin, S., and I. Meilik, "Encapsulation

for Bit Index Explicit Replication (BIER) in MPLS and

Non-MPLS Networks", RFC 8296, DOI 10.17487/RFC8296,

January 2018, <https://www.rfc-editor.org/info/rfc8296>.

10.2. Informative References

Jiang, S., Xu, B.(., Shen, Y., Rui, M., Junjie, W.,

and W. Chuang, "Novel Multicast Protocol Proposal

Introduction", 10 October 2021, <https://github.com/

BingXu1112/CGMM/blob/main/

Novel%20Multicast%20Protocol%20Proposal%20Introduction.pp

tx>.

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-12.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-12.txt
https://www.rfc-editor.org/info/rfc1112
https://www.rfc-editor.org/info/rfc1112
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc8279
https://www.rfc-editor.org/info/rfc8279
https://www.rfc-editor.org/info/rfc8296
https://github.com/BingXu1112/CGMM/blob/main/Novel%20Multicast%20Protocol%20Proposal%20Introduction.pptx
https://github.com/BingXu1112/CGMM/blob/main/Novel%20Multicast%20Protocol%20Proposal%20Introduction.pptx
https://github.com/BingXu1112/CGMM/blob/main/Novel%20Multicast%20Protocol%20Proposal%20Introduction.pptx
https://github.com/BingXu1112/CGMM/blob/main/Novel%20Multicast%20Protocol%20Proposal%20Introduction.pptx

Authors' Addresses

Toerless Eckert

Futurewei Technologies USA

2220 Central Expressway

Santa Clara, CA 95050

United States of America

Email: tte@cs.fau.de

Bing (Robin) Xu

Huawei Technologies (2012Lab)

China

Email: bing.xu@huawei.com

mailto:tte@cs.fau.de
mailto:bing.xu@huawei.com

	Carrier Grade Minimalist Multicast (CGM2) using Bit Index Explicit Replication (BIER) with Recursive BitString Structure (RBS) Addresses
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Overview
	1.1. Introduction
	1.2. Encapsulation Considerations

	2. CGM2/RBS Architecture
	3. CGM2/RBS forwarding plane
	3.1. RBS BIFT
	3.2. Reference encoding of RBS addresses
	3.3. RBS Address
	3.3.1. RecursiveUnit
	3.3.2. AddressingField

	4. BIER-RBS Example
	4.1. BFR B
	4.2. BFR R
	4.3. BFR S
	4.4. BFR C
	4.5. BFR D
	4.6. BFR E

	5. RBS forwarding Pseudocode
	6. Operational and design considerations (informational)
	6.1. Comparison with BIER-TE / BIER
	6.1.1. Eliminating the need for large BIFT
	6.1.2. Reducing number of duplicate packet copies across BFR
	6.1.3. BIER-TE forwarding plane complexities
	6.1.4. BIER-TE controller complexities
	6.1.5. BIER-TE specification complexities
	6.1.6. Forwarding plane complexity

	6.2. CGM2 / RBS controller considerations
	6.3. Analysis of performance gain with CGM2
	6.3.1. Reference topology
	6.3.2. Comparison BIER and CGM2/RBS

	6.4. Example use case scenarios

	7. Acknowledgements
	8. Security considerations
	9. Changelog
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

