
I:

Network Working Group T. Eckert
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track G. Cauchie
Expires: January 9, 2017 Bouygues Telecom
 W. Braun
 M. Menth
 University of Tuebingen
 July 8, 2016

Fast ReRoute (FRR) Extensions for BIER-TE
draft-eckert-bier-te-frr-00

Abstract

 This document proposes an Fast ReRoute (FRR) extension to the BIER-TE
 Architecture [I-D.eckert-bier-te-arch]. The FRR procedure has to be
 supported by the BIER-TE Controller host and the BFRs that are
 attached to a link/adjacency for which FRR support is required.
 Thus, the FRR concept can be incrementally deployed in the data plane
 to only those BFR adjacent to adjacencies for which FRR protection is
 desired.

 The FRR procedure does not require changes to the packet format
 described in [I-D.ietf-bier-architecture] that is also used for BIER-
 TE. Existing BIER-TE tables do not have to be altered. FRR
 procedures do require additional forwarding plane logic on the BFR
 that need to support FRR.

 An additional table is needed that carries information about pre-
 computed backup paths. This table is used to modify upon detection
 of failure the bitstring in the BIER header. To prevent packet
 duplicates, tunneling mechanisms such as remote adjacencies or BIER-
 in-BIER encapsulation can be leveraged.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Eckert, et al. Expires January 9, 2017 [Page 1]

Internet-Draft BIER-TE FRR July 2016

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. FRR Key Concepts . 3
3. The BIER-TE Adjacency FRR Table (BTAFT) 5
4. FRR in BIER-TE forwarding 5
5. FRR in the BIER-TE Controller Host 6
6. BIER-TE FRR Benefits . 6
7. Adjustment to the BIER-TE Forwarding Pseudocode 7
8. BIER-TE and existing FRR 9
9. IANA Considerations . 9
10. Acknowledgements . 9
11. Change log [RFC Editor: Please remove] 9
12. References . 9

 Authors' Addresses . 10

1. Introduction

 FRR is an optional procedure. To leverage it, the BIER-TE controller
 host and BFRs need to support it. It does not have to be supported
 on all BFRs, but only those that are attached to a link/adjacency for
 which FRR support is required.

 If BIER-TE FRR is supported by the BIER-TE controller host, then it
 needs to calculate the desired backup paths for link and/or node
 failures in the BIER-TE domain and download this information into the
 BIER-TE Adjacency FRR Table (BTAFT) of the BFRs. The BTAFT then
 drives FRR operations in the BIER-TE forwarding plane of that BFR.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Eckert, et al. Expires January 9, 2017 [Page 2]

Internet-Draft BIER-TE FRR July 2016

 The FRR operations modify the BIER header to facilitate local bypass
 of failed elements. In general, the backup is encoded in the
 bitstring of the packet. To avoid duplicates, it may be necessary to
 reset some bits in the bitstring or to use tunneling to the next-hops
 and next-next-hops of the multicast tree. Link and node failures can
 be addressed by the FRR mechanism.

 Note that BIER-TE FRR does not require additional state depending on
 the multicast trees in the network but only depends on the network
 topology.

 FRR is an optional procedure because it does require additional
 control plane, and forwarding plane and not all BIER-TE networks may
 want to use it. Alternatives to FRR include the following:

 "Live-Live" - transmitting the same traffic twice across two BIER-TE
 engineered diverse paths. Live-Live is popular in deployments where
 actual receiver equipment can already deal with dual reception (eg:
 SMPTE ST 2022-7 seamless protection switching in video system).
 Likewise, MoFRR (Multicast only Fast Reroute, RFC 7431 [RFC7431])
 could be used on BFER to merge traffic from two TE engineered diverse
 paths for receivers that can not deal with dual-reception.

 BFIR FRR: Because BIER-TE is stateless, it is feasible to consider
 simply changing the bitstring on a BFIR upon detection of a failure.
 Such an approach would require fast propagation of detected failures,
 pre-calculation or fast-inline-calculation of the modified bitstrings
 and then quickly pushing these into the BFIR. Due to the absence of
 statelessness in solutions preceeding BIER-TE there are no good data
 points what performance could be achieved from such an approach yet
 in various network/tree setups.

2. FRR Key Concepts

 In this section we use the following example to explain the key
 concepts of BIER-TE FRR. The example shows a multicast tree from
 BFR1 to BFR2, BFR6, BFR9. The path to BFR2 is represented by the
 bits p1, p3 and p4. The bits p1, p7, p7 and the bits p2, p8
 represent the path towards BFR6 and BFR 9, respectively. Local_decap
 bits for all BFR2,BFR6, and BFR9 are also used.

https://datatracker.ietf.org/doc/html/rfc7431
https://datatracker.ietf.org/doc/html/rfc7431

Eckert, et al. Expires January 9, 2017 [Page 3]

Internet-Draft BIER-TE FRR July 2016

 BFR1-------+
 | |
 | |
 p4 p3 v p1 v p2
 BFR2<---BFR3<-----BFR4------BFR5
 | | p5 |
 | | |
 p8 | v p6 v p8
 BFR6<-----BFR7-----BFR9
 p7 p9 p10

 First, we consider that the link from P towards F fails. The failure
 can be protected by the backup paths over BFR3->BFR6->BFR7: p3, p8,
 p9 (BP1) and BFR5->BFR9->BFR7: p5, p8, p10 (BP2). The use of backup
 path BP1 does not cause duplicates. Backup path BP2 would cause
 duplicates because the local_decap bit for D2 is still set in
 bitstring at P. Two options exist to avoid duplicates. 1. We reset
 the local_decap bit for D2. This solution prevents the duplicate
 packet. However, this method can lead to lost packets in other
 examples. 2. We use a tunnel from P to F over D2 to prevent BIER
 packet processing at the nodes at the backup path. Tunnels can be
 implemented in two different ways.

 1. A remote adjacency represented by a single bit which is a tunnel
 in the routing underlay. For an MPLS routing underlay, this can
 be implemented using an MPLS label stack. In the example we
 would introduce an additional bit (eg: p11) representing the
 tunnel.

 2. BIER-in-BIER encapsulation using an additional BIER header with
 NextProto = BIER. BFRs need to support this feature. This
 methods does not require additional bits for remote adjacencies
 compared to remote adjacencies but it increases the size of the
 packet header. In this example the new bitstring contains the
 bits of BP2 and an additional local_decap bit for BFR7.

 Now, we consider that BFR7 fails. The backup path must send the
 packets to all downstream next next-hops (DS-NNHs), i.e. the next-
 hops of the sub-tree rooted of BFR7. BFR4 can identify the DS-NNHs
 by checking the bits of interest of the failed node BFR7. BFR6 is
 such a node because bit p7 is set. BFR9 is not downstream because
 there is no bit of interest from BFR7 to BFR9. Sending packets to
 BFR9 would causes duplicates because BFR9 is served using the branch
 BFR1->BFR5->BFR9.

 Protection against link failures only requires knowledge of the
 failed adjacency. Protection against node failures requires
 additional knowledge of the downstream nodes of the tree. The

Eckert, et al. Expires January 9, 2017 [Page 4]

Internet-Draft BIER-TE FRR July 2016

 computation of appropriate backup paths, AddBitmasks, ResetBitmasks,
 and BitPositions is outside of the scope of this document.

3. The BIER-TE Adjacency FRR Table (BTAFT)

 The BIER-TE IF FRR Table exists in every BFR that is supporting BIER-
 TE FRR. It is indexed by FRR Adjacency Index that is compromised of
 the SI and the adjacency. Associated with each FRR Adjacency Index
 is the failed BitPosition (F-BP), Downstream BitPosition (DS-BP),
 ResetBitmask, and AddBitmask. The table can be configured to enable
 different actions for the AddBitMask. Either the table is configured
 to apply BIER-in-BIER encapsulation with a new BIER header containing
 the AddBitmask as new bitstring or to simply add the bits on the
 current bitstring.

 | FRR Adjacency | Failed | Downstream | ResetBitmask | AddBitmask |
 | Index | BP | BP | | |
 ===
 | 0:1 | 5 | 5 | ..0010000 | ..11000000 |

 ...

 An FRR Adjacency is an adjacency that is used in the BIFT of the BFR.
 The BFR has to be able to determine whether the adjacency is up or
 down in less than 50msec. An FRR adjacency can be a
 forward_connected adjacency with fast L2 link state Up/Down state
 notifications or a forward_connected or forward_routed adjacency with
 a fast aliveness mechanism such as BFD. Details of those mechanism
 are outside the scope of this architecture.

 The FRR Adjacency Index is the index that would be indicated on the
 fast Up/Down notifications to the BIER-TE forwarding plane and
 enables the selection of appropriate ResetBitMasks and AddBitmasks.

 The failed BitPosition is the BP in the BIFT in which the FRR
 Adjacency is used. The downstream BitPosition is required to protect
 against node failures to identify the downstream adjacency as
 described in Section 2. The backup path/tree is constructed of the
 individual ResetBitmasks and AddBitmasks of the downstream nodes. To
 protect against link failures, the DS-BP field is set equally to the
 F-BP field.

4. FRR in BIER-TE forwarding

 The BIER-TE forwarding plane receives fast Up/Down notifications of
 BIER adjacencies which are used to with the FRR Adjacencies Index for

Eckert, et al. Expires January 9, 2017 [Page 5]

Internet-Draft BIER-TE FRR July 2016

 different SIs. From the failed BitPosition in the BTAFT entry, it
 remembers which BPs are currently affected (have a down adjacency).

 When a packet is received, BIER-TE forwarding checks if it has
 affected failed BPs and matching downstream BitPositions to which it
 would forward. If it does, it will remove the ResetBitmask bits from
 the packets BitString. Dependent on the table configuration it will
 either add the AddBitmask bits to the packets BitString or construct
 a new BIER header for rerouted packets. Note that the original
 packet must be still available for non-affected bitpositions.

 Afterwards, normal BIER-TE forwarding occurs, taking the modified
 BitString or the additional BIER header into account. Note that the
 information is pre-computed by the controller and the BFR immediately
 bypasses a failure after its detection.

5. FRR in the BIER-TE Controller Host

 The basic rules how the BIER-TE controller host would calculate
 ResetBitMask and AddBitmask are as follows:

 1. The BIER-TE controller has to decide which tunnel mode a BFR uses
 for the BTAFT: remote adjacencies or BIER-in-BIER tunneling.

 2. The BIER-TE controller host has to determine whether a failure of
 the adjacency should be taken to indicate link or node failure.
 This is a policy decision.

 3. The ResetBitmask has the BitPosition of the failed adjacency.

 4. In the case of link protection, the AddBitmask are the segments
 forming a path from the BFR over to the BFR on the other end of
 the failed link. The path can be formed using remote adjacencies
 for tunneling purposes.

 5. In the case of node protection, the AddBitmask are the segments
 forming a tree from the BFR over to all necessary BFR downstream
 of the (assumed to be failed) BFR across the failed adjacency.

 6. The ResetBitmask is extended with those segments that could lead
 to duplicate packets if the AddBitmask is added to possible
 BitStrings of packets using the failing BitPosition.

6. BIER-TE FRR Benefits

 Compared to other FRR solutions, such as RSVP-TE/P2MP FRR, BIER-TE
 FRR has two key distinctions

Eckert, et al. Expires January 9, 2017 [Page 6]

Internet-Draft BIER-TE FRR July 2016

 o It maintains the goal of BIER-TE not to establish in-network per
 multicast traffic flow state. For that reason, the backup path/
 trees are only tied to the topology but not to individual
 distribution trees.

 o For the case of node failure, it allows to build a path engineered
 backup tree (4.) as opposed to only a set of p2p backup tunnels.

 o BIER-in-BIER encapsulation enables backup tunnels in networks that
 do not provide a routing layer with tunneling capabilities. It
 may simplify network management because additional tunnels (such
 as GRE) must not be setup in the routing layer beforehand.

7. Adjustment to the BIER-TE Forwarding Pseudocode

 We augment the forwarding procedure presented in the BIER-TE draft to
 support FRR.

 The following procedure computes the Reset- and AddBitmaks when a
 adjacency up/down notification is triggered. The masks can later be
 directly applied to the header to facilitate the backup.

 global ResetBitMaskByBT[BitStringLength]
 global AddBitMaskByBT[BitStringLength]
 global FRRaffectedBP

 void FrrUpDown(FrrAdjacencyIndex, UpDown)
 {
 global FRRAdjacenciesDown
 local Idx = FrrAdjacencyIndex

 if (UpDown == Up)
 FRRAdjacenciesDown &= ~ 2<<(FrrAdjacencyIndex-1)
 else
 FRRAdjacenciesDown |= 2<<(FrrAdjacencyIndex-1)

 for (Index = GetFirstBitPosition(FRRAdjacenciesDown); Index ;
 Index = GetNextBitPosition(FRRAdjacenciesDown, Index))

 local BP = BTAFT[Index].BitPosition
 FRRaffectedBP |= 2<<(Index)
 ResetBitMaskByBT[BP] |= BTAFT[Index].ResetBitMask
 AddBitMaskByBT[BP] |= BTAFT[Index].AddBitMask
 }

 The ForwardBierTePacket procedure must be modified by applying the
 FRR operations when necessary.

Eckert, et al. Expires January 9, 2017 [Page 7]

Internet-Draft BIER-TE FRR July 2016

 void ForwardBierTePacket (Packet)
 {
 // We calculate in BitMask the subset of BPs of the BitString
 // for which we have adjacencies. This is purely an
 // optimization to avoid to replicate for every BP
 // set in BitString only to discover that for most of them,
 // the BIFT has no adjacency.

 local BitMask = Packet->BitString
 Packet->BitString &= ~MyBitsOfInterest
 BitMask &= MyBitsOfInterest

 // FRR Operations
 // Note: this algorithm is not optimal yet for ECMP cases
 // it performs FRR replacement for all candidate ECMP paths

 local MyFRRBP = BitMask & FRRaffectedBP
 for (BP = GetFirstBitPosition(MyFRRNP); BP ;
 BP = GetNextBitPosition(MyFRRNP, BP))
 BitMask &= ~ResetBitMaskByBT[BP]
 BitMask |= ResetBitMaskByBT[BP]

 // Replication
 for (Index = GetFirstBitPosition(BitMask); Index ;
 Index = GetNextBitPosition(BitMask, Index))
 foreach adjacency BIFT[Index]

 if(adjacency == ECMP(ListOfAdjacencies, seed))
 I = ECMP_hash(sizeof(ListOfAdjacencies),
 Packet->Entropy, seed)
 adjacency = ListOfAdjacencies[I]

 PacketCopy = Copy(Packet)

 switch(adjacency)
 case forward_connected(interface,neighbor,DNR):
 if(DNR)
 PacketCopy->BitString |= 2<<(Index-1)
 SendToL2Unicast(PacketCopy,interface,neighbor)

 case forward_routed([VRF],neighbor):
 SendToL3(PacketCopy,[VRF,]l3-neighbor)

 case local_decap([VRF],neighbor):
 DecapBierHeader(PacketCopy)
 PassTo(PacketCopy,[VRF,]Packet->NextProto)
 }

Eckert, et al. Expires January 9, 2017 [Page 8]

Internet-Draft BIER-TE FRR July 2016

8. BIER-TE and existing FRR

 BIER-TE as described above is an advanced method for node-protection
 where the replication in a failed node is on the fly replaced by
 another replication tree through bit operations on the BitString.

 If BIER-TE FRR is not feasible or necessary, it is also possible for
 BIER-TE to leverage any existing form of "link" protection. For
 example: instead of directly setting up a forward_connected adjacency
 to a next-hop neighbor, this can be a "protected" adjacency that is
 maintained by RSVP-TE (or another FRR mechanism) and passes via a
 backup path if the link fails.

 BIER-in-BIER encapsulation provides P2MP protection in node failure
 cases because the new header can contain a new multicast. This
 allows for the least packet duplication if the routing underlay does
 not provide P2MP tunnels.

9. IANA Considerations

 This document requests no action by IANA.

10. Acknowledgements

 The authors would like to thank Greg Shepherd, Ijsbrand Wijnands and
 Neale Ranns for their extensive review and suggestions.

11. Change log [RFC Editor: Please remove]

 00: Initial version based on draft-eckert-bier-arch-03.

12. References

 [I-D.eckert-bier-te-arch]
 Eckert, T., Cauchie, G., Braun, W., and M. Menth, "Traffic
 Engineering for Bit Index Explicit Replication BIER-TE",

draft-eckert-bier-te-arch-03 (work in progress), March
 2016.

 [I-D.ietf-bier-architecture]
 Wijnands, I., Rosen, E., Dolganow, A., Przygienda, T., and
 S. Aldrin, "Multicast using Bit Index Explicit
 Replication", draft-ietf-bier-architecture-03 (work in
 progress), January 2016.

https://datatracker.ietf.org/doc/html/draft-eckert-bier-arch-03
https://datatracker.ietf.org/doc/html/draft-eckert-bier-te-arch-03
https://datatracker.ietf.org/doc/html/draft-ietf-bier-architecture-03

Eckert, et al. Expires January 9, 2017 [Page 9]

Internet-Draft BIER-TE FRR July 2016

 [RFC7431] Karan, A., Filsfils, C., Wijnands, IJ., Ed., and B.
 Decraene, "Multicast-Only Fast Reroute", RFC 7431,
 DOI 10.17487/RFC7431, August 2015,
 <http://www.rfc-editor.org/info/rfc7431>.

Authors' Addresses

 Toerless Eckert
 Cisco Systems, Inc.

 Email: eckert@cisco.com

 Gregory Cauchie
 Bouygues Telecom

 Email: GCAUCHIE@bouyguestelecom.fr

 Wolfgang Braun
 University of Tuebingen

 Email: wolfgang.braun@uni-tuebingen.de

 Michael Menth
 University of Tuebingen

 Email: menth@uni-tuebingen.de

https://datatracker.ietf.org/doc/html/rfc7431
http://www.rfc-editor.org/info/rfc7431

Eckert, et al. Expires January 9, 2017 [Page 10]

