
Workgroup: DETNET

Internet-Draft:

draft-eckert-detnet-mpls-tc-tcqf-00

Published: 8 September 2021

Intended Status: Standards Track

Expires: 12 March 2022

Authors: T. Eckert

Futurewei Technologies USA

S. Bryant

University of Surrey ICS

Deterministic Networking (DetNet) Data Plane - MPLS TC Tagging for

Cyclic Queuing and Forwarding (MPLS-TC TCQF)

Abstract

This memo defines the use of the MPLS TC field of MPLS Label Stack

Entries (LSE) to support cycle tagging of packets for Multiple

Buffer Cyclic Queuing and Forwarding (TCQF). TCQF is a mechanism to

support bounded latency forwarding in DetNet network.

Target benefits of TCQF include low end-to-end jitter, ease of high-

speed hardware implementation, optional ability to support large

number of flow in large networks via DiffServ style aggregation by

applying TCQF to the DetNet aggregate instead of each DetNet flow

individually, and support of wide-area DetNet networks with

arbitrary link latencies and latency variations.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 March 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Using TCQF with DetNet MPLS (informative)

3. Data model and tag processing for MPLS TC TCQF (normative)

4. TCQF with labels stack operations (normative)

5. TCQF Pseudocode (normative)

6. TCQF YANG Model (normative) TBD

7. Computing cycle mappings (informative)

8. Security Considerations

9. IANA Considerations

10. Informative References

Authors' Addresses

1. Introduction

Cyclic Queuing and Forwarding [CQF], is an IEEE standardized queuing

mechanism in support of deterministic bounded latency. See also [I-

D.ietf-detnet-bounded-latency], Section 6.6.

CQF benefits for Deterministic QoS include the tightly bounded

jitter it provides as well as the per-flow stateless operation,

minimizing the complexity of high-speed hardware implementations and

allowing to support on transit hops arbitrary number of DetNet flow

in the forwarding plane because of the absence of per-hop, per-flow

QoS processing. In the terms of the IETF QoS architecture, CQF can

be called DiffServ QoS technology, operating only on a traffic

aggregate.

CQFs is limited to only limited-scale wide-area network deployments

because it cannot take the propagation latency of links into

account, nor potential variations thereof. It also requires very

high precision clock synchronization, which is uncommon in wide-area

network equipment beyond mobile network fronthaul. See [I-D.eckert-

detnet-bounded-latency-problems] for more details.

This specification introduces and utilizes an enhanced form of CQF

where packets are tagged with a cycle identifier, and a limited

number of cycles, e.g.: 3...7 are used to overcome these distance

and clock synchronization limitations. Because this memo defines how

to use the TC field of MPLS LSE as the tag to carry the cycle

¶

¶

¶

¶

https://trustee.ietf.org/license-info

identifier, it calls this scheme TC Tagged multiple buffer CQF (TC

TCQF). See [I-D.qiang-DetNet-large-scale-DetNet] and [I-D.dang-

queuing-with-multiple-cyclic-buffers] for more details of the theory

of operations of TCQF. Note that TCQF is not necessarily limited to

deterministic operations but could also be used in conjunction with

congestion controlled traffic, but those considerations are outside

the scope of this memo.

TCQF is likely especially beneficial when MPLS networks are designed

to avoid per-hop, per-flow state even for traffic steering, which is

the case for networks using SR-MPLS [RFC8402] for traffic steering

of MPLS unicast traffic and/or BIER-TE [I-D.ietf-bier-te-arch] for

tree engineering of MPLS multicast traffic. In these networks, it is

specifically undesirable to require per-flow signaling to P-LSR

solely for DetNet QoS because such per-flow state is unnecessary for

traffic steering and would only be required for the bounded latency

QoS mechanism and require likely even more complex hardware and

manageability support than what was previously required for per-hop

steering state (e.g. In RSVP-TE). Note that the DetNet architecture

[RFC8655] does not include full support for this DiffServ model,

which is why this memo describes how to use MPLS TC TCQF with the

DetNet architecture per-hop, per-flow processing as well as without

it.

2. Using TCQF with DetNet MPLS (informative)

This section gives an overview of how the operations of T-CQF

relates to the DetNet architecture. We first revisit QoS with DetNet

in the absence of T-CQF.

¶

¶

¶

 DetNet MPLS Relay Transit Relay DetNet MPLS

 End System Node Node Node End System

 T-PE1 S-PE1 LSR-P S-PE2 T-PE2

 +----------+ +----------+

 | Appl. |<------------ End-to-End Service ----------->| Appl. |

 +----------+ +---------+ +---------+ +----------+

 | Service |<--| Service |-- DetNet flow --| Service |-->| Service |

 +----------+ +---------+ +----------+ +---------+ +----------+

 |Forwarding| |Fwd| |Fwd| |Forwarding| |Fwd| |Fwd| |Forwarding|

 +-------.--+ +-.-+ +-.-+ +----.---.-+ +-.-+ +-.-+ +---.------+

 : Link : / ,-----. \ : Link : / ,-----. \

 +........+ +-[Sub-]-+ +......+ +-[Sub-]-+

 [Network] [Network]

 `-----' `-----'

 |<- LSP -->| |<-------- LSP -----------| |<--- LSP -->|

 |<----------------- DetNet MPLS --------------------->|

Figure 1: A DetNet MPLS Network

The above Figure 1, is copied from [RFC8964], Figure 2, and only

enhanced by numbering the nodes to be able to better refer to them

in the following text.

Assume a DetNet flow is sent from T-PE1 to T-PE2 across S-PE1, LSR,

S-PE2. In general, bounded latency QoS processing is then required

on the outgoing interface of T-PE1 towards S-PE1, and any further

outgoing interface along the path. When T-PE1 and S-PE2 know that

their next-hop is a service LSR, their DetNet flow label stack may

simply have the DetNet flows Service Label (S-Label) as its Top of

Stack (ToS) LSE, explicitly indicating one DetNet flow.

On S-PE1, the next-hop LSR is not DetNet aware, which is why S-PE1

would need to send a label stack where the S-Label is followed by a

Forwarding Label (F-Label), and LSR-P would need to perform bounded

latency based QoS on that F-Label.

For bounded latency QoS mechanisms relying on per-flow regulator

state, such as in [TSN-ATS], this requires the use of a per-detnet

flow F-Label across the network from S-PE1 to S-PE2, for example

through RSVP-TE [RFC3209] enhanced as necessary with QoS parameters

matching the underlying bounded latency mechanism (such as [TSN-

ATS]).

With TC TCQF, a sequence of LSR and DetNet service node implements

TC TCQF, ideally from T-PE1 (ingress) to T-PE2 (egress). The ingress

node needs to perform per-DetNet-flow per-packet "shaping" to assign

each packet of a flow to a particular TCQF cycle. This ingress-edge-

function is currently out of scope of this document (TBD), but would

be based on the same type of edge function as used in CQF.

All LSR/Service node after the ingress node only have to map a

received TCQF tagged DetNet packet to the configured cycle on the

output interface, not requiring any per-DetNet-flow QoS state. These

LSR/Service nodes do therefore also not require per-flow

interactions with the controller plane for the purpose of bounded

latency.

Per-flow state therefore is therefore only required on nodes that

are DetNet service nodes, or when explicit, per-DetNet flow steering

state is desired, instead of ingress steering through e.g.: SR-MPLS.

Operating TCQF per-flow stateless across a service node, such as S-

PE1, S-PE2 in the picture is only an option. It is of course equally

feasible to Have one TCQF domain from T-PE1 to S-PE2, start a new

TCQF domain there, running for example up to S-PE2 and start another

one to T-PE2.

¶

¶

¶

¶

¶

¶

¶

¶

A service node must act as an egress/ingress edge of a TCQF domain

if it needs to perform operations that do change the timing of

packets other than the type of latency that can be considered in

configuration of TCQF (see Section 7).

For example, if T-PE1 is ingress for a TCQF domain, and T-PE2 is the

egress, S-PE1 could perform the DetNet Packet Replication Function

(PRF) without having to be a TQCF edge node as long as it does not

introduce latencies not included in the TCQF setup and the

controller plane reserves resources for the multitude of flows

created by the replication taking the allocation of resources in the

TCQF cycles into account.

Likewise, S-PE2 could perform the Packet Elimination Function

without being a TCQF edge node as this most likely does not

introduce any non-TCQF acceptable latency - and the controller plane

accordingly reserves only for one flow the resources on the S-PE2-

>T-PE2 leg.

If on the other hand, S-PE2 was to perform the Packet Reordering

Function (PRF), this could create large peaks of packets when out-

of-order packets are released together. A PRF would either have to

take care of shaping out those bursts for the traffic of a flow to

again conform to the admitted CIR/PIR, or else the service node

would have to be a TCQF egress/ingress, performing that shaping

itself as an ingress function.

3. Data model and tag processing for MPLS TC TCQF (normative)

¶

¶

¶

¶

Figure 2: TCQF Data Model

tcqf-config is the router/LSR wide configuration of TCQF parameters,

independent of the tagging of the method with which cycles are

tagged on any interface. This YANG model represents a single TQCF

domain, which is a set of interfaces acting both as ingress (iif)

and egress (oif) interfaces, capable to forward TCQF packets amongst

each other. When multiple independent instances or TCQF domains are

used, they can have separate parameters.

cycles is the number of cycles used across all interfaces. router/

LSR MUST support 3 and 4 cycles. To support interfaces with MPLS TC

tagging, 7 or less cycles must be used.

The cycle time is cycle-time in units of micro-seconds. router/LSR

MUST support configuration of cycle-times of

20,50,100,200,500,1000,2000 usec.

Cycles start at an offset of cycle-clock-offset in units of nsec as

follows. Let clock1 be a timestamp of the local reference clock for

TCQF, at which cycle 1 starts, then:

cycle-clock-offset = (clock1 mod (cycle-time * cycles))

The local reference clock is expected to be synchronized with the

neighboring nodes. cycle-clock-offset can be configurable, or it may

be derived from immutable properties of the implementation, in which

case it is read-only.

module ietf-detnet-tcqf

 augment TBD

 +--rw tcqf-config

 | +--rw cycles uint16

 | +--rw cycle-time uint16

 | +--rw cycle-clock-offset uint32

 | +--rw tcqf-if-config* [oif-name]

 | +--rw oif-name if:interface-ref

 | +--rw cycle-clock-offset int32

 | +--rw tcqf-iif-cycle-map* [iif-name]

 | +--rw iif-name if:interface-ref

 | +--rw iif-cycle-map* [iif-cycle]

 | +--rw iif-cycle uint8

 | +--rw oif-cycle uint8

 |

 +--rw tcqf-mpls-tc-tag* [name]

 +--rw name if:interface-ref

 +--rw cycle* [cycle]

 +--rw cycle uint8

 +--rw tc uint8

¶

¶

¶

¶

¶

¶

tcqf-if-config is the optional per-interface configuration of TCQF

parameters.

The cycle-clock-offset in tcqf-oif-config may be different from the

router/LSR wide cycle-clock-offset, for example, when interfaces are

on line cards with independently synchronized clocks, or when non-

uniform ingress-to-egress propagation latency over a complex router/

LSR fabric makes it beneficial to allow per-egress interface or line

card configuration of cycle-clock-offset.

If cycle-clock-offset is unused and therefore the router/LSR wide

cycle-clock-offset is used, the value MUST be -1. This is the only

permitted negative number.

tcqf-iif-cycle-map is defining how to map the cycle iif-cycle of a

packet received from an incoming interface (iif-name) once the LSR

has determined that the packet needs to be sent to oif-name and sent

with TCQF. The packet is then assigned to cycle oif-cycle on oif-

name.

Note that all parameters so far allow for different methods of

tagging the cycle in the packet across different interfaces and

allowing TCQF to operate across them, even if future work would

introduce different tagging methods than the following MPLS TC

mapping.

tcqf-mpls-tc-tag defines the mapping of cycle number to MPLS TC tag.

This mapping is configured for all interfaces that use MPLS TC

tagging. When a packet is received with a ToS LSE indicating a TC

for which there is a mapping to a cycle in tcqf-mpls-tc-tag, then

this packet is assigned to the configured cycle.

If the packet is forwarded to another interface with tcqf

configured, the cycle number derived from mapping the received ToS

LSE TC field to the cycle number when receiving the packet will be

mapped according to tcqf-oif-config after all label stack changes

are applied and the packet is to be sent. If that outgoing interface

is also using MPLS TC TCQF tagging, then the TC value of the ToS LSE

will be rewritten according to the tcqf-mpls-tc-tag configuration of

that outgoing interface.

tc in tcqf-mpls-tc-tag MUST NOT use values to be used for non-TCQF

traffic, most commonly 0 for Best Effort (BE) traffic.

4. TCQF with labels stack operations (normative)

TCQF QoS as defined here is in the terminology of [RFC3270] a TC-

Inferred-PSC LSP (E-LSP) behavior. Packets are determined to belong

to the TCQF PSC solely based on the TC of he received packet.

¶

¶

¶

¶

¶

¶

¶

¶

¶

Packets originated into the TCQF PSC on the ingress LSR are assumed

for the purpose of this specification to be received from an

internal interface for which the cycle mapping table on every

interface is 1:1. This allows to distinguish the case of originated

TCQF packets from those received from another LSR.

Note that this ingress mapping rule does not represent the shaping

necessary on an ingress TCQF router. TBD.

Label swap in the case of LDP or RSVP-TE LSP, or label pop in the

case of SR-MPLS traffic steering, or any other operation may result

in a different label to become the ToS LSE. Whenever a packet has an

associated TCQF cycle and is sent to an interface with TCQF, the

cycle is mapped to that outgoing interfaces cycle space and the TC

of the ToS LSE accordingly updated.

5. TCQF Pseudocode (normative)

The following pseudocode restates the prior two section text in an

algorithmic fashion. It uses the objects of the TCQF YANG data model

defined in Section 3.

¶

¶

¶

¶

tcqf = ietf-detnet-tcqf

void receive(pak) {

 // Receive side TCQF - remember cycle in

 // packet internal header

 iif = pak.context.iif

 if(tcqf.tcqf-if-config[iif]) { // TCQF enabled

 if(tcqf.tcqf-mpls-tc-tag[iif]) { // TC-TCQF

 pak.context.tcqf_cycle =

 map_tc2cycle(pak.mpls_header.lse[tos].tc,

 tcqf.tcqf-mpls-tc-tag[iif])

 } else // other future encap/tagging options for TCQF

 }

 // Forwarding including any LSE operations

 oif = pak.context.oif = forward_process(pak)

 // ... optional DetNet PREOF functions here

 // ... if router is DetNet service node

 if(pak.context.tcqf_cycle && // non TCQF packets value is 0

 tcqf.tcqf-if-config[oif]) { // TCQF enabled

 // Map tcqf_cycle for iif to oif mapping table

 cycle = pak.context.tcqf_cycle =

 map_cycle(cycle,

 tcqf.tcqf-if-config[oif].tcqf-iif-cycle-map[[iif])

 if(tcqf.tcqf-mpls-tc-tag[iif]) { // TC-TCQF

 pak.mpls_header.lse[tos].tc =

 map_cycle2tc(cycle, tcqf.tcqf-mpls-tc-tag[oif])

 } else // other future encap/tagging options for TCQF

 tcqf_enqueue(pak, oif.cycleq[cycle])

 }

}

// Started when TCQF is enabled on an interface

void send_tcqf(oif) {

 cycle = 1

 cc = tcqf.tcqf-config.cycle-time *

 tcqf.tcqf-config.cycle-time

 o = tcqf.tcqf-config.cycle-clock-offset

 nextcyclestart = floor(tnow / cc) * cc + cc + o

 while(1) {

 while(tnow < nextcyclestart) { }

 while(pak = dequeue(oif.cycleq(cycle)) {

 send(pak)

 }

 cycle = (cycle + 1) mod tcqf.tcqf-config.cycles + 1

 nextcyclestart += tcqf.tcqf-config.cycle-time

 }

}

Figure 3: TCQF Pseudocode

6. TCQF YANG Model (normative) TBD

TBD - according to Section 3.

7. Computing cycle mappings (informative)

The cycle mapping is computed by the controller plane by taking at

minimum the link, interface serialization and node internal

forwarding latencies as well as the cycle-clock-offsets into

account.

Figure 4: Calculation reference

Consider in {#Calc1} that Router R1 sends packets via C = 3 cycles

with a cycle-clock offset of O1 towards Router R2. These packets

arrive at R2 with a cycle-clock offset of O1' which includes through

D all latencies incurred between releasing a packet on R1 from the

cycle buffer until it can be put into a cycle buffer on R2:

serialization delay on R1, link delay, non-CQF delays in R1 and R2,

especially forwarding in R2, potentially across an internal fabric

to the output interface with the sending cycle buffers.

Figure 5: Calculating cycle mapping

{#Calc2} shows a formula to calculate the cycle mapping between R1

and R2, using the first available cycle on R2. In the example of

¶

¶

Router . O1

 R1 . | cycle 1 | cycle 2 | cycle 3 | cycle 1 |

 . .

 Delay D

 . .

 . O1'

 . | cycle 1 |

Router . | cycle 1 | cycle 2 | cycle 3 | cycle 1 |

 R2 . O2

CT = cycle-time

C = cycles

CC = CT * C

O1 = cycle-clock-offset router R1, interface towards R2

O2 = cycle-clock-offset router R2, output interface of interest

O1' = O1 + D

¶

A = (ceil((O1' - O2) / CT) + C + 1) mod CC

map(i) = (i - 1 + A) mod C + 1

[CQF]

[I-D.dang-queuing-with-multiple-cyclic-buffers]

{#Calc1} with CT = 1, (O1' - O2) =~ 1.8, A will be 0, resulting in

map(1) to be 1, map(2) to be 2 and map(3) to be 3.

The offset "C" for the calculation of A is included so that a

negative (O1 - O2) will still lead to a positive A.

In general, D will be variable [Dmin...Dmax], for example because of

differences in serialization latency between min and max size

packets, variable link latency because of temperature based length

variations, link-layer variability (radio links) or in-router

processing variability. In addition, D also needs to account for the

drift between the synchronized clocks for R1 and R2. This is called

the Maximum Time Interval Error (MTIE).

Let A(d) be A where O1' is calculated with D = d. To account for the

variability of latency and clock synchronization, map(i) has to be

calculated with A(Dmax), and the controller plane needs to ensure

that that A(Dmin)...A(Dmax) does cover at most (C - 1) cycles.

If it does cover C cycles, then C and/or CT are chosen too small,

and the controller plane needs to use larger numbers for either.

This (C - 1) limitation is based on the understanding that there is

only one buffer for each cycle, so a cycle cannot receive packets

when it is sending packets. While this could be changed by using

double buffers, this would create additional implementation

complexity and not solve the limitation for all cases, because the

number of cycles to cover [Dmin...Dmax] could also be (C + 1) or

larger, in which case a tag of 1...C would not suffice.

8. Security Considerations

TBD.

9. IANA Considerations

This document has no IANA considerations.

10. Informative References

IEEE Time-Sensitive Networking (TSN) Task Group., "IEEE

Std 802.1Qch-2017: IEEE Standard for Local and

Metropolitan Area Networks - Bridges and Bridged Networks

- Amendment 29: Cyclic Queuing and Forwarding", 2017.

Liu, B. and J. Dang,

"A Queuing Mechanism with Multiple Cyclic Buffers", Work

in Progress, Internet-Draft, draft-dang-queuing-with-

multiple-cyclic-buffers-00, 22 February 2021, <https://

¶

¶

¶

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt

[I-D.eckert-detnet-bounded-latency-problems]

[I-D.ietf-bier-te-arch]

[I-D.ietf-detnet-bounded-latency]

[I-D.qiang-DetNet-large-scale-DetNet]

[RFC3209]

[RFC3270]

[RFC8402]

[RFC8655]

www.ietf.org/archive/id/draft-dang-queuing-with-multiple-

cyclic-buffers-00.txt>.

Eckert, T. and S.

Bryant, "Problems with existing DetNet bounded latency

queuing mechanisms", Work in Progress, Internet-Draft,

draft-eckert-detnet-bounded-latency-problems-00, 12 July

2021, <https://www.ietf.org/archive/id/draft-eckert-

detnet-bounded-latency-problems-00.txt>.

Eckert, T., Cauchie, G., and M. Menth, "Tree

Engineering for Bit Index Explicit Replication (BIER-

TE)", Work in Progress, Internet-Draft, draft-ietf-bier-

te-arch-10, 9 July 2021, <https://www.ietf.org/archive/

id/draft-ietf-bier-te-arch-10.txt>.

Finn, N., Boudec, J. L., Mohammadpour, E., Zhang, J.,

Varga, B., and J. Farkas, "DetNet Bounded Latency", Work

in Progress, Internet-Draft, draft-ietf-detnet-bounded-

latency-07, 1 September 2021, <https://www.ietf.org/

archive/id/draft-ietf-detnet-bounded-latency-07.txt>.

Qiang, L., Geng, X., Liu, B., Eckert, T., Geng, L., and

G. Li, "Large-Scale Deterministic IP Network", Work in

Progress, Internet-Draft, draft-qiang-DetNet-large-scale-

DetNet-05, 2 September 2019, <https://www.ietf.org/

archive/id/draft-qiang-DetNet-large-scale-DetNet-05.txt>.

Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,

and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP

Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,

<https://www.rfc-editor.org/info/rfc3209>.

Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,

P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-

Protocol Label Switching (MPLS) Support of Differentiated

Services", RFC 3270, DOI 10.17487/RFC3270, May 2002,

<https://www.rfc-editor.org/info/rfc3270>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/info/rfc8402>.

Finn, N., Thubert, P., Varga, B., and J. Farkas,

"Deterministic Networking Architecture", RFC 8655, DOI

10.17487/RFC8655, October 2019, <https://www.rfc-

editor.org/info/rfc8655>.

https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-bounded-latency-problems-00.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-bounded-latency-problems-00.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-10.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-10.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-07.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-07.txt
https://www.ietf.org/archive/id/draft-qiang-DetNet-large-scale-DetNet-05.txt
https://www.ietf.org/archive/id/draft-qiang-DetNet-large-scale-DetNet-05.txt
https://www.rfc-editor.org/info/rfc3209
https://www.rfc-editor.org/info/rfc3270
https://www.rfc-editor.org/info/rfc8402
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655

[RFC8964]

[TSN-ATS]

Varga, B., Ed., Farkas, J., Berger, L., Malis, A.,

Bryant, S., and J. Korhonen, "Deterministic Networking

(DetNet) Data Plane: MPLS", RFC 8964, DOI 10.17487/

RFC8964, January 2021, <https://www.rfc-editor.org/info/

rfc8964>.

Specht, J., "P802.1Qcr - Bridges and Bridged Networks

Amendment: Asynchronous Traffic Shaping", IEEE , 9 July

2020, <https://1.ieee802.org/tsn/802-1qcr/>.

Authors' Addresses

Toerless Eckert

Futurewei Technologies USA

2220 Central Expressway

Santa Clara, CA 95050

United States of America

Email: tte@cs.fau.de

Stewart Bryant

University of Surrey ICS

Email: s.bryant@surrey.ac.uk

https://www.rfc-editor.org/info/rfc8964
https://www.rfc-editor.org/info/rfc8964
https://1.ieee802.org/tsn/802-1qcr/
mailto:tte@cs.fau.de
mailto:s.bryant@surrey.ac.uk

	Deterministic Networking (DetNet) Data Plane - MPLS TC Tagging for Cyclic Queuing and Forwarding (MPLS-TC TCQF)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Using TCQF with DetNet MPLS (informative)
	3. Data model and tag processing for MPLS TC TCQF (normative)
	4. TCQF with labels stack operations (normative)
	5. TCQF Pseudocode (normative)
	6. TCQF YANG Model (normative) TBD
	7. Computing cycle mappings (informative)
	8. Security Considerations
	9. IANA Considerations
	10. Informative References
	Authors' Addresses

