
Workgroup: DETNET

Internet-Draft:

draft-eckert-detnet-mpls-tc-tcqf-02

Published: 19 May 2022

Intended Status: Standards Track

Expires: 20 November 2022

Authors: T. Eckert

Futurewei Technologies USA

S. Bryant

University of Surrey ICS

A. G. Malis

Malis Consulting

Deterministic Networking (DetNet) Data Plane - MPLS TC Tagging for

Cyclic Queuing and Forwarding (MPLS-TC TCQF)

Abstract

This memo defines the use of the MPLS TC field of MPLS Label Stack

Entries (LSE) to support cycle tagging of packets for Multiple

Buffer Cyclic Queuing and Forwarding (TCQF). TCQF is a mechanism to

support bounded latency forwarding in DetNet network.

Target benefits of TCQF include low end-to-end jitter, ease of high-

speed hardware implementation, optional ability to support large

number of flow in large networks via DiffServ style aggregation by

applying TCQF to the DetNet aggregate instead of each DetNet flow

individually, and support of wide-area DetNet networks with

arbitrary link latencies and latency variations.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction (informative)

2. Using TCQF in the DetNet Archticture and MPLS forwarding plane

(informative)

3. MPLS T-CQF forwarding (normative)

3.1. Configuration Data model and tag processing for MPLS TC TCQF

3.2. Packet processing

3.3. TCQF with label stack operations

3.4. Ingres operations

4. TCQF Pseudocode (normative)

5. Operational considerations (informative)

5.1. Controller plane computation of cycle mappings

6. Security Considerations

7. IANA Considerations

8. Changelog

9. References

9.1. Normative References

9.2. Informative References

Authors' Addresses

1. Introduction (informative)

Cyclic Queuing and Forwarding [CQF], is an IEEE standardized queuing

mechanism in support of deterministic bounded latency. See also [I-

D.ietf-detnet-bounded-latency], Section 6.6.

CQF benefits for Deterministic QoS include the tightly bounded

jitter it provides as well as the per-flow stateless operation,

minimizing the complexity of high-speed hardware implementations and

allowing to support on transit hops arbitrary number of DetNet flow

in the forwarding plane because of the absence of per-hop, per-flow

QoS processing. In the terms of the IETF QoS architecture, CQF can

be called DiffServ QoS technology, operating only on a traffic

aggregate.

CQFs is limited to only limited-scale wide-area network deployments

because it cannot take the propagation latency of links into

account, nor potential variations thereof. It also requires very

¶

¶

¶

https://trustee.ietf.org/license-info

high precision clock synchronization, which is uncommon in wide-area

network equipment beyond mobile network fronthaul. See [I-D.eckert-

detnet-bounded-latency-problems] for more details.

This specification introduces and utilizes an enhanced form of CQF

where packets are tagged with a cycle identifier, and a limited

number of cycles, e.g.: 3...7 are used to overcome these distance

and clock synchronization limitations. Because this memo defines how

to use the TC field of MPLS LSE as the tag to carry the cycle

identifier, it calls this scheme TC Tagged multiple buffer CQF (TC

TCQF). See [I-D.qiang-DetNet-large-scale-DetNet] and [I-D.dang-

queuing-with-multiple-cyclic-buffers] for more details of the theory

of operations of TCQF. Note that TCQF is not necessarily limited to

deterministic operations but could also be used in conjunction with

congestion controlled traffic, but those considerations are outside

the scope of this memo.

TCQF is likely especially beneficial when MPLS networks are designed

to avoid per-hop, per-flow state even for traffic steering, which is

the case for networks using SR-MPLS [RFC8402] for traffic steering

of MPLS unicast traffic and/or BIER-TE [I-D.ietf-bier-te-arch] for

tree engineering of MPLS multicast traffic. In these networks, it is

specifically undesirable to require per-flow signaling to P-LSR

solely for DetNet QoS because such per-flow state is unnecessary for

traffic steering and would only be required for the bounded latency

QoS mechanism and require likely even more complex hardware and

manageability support than what was previously required for per-hop

steering state (e.g. In RSVP-TE). Note that the DetNet architecture

[RFC8655] does not include full support for this DiffServ model,

which is why this memo describes how to use MPLS TC TCQF with the

DetNet architecture per-hop, per-flow processing as well as without

it.

2. Using TCQF in the DetNet Archticture and MPLS forwarding plane

(informative)

This section gives an overview of how the operations of T-CQF

relates to the DetNet architecture. We first revisit QoS with DetNet

in the absence of T-CQF.

¶

¶

¶

¶

Figure 1: A DetNet MPLS Network

The above Figure 1, is copied from [RFC8964], Figure 2, and only

enhanced by numbering the nodes to be able to better refer to them

in the following text.

Assume a DetNet flow is sent from T-PE1 to T-PE2 across S-PE1, LSR,

S-PE2. In general, bounded latency QoS processing is then required

on the outgoing interface of T-PE1 towards S-PE1, and any further

outgoing interface along the path. When T-PE1 and S-PE2 know that

their next-hop is a service LSR, their DetNet flow label stack may

simply have the DetNet flows Service Label (S-Label) as its Top of

Stack (ToS) LSE, explicitly indicating one DetNet flow.

On S-PE1, the next-hop LSR is not DetNet aware, which is why S-PE1

would need to send a label stack where the S-Label is followed by a

Forwarding Label (F-Label), and LSR-P would need to perform bounded

latency based QoS on that F-Label.

For bounded latency QoS mechanisms relying on per-flow regulator

state, such as in [TSN-ATS], this requires the use of a per-detnet

flow F-Label across the network from S-PE1 to S-PE2, for example

through RSVP-TE [RFC3209] enhanced as necessary with QoS parameters

matching the underlying bounded latency mechanism (such as [TSN-

ATS]).

With TC TCQF, a sequence of LSR and DetNet service node implements

TC TCQF, ideally from T-PE1 (ingress) to T-PE2 (egress). The ingress

node needs to perform per-DetNet-flow per-packet "shaping" to assign

each packet of a flow to a particular TCQF cycle. This ingress-edge-

 DetNet MPLS Relay Transit Relay DetNet MPLS

 End System Node Node Node End System

 T-PE1 S-PE1 LSR-P S-PE2 T-PE2

 +----------+ +----------+

 | Appl. |<------------ End-to-End Service ----------->| Appl. |

 +----------+ +---------+ +---------+ +----------+

 | Service |<--| Service |-- DetNet flow --| Service |-->| Service |

 +----------+ +---------+ +----------+ +---------+ +----------+

 |Forwarding| |Fwd| |Fwd| |Forwarding| |Fwd| |Fwd| |Forwarding|

 +-------.--+ +-.-+ +-.-+ +----.---.-+ +-.-+ +-.-+ +---.------+

 : Link : / ,-----. \ : Link : / ,-----. \

 +........+ +-[Sub-]-+ +......+ +-[Sub-]-+

 [Network] [Network]

 `-----' `-----'

 |<- LSP -->| |<-------- LSP -----------| |<--- LSP -->|

 |<----------------- DetNet MPLS --------------------->|

¶

¶

¶

¶

function is currently out of scope of this document (TBD), but would

be based on the same type of edge function as used in CQF.

All LSR/Service node after the ingress node only have to map a

received TCQF tagged DetNet packet to the configured cycle on the

output interface, not requiring any per-DetNet-flow QoS state. These

LSR/Service nodes do therefore also not require per-flow

interactions with the controller plane for the purpose of bounded

latency.

Per-flow state therefore is therefore only required on nodes that

are DetNet service nodes, or when explicit, per-DetNet flow steering

state is desired, instead of ingress steering through e.g.: SR-MPLS.

Operating TCQF per-flow stateless across a service node, such as S-

PE1, S-PE2 in the picture is only an option. It is of course equally

feasible to Have one TCQF domain from T-PE1 to S-PE2, start a new

TCQF domain there, running for example up to S-PE2 and start another

one to T-PE2.

A service node must act as an egress/ingress edge of a TCQF domain

if it needs to perform operations that do change the timing of

packets other than the type of latency that can be considered in

configuration of TCQF (see Section 5.1).

For example, if T-PE1 is ingress for a TCQF domain, and T-PE2 is the

egress, S-PE1 could perform the DetNet Packet Replication Function

(PRF) without having to be a TQCF edge node as long as it does not

introduce latencies not included in the TCQF setup and the

controller plane reserves resources for the multitude of flows

created by the replication taking the allocation of resources in the

TCQF cycles into account.

Likewise, S-PE2 could perform the Packet Elimination Function

without being a TCQF edge node as this most likely does not

introduce any non-TCQF acceptable latency - and the controller plane

accordingly reserves only for one flow the resources on the S-PE2-

>T-PE2 leg.

If on the other hand, S-PE2 was to perform the Packet Reordering

Function (PRF), this could create large peaks of packets when out-

of-order packets are released together. A PRF would either have to

take care of shaping out those bursts for the traffic of a flow to

again conform to the admitted CIR/PIR, or else the service node

would have to be a TCQF egress/ingress, performing that shaping

itself as an ingress function.

¶

¶

¶

¶

¶

¶

¶

¶

3. MPLS T-CQF forwarding (normative)

3.1. Configuration Data model and tag processing for MPLS TC TCQF

Figure 2: TCQF Configuration Data Model

3.2. Packet processing

This section explains the MPLS T-CQF packet processing and through

it, introduces the semantic of the objects in Figure 2

tcqf contains the router/LSR wide configuration of TCQF parameters,

independent of the specific tagging mechanism on any interface. Any

interface can have a different tagging method.

The model represents a single TQCF domain, which is a set of

interfaces acting both as ingress (iif) and egress (oif) interfaces,

capable to forward TCQF packets amongst each other. A router/LSR may

have multiple TCQF domains each with a set of interfaces disjoint

from those of any other TCQF domain.

tcqf.cycles is the number of cycles used across all interfaces in

the TCQF domain. router/LSR MUST support 3 and 4 cycles. To support

interfaces with MPLS TC tagging, 7 or less cycles MUST be used

across all interfaces in the CQF domain.

The unit of tcqf.cycle_time is micro-seconds. router/LSR MUST

support configuration of cycle-times of 20,50,100,200,500,1000,2000

usec.

Cycles start at an offset of tcqf.cycle_clock_offset in units of

nsec as follows. Let clock1 be a timestamp of the local reference

clock for TCQF, at which cycle 1 starts, then:

tcqf.cycle_clock_offset = (clock1 mod (tcqf.cycle_time *

tcqf.cycles))

tcqf

+-- uint16 cycles

+-- uint16 cycle_time

+-- uint32 cycle_clock_offset

+-- if_config[oif] # Outgoing InterFace

 +-- uint32 cycle_clock_offset

 +-- cycle_map[iif] # Incoming InterFace

 +--uint8 oif_cycle[iif_cycle]

tcqf_tc[oif]

+--uint8 tc[oif_cycle]

¶

¶

¶

¶

¶

¶

¶

The local reference clock of the LSR/router is expected to be

synchronized with the neighboring LSR/router in TCQF domain.

tcqf.cycle_clock_offset can be configurable by the operator, or it

can be read-only. In either case will the operator be able to

configure working TCQF forwarding through appropriately calculated

cycle mapping.

tcqf.if_config[oif] is optional per-interface configuration of TCQF

parameters. tcqf.if_config[oif].cycle_clock_offset may be different

from tcqf.cycle_clock_offset, for example, when interfaces are on

line cards with independently synchronized clocks, or when non-

uniform ingress-to-egress propagation latency over a complex router/

LSR fabric makes it beneficial to allow per-egress interface or line

card configuration of cycle_clock_offset. It may be configurable or

read-only.

The value of -1 for tcqf.if_config[oif].cycle_clock_offset is used

to indicate that the domain wide tcqf.cycle_clock_offset is to be

used for oif. This is the only permitted negative number for this

parameter.

When a packet is received from iif with a cycle value of iif_cycle

and the packet is routed towards oif, then the cycle value (and

buffer) to use on oif is

tcqf.if_config[oif].cycle_map[iif].oif_cycle[iif_cycle]. This is

called the cycle mapping and is must be configurable. This cycle

mapping always happens when the packet is received with a cycle tag

on an interface in a TCQF domain and forwarded to another interface

in the same TCQF domain.

tcqf_tc[oif].tc[oif_cycle] defines how to map from the internal

cycle number oif_cycle to an MPLS TC value on interface oif. When

tcqf_tc[oif] is configured, oif will use MPLS TC tagging for TCQF.

This mapping not only used to map from internal cycle number to MPLS

TC tag when sending packets, but also to map from MPLS TC tag to the

internal cycle number when receiving packets.

3.3. TCQF with label stack operations

In the terminology of [RFC3270], TCQF QoS as defined here, is TC-

Inferred-PSC LSP (E-LSP) behavior: Packets are determined to belong

to the TCQF PSC solely based on the TC of the received packet.

The internal cycle number SHOULD be assigned from the Top of Stack

(ToS) MPLS label TC bits before any other label stack operations

happens. On the egress side, the TC value of the ToS MPLS label

SHOULD be assigned from the internal cycle number after any label

stack processing.

¶

¶

¶

¶

¶

¶

¶

With this order of processing, TCQF can support forwarding of

packets with any label stack operations such as label swap in the

case of LDP or RSVP-TE created LSP, or no label changes from SID

hop-by-hop forwarding and/or SID/label pop as in the case of SR-MPLS

traffic steering.

3.4. Ingres operations

The ingress LSR of a TCQF domain has to mark packets with an

internal cycle number and ensure that any such marked traffic

complies with the traffic envelope admitted by the controller plane.

The algorithms to map packets of traffic flows into cycles are

outside the scope of this specification, because there can be

multiple ones of varying complexity. In a most simple admission

model, a particular flow is allocated a maximum number of bytes in

every cycle. This can easily be mapped into an appropriate policing

gate.

For the purpose of this specification, such ingress operations is

simply represented as an (internal/virtual) interface from which the

packet is received, complete with a correctly assigned internal

cycle number.

4. TCQF Pseudocode (normative)

The following pseudocode restates the forwarding behavior of Section

3 in an algorithmic fashion as pseudocode. It uses the objects of

the TCQF configuration data model defined in Section 3.1.

¶

¶

¶

¶

¶

void receive(pak) {

 // Receive side TCQF - remember cycle in

 // packet internal header

 iif = pak.context.iif

 if (tcqf.if_config[iif]) { // TCQF enabled on iif

 if (tcqf_tc[iif]) { // MPLS TCQF enabled on iif

 tc = pak.mpls_header.lse[tos].tc

 pak.context.tcqf_cycle = map_tc2cycle(tc, tcqf_tc[iif])

 } else // other future encap/tagging options for TCQF

 }

 forward(pak);

}

void inject_tcqf_pak(pak, cycle) {

 pak.context.iif = INTERNAL

 pak.context.tcqf_cycle = cycle

 forward(pak);

}

void forward(pak) {

 // Forwarding including any LSE operations

 oif = pak.context.oif = forward_process(pak)

 // ... optional DetNet PREOF functions here

 // ... if router is DetNet service node

 if(pak.context.tcqf_cycle && // non TCQF packets cycle is 0

 tcqf.if_config[oif]) { // TCQF enabled

 // Map tcqf_cycle iif to oif

 cycle = pak.context.tcqf_cycle

 = map_cycle(cycle,

 tcqf.if_config[oif].cycle_map[[iif])

 if(tcqf.mpls_tc_tag[iif]) { // TC-TCQF

 pak.mpls_header.lse[tos].tc =

 map_cycle2tc(cycle, tcqf_tc[oif])

 } else // other future encap/tagging options for TCQF

 tcqf_enqueue(pak, oif.cycleq[cycle])

 }

}

// Started when TCQF is enabled on an interface

// dequeues packets from oif.cycleq

void send_tcqf(oif) {

 cycle = 1

 cc = tcqf.cycle_time *

 tcqf.cycle_time

 o = tcqf.cycle_clock_offset

 nextcyclestart = floor(tnow / cc) * cc + cc + o

 while(1) {

 while(tnow < nextcyclestart) { }

 while(pak = dequeue(oif.cycleq(cycle)) {

 send(pak)

 }

 cycle = (cycle + 1) mod tcqf.cycles + 1

 nextcyclestart += tcqf.cycle_time

 }

}

Figure 3: TCQF Pseudocode

5. Operational considerations (informative)

5.1. Controller plane computation of cycle mappings

The cycle mapping is computed by the controller plane by taking at

minimum the link, interface serialization and node internal

forwarding latencies as well as the cycle_clock_offsets into

account.

Figure 4: Calculation reference

Consider in {#Calc1} that Router R1 sends packets via C = 3 cycles

with a cycle_clock offset of O1 towards Router R2. These packets

arrive at R2 with a cycle_clock offset of O1' which includes through

D all latencies incurred between releasing a packet on R1 from the

cycle buffer until it can be put into a cycle buffer on R2:

serialization delay on R1, link delay, non_CQF delays in R1 and R2,

especially forwarding in R2, potentially across an internal fabric

to the output interface with the sending cycle buffers.

Figure 5: Calculating cycle mapping

{#Calc2} shows a formula to calculate the cycle mapping between R1

and R2, using the first available cycle on R2. In the example of

{#Calc1} with CT = 1, (O1' - O2) =~ 1.8, A will be 0, resulting in

map(1) to be 1, map(2) to be 2 and map(3) to be 3.

¶

Router . O1

 R1 . | cycle 1 | cycle 2 | cycle 3 | cycle 1 |

 . .

 Delay D

 . .

 . O1'

 . | cycle 1 |

Router . | cycle 1 | cycle 2 | cycle 3 | cycle 1 |

 R2 . O2

CT = cycle_time

C = cycles

CC = CT * C

O1 = cycle_clock_offset router R1, interface towards R2

O2 = cycle_clock_offset router R2, output interface of interest

O1' = O1 + D

¶

A = (ceil((O1' - O2) / CT) + C + 1) mod CC

map(i) = (i - 1 + A) mod C + 1

¶

The offset "C" for the calculation of A is included so that a

negative (O1 - O2) will still lead to a positive A.

In general, D will be variable [Dmin...Dmax], for example because of

differences in serialization latency between min and max size

packets, variable link latency because of temperature based length

variations, link-layer variability (radio links) or in-router

processing variability. In addition, D also needs to account for the

drift between the synchronized clocks for R1 and R2. This is called

the Maximum Time Interval Error (MTIE).

Let A(d) be A where O1' is calculated with D = d. To account for the

variability of latency and clock synchronization, map(i) has to be

calculated with A(Dmax), and the controller plane needs to ensure

that that A(Dmin)...A(Dmax) does cover at most (C - 1) cycles.

If it does cover C cycles, then C and/or CT are chosen too small,

and the controller plane needs to use larger numbers for either.

This (C - 1) limitation is based on the understanding that there is

only one buffer for each cycle, so a cycle cannot receive packets

when it is sending packets. While this could be changed by using

double buffers, this would create additional implementation

complexity and not solve the limitation for all cases, because the

number of cycles to cover [Dmin...Dmax] could also be (C + 1) or

larger, in which case a tag of 1...C would not suffice.

6. Security Considerations

TBD.

7. IANA Considerations

This document has no IANA considerations.

8. Changelog

00

Initial version

01

Added new co-author.

Changed Data Model to "Configuration Data Model",

and changed syntax from YANG tree to a non-YANG tree, removed empty

section targeted for YANG model. Reason: the configuration

parameters that we need to specify the forwarding behavior is only a

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC3270]

[RFC8655]

[RFC8964]

[CQF]

[I-D.dang-queuing-with-multiple-cyclic-buffers]

subset of what likely would be a good YANG model, and any work to

define such a YANG model not necessary to specify the algorithm

would be scope creep for this specification. Better done in a

separate YANG document. Example additional YANG aspects for such a

document are how to map parameters to configuration/operational

space, what additional operational/monitoring parameter to support

and how to map the YANG objects required into various pre-existing

YANG trees.

Improved text in forwarding section, simplified sentences, used

simplified configuration data model.

02

Refresh

9. References

9.1. Normative References

Le Faucheur, F., Wu, L., Davie, B., Davari, S., Vaananen,

P., Krishnan, R., Cheval, P., and J. Heinanen, "Multi-

Protocol Label Switching (MPLS) Support of Differentiated

Services", RFC 3270, DOI 10.17487/RFC3270, May 2002,

<https://www.rfc-editor.org/info/rfc3270>.

Finn, N., Thubert, P., Varga, B., and J. Farkas,

"Deterministic Networking Architecture", RFC 8655, DOI

10.17487/RFC8655, October 2019, <https://www.rfc-

editor.org/info/rfc8655>.

Varga, B., Ed., Farkas, J., Berger, L., Malis, A.,

Bryant, S., and J. Korhonen, "Deterministic Networking

(DetNet) Data Plane: MPLS", RFC 8964, DOI 10.17487/

RFC8964, January 2021, <https://www.rfc-editor.org/info/

rfc8964>.

9.2. Informative References

IEEE Time-Sensitive Networking (TSN) Task Group., "IEEE

Std 802.1Qch-2017: IEEE Standard for Local and

Metropolitan Area Networks - Bridges and Bridged Networks

- Amendment 29: Cyclic Queuing and Forwarding", 2017.

Liu, B. and J. Dang,

"A Queuing Mechanism with Multiple Cyclic Buffers", Work

in Progress, Internet-Draft, draft-dang-queuing-with-

multiple-cyclic-buffers-00, 22 February 2021, <https://

www.ietf.org/archive/id/draft-dang-queuing-with-multiple-

cyclic-buffers-00.txt>.

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc3270
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8964
https://www.rfc-editor.org/info/rfc8964
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt
https://www.ietf.org/archive/id/draft-dang-queuing-with-multiple-cyclic-buffers-00.txt

[I-D.eckert-detnet-bounded-latency-problems]

[I-D.ietf-bier-te-arch]

[I-D.ietf-detnet-bounded-latency]

[I-D.qiang-DetNet-large-scale-DetNet]

[RFC3209]

[RFC8402]

[TSN-ATS]

Eckert, T. and S.

Bryant, "Problems with existing DetNet bounded latency

queuing mechanisms", Work in Progress, Internet-Draft,

draft-eckert-detnet-bounded-latency-problems-00, 12 July

2021, <https://www.ietf.org/archive/id/draft-eckert-

detnet-bounded-latency-problems-00.txt>.

Eckert, T., Menth, M., and G. Cauchie, "Tree

Engineering for Bit Index Explicit Replication (BIER-

TE)", Work in Progress, Internet-Draft, draft-ietf-bier-

te-arch-13, 25 April 2022, <https://www.ietf.org/archive/

id/draft-ietf-bier-te-arch-13.txt>.

Finn, N., Boudec, J. L., Mohammadpour, E., Zhang, J.,

and B. Varga, "DetNet Bounded Latency", Work in Progress,

Internet-Draft, draft-ietf-detnet-bounded-latency-10, 8

April 2022, <https://www.ietf.org/archive/id/draft-ietf-

detnet-bounded-latency-10.txt>.

Qiang, L., Geng, X., Liu, B., Eckert, T., Geng, L., and

G. Li, "Large-Scale Deterministic IP Network", Work in

Progress, Internet-Draft, draft-qiang-DetNet-large-scale-

DetNet-05, 2 September 2019, <https://www.ietf.org/

archive/id/draft-qiang-DetNet-large-scale-DetNet-05.txt>.

Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,

and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP

Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,

<https://www.rfc-editor.org/info/rfc3209>.

Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,

Decraene, B., Litkowski, S., and R. Shakir, "Segment

Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,

July 2018, <https://www.rfc-editor.org/info/rfc8402>.

Specht, J., "P802.1Qcr - Bridges and Bridged Networks

Amendment: Asynchronous Traffic Shaping", IEEE , 9 July

2020, <https://1.ieee802.org/tsn/802-1qcr/>.

Authors' Addresses

Toerless Eckert

Futurewei Technologies USA

2220 Central Expressway

Santa Clara, CA 95050

United States of America

https://www.ietf.org/archive/id/draft-eckert-detnet-bounded-latency-problems-00.txt
https://www.ietf.org/archive/id/draft-eckert-detnet-bounded-latency-problems-00.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-13.txt
https://www.ietf.org/archive/id/draft-ietf-bier-te-arch-13.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-10.txt
https://www.ietf.org/archive/id/draft-ietf-detnet-bounded-latency-10.txt
https://www.ietf.org/archive/id/draft-qiang-DetNet-large-scale-DetNet-05.txt
https://www.ietf.org/archive/id/draft-qiang-DetNet-large-scale-DetNet-05.txt
https://www.rfc-editor.org/info/rfc3209
https://www.rfc-editor.org/info/rfc8402
https://1.ieee802.org/tsn/802-1qcr/

Email: tte@cs.fau.de

Stewart Bryant

University of Surrey ICS

Email: s.bryant@surrey.ac.uk

Andrew G. Malis

Malis Consulting

Email: agmalis@gmail.com

mailto:tte@cs.fau.de
mailto:s.bryant@surrey.ac.uk
mailto:agmalis@gmail.com

	Deterministic Networking (DetNet) Data Plane - MPLS TC Tagging for Cyclic Queuing and Forwarding (MPLS-TC TCQF)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction (informative)
	2. Using TCQF in the DetNet Archticture and MPLS forwarding plane (informative)
	3. MPLS T-CQF forwarding (normative)
	3.1. Configuration Data model and tag processing for MPLS TC TCQF
	3.2. Packet processing
	3.3. TCQF with label stack operations
	3.4. Ingres operations

	4. TCQF Pseudocode (normative)
	5. Operational considerations (informative)
	5.1. Controller plane computation of cycle mappings

	6. Security Considerations
	7. IANA Considerations
	8. Changelog
	9. References
	9.1. Normative References
	9.2. Informative References

	Authors' Addresses

